THANKS
感谢观看
基本假设与条件
鸽巢原理
如果 n 个鸽子要放进 m 个鸽巢 ,且 n > m,则至少有一个鸽巢 里有多于一个鸽子。
前提条件
所有鸽子大小相同,所有鸽巢容 量相同。
数学模型建立
定义变量
设 n 为鸽子数量,m 至少有一个鸽巢 包含多于一个鸽子。
推论
最少有一个鸽巢的鸽子数量不少于 n/m(向上取整)。
《鸽巢问题》课件
目录
• 鸽巢问题概述 • 鸽巢问题数学模型 • 鸽巢问题求解方法 • 鸽巢问题经典案例解析 • 鸽巢问题拓展与延伸 • 总结回顾与课堂互动环节
01
鸽巢问题概述
定义与背景
01
鸽巢问题,又称鸽笼原理或抽屉 原理,是组合数学中一个重要的 原理。
02
它的基本思想是:如果把 n+1 个 物体放入 n 个容器中,则至少有 一个容器包含两个或两个以上的 物体。
鸽巢原理与其他数学原理结合应用
与概率论结合
通过概率论的方法可以更加精确地描 述鸽巢问题的本质,例如通过计算每 个鸽巢中鸽子数量的期望值等。
与图论结合
图论中的很多问题也可以转化为鸽巢 问题进行求解,例如通过构造图的方 式将问题转化为鸽巢问题等。
与组合数学结合
组合数学中的很多计数问题都可以转 化为鸽巢问题进行求解,例如通过计 算组合数等方式。
假设只有有限个素数,记为p1, p2, ..., pn,构造一个数N = p1 * p2 * ... * pn + 1,则N不能被p1, p2, ..., pn中的任 何一个整除,因此N必然有一个新的素因子,与假设矛盾 。
要点二
证明任意2n个整数中,必有两个 数a和b,使得a ≡ b…