六自由度KUKA机器人编程与操作
- 格式:doc
- 大小:10.25 MB
- 文档页数:4
KUKA机器人轴无限旋转设置
在实际生产应用中,有时候可能需要机器人单个轴无限旋转,对于没有硬限位的轴来说可以进行无限旋转设置。
常用到的是A6轴无限旋转,KUKA机器人通过以下步骤进行设置。
一、在示教器上切换登录权限;
二、在文件夹R1-Mada下打开系统文件$machine文件;
三、程序中有关于各个轴的轴类型解释;
其中:1=LINEAR代表直线轴,
3=ROTATORISCH代表旋转轴,
5=ENDLOS代表无限旋转轴。
可以看出6个轴默认的都为旋转轴。
四、如果需要将A6轴设置为无限旋转,则将A6轴的轴类型
改为5即可。
保存文件选择【是】。
KUKA机器人编程手册KUKA编程手册一、概述二、系统的结构和功能2.1 技术入门机械系统:的物理结构,包括关节、连杆、末端执行器等,决定了的运动范围和能力。
传感系统:的感知部分,包括位置、速度、力、温度、视觉等传感器,用于获取自身或环境的信息。
控制系统:的核心部分,包括控制柜、电源、通信接口等,用于控制的运动和行为。
编程系统:的软件部分,包括操作系统、应用软件、编程语言等,用于设定的任务和逻辑。
2.2 库卡的机械系统基座:固定在地面或其他平台上,支撑整个结构。
A1轴:位于基座上方,控制整个机械臂的水平旋转。
A2轴:位于A1轴上方,控制整个机械臂的垂直旋转。
A3轴:位于A2轴上方,控制中间连杆的垂直旋转。
A4轴:位于A3轴上方,控制末端连杆的水平旋转。
A5轴:位于A4轴上方,控制末端连杆的垂直旋转。
A6轴:位于A5轴上方,控制末端执行器(如夹具、焊枪等)的水平旋转。
2.3 控制系统(V)KR C4高性能:采用多核处理器和实时操作系统,实现高速、高精度和高稳定性的运动控制。
高集成:集成了电源、安全、通信、诊断等功能模块,实现了紧凑、简洁和易维护的设计。
高兼容:支持多种总线和接口标准,如EtherCAT、EtherNet/IP、PROFINET等,实现了与不同厂商和设备的无缝连接。
高扩展:支持多种扩展模块和选件,如外部轴、视觉系统、力控系统等,实现了多样化和定制化的应用需求。
2.4 KUKA smartPAD易用:采用触摸屏和按键的组合方式,实现了直观、方便和快捷的操作体验。
明晰:采用高分辨率和高亮度的显示屏,实现了清晰、鲜艳和易读的显示效果。
强大:集成了多种功能和模式,如手动、自动、编程、诊断等,实现了全面、灵活和高效的控制。
三、的操作和编程3.1 KUKA.ControlStudio软件统一:采用统一的软件平台,实现了控制系统和KUKA smartPAD的一致性和互操作性。
简洁:采用简洁的用户界面,实现了清晰、易懂和易用的操作指引。
KUKA机器人编程手册KUKA编程手册一、概述KUKAControlStudio是一个用于开发和运行程序的软件平台,它支持多种编程语言和接口,包括MC-Basic、C、Python、ROS等。
KUKA ControlStudio可以在Windows或Linux操作系统上运行,可以通过网线或无线网络与控制器进行通信。
KUKAControlStudio提供了一个图形化的用户界面,可以方便地创建、编辑、调试和管理程序。
KUKAControlStudio还提供了一个软件开发工具包(SDK),可以用于开发自定义的应用程序和扩展功能。
二、安装和启动要使用KUKAControlStudio,您需要先并安装相应的软件包。
您可以从库卡中心¹获取最新版本的KUKAControlStudio软件包,以及相关的操作系统和应用软件手册¹。
安装过程根据不同的操作系统和硬件配置可能有所不同,请参考手册中的详细说明。
安装完成后,您可以通过双击桌面上的快捷方式或从开始菜单中选择KUKAControlStudio来启动软件。
启动后,您会看到一个欢迎界面,显示了一些常用的选项,如创建新项目、打开现有项目、连接等。
您也可以从菜单栏或工具栏中选择相应的功能。
三、连接要使用KUKAControlStudio编写和运行程序,您需要先与控制器建立连接。
您可以通过网线或无线网络来实现连接,但需要确保您的电脑和控制器处于同一局域网内,并且设置了正确的IP地址。
在控制柜上打开电源开关,并等待系统启动完成。
在控制柜上找到一个带有显示屏和按键的模块,这是控制器的用户界面。
在用户界面上按下菜单键(M),然后选择“设置”(S)。
在设置菜单中选择“网络”(N),然后选择“IP地址”(I)。
在IP地址菜单中输入您想要设置的IP地址,例如192.168.1.100,并按下确认键(O)。
在用户界面上按下返回键(R),直到回到主菜单。
在电脑上打开控制面板,并选择“网络和共享中心”。
KUKA机器人编程手册KUKA编程手册一、概述机械臂:由多个关节和连杆构成,可以在空间中进行多自由度的运动。
控制柜:包含电源模块、驱动模块、控制模块等,负责为机械臂提供电力和信号,并执行用户编写的程序。
操作面板:也称为KCP(KUKA ControlPanel),是一种手持式的触摸屏设备,可以用于控制的开关、模式切换、手动移动、程序编辑等功能。
外部设备:根据不同的应用场景,可以连接各种外部设备,如传感器、执行器、通信接口等,以实现更复杂的功能和交互。
二、学习手动移动在开始编程之前,需要先了解如何使用操作面板来手动移动。
手动移动有助于熟悉的运动范围和特性,以及检查的状态和故障。
手动移动的步骤如下:1. 打开控制柜的电源开关,并等待系统启动完成。
2.在操作面板上选择“T1”模式(也称为“测试”模式),并按下“确认”键。
3. 在操作面板上选择“手动”模式,并按下“确认”键。
4.在操作面板上选择“轴”模式或“笛卡尔”模式,并按下“确认”键。
轴模式下,可以分别控制每个关节的旋转角度;笛卡尔模式下,可以控制末端执行器的位置和姿态。
5.在操作面板上按住“死人开关”,并使用方向键或摇杆来移动。
注意观察的运动情况,避免碰撞或超出限位。
6.在操作面板上按下“停止”键,可以停止的运动,并锁定当前位置。
三、项目配置在开始编程之前,需要先配置项目的相关参数,如的IP地址、电脑和的连接方式、项目的名称和位置等。
项目配置的步骤如下:1.设置的IP地址。
在操作面板上选择“设置”菜单,并进入“网络设置”子菜单。
在此处可以查看或修改的IP地址、子网掩码、网关等信息。
一般情况下,建议将的IP地址设置为192.168.0.1,以便于与电脑进行通信。
2.电脑和通过网线连接。
将一根网线的一端插入控制柜后面的以太网接口,另一端插入电脑的网卡接口。
在电脑上设置网络连接的属性,将I P地址设置为192.168.0.2,子网掩码设置为255.255.255.0,网关设置为192.168.0.1。
KUKA机器人操作与编程手册简介KUKA机器人是德国KUKA机器人公司(KULG)生产的工业机器人。
它们被广泛应用于汽车制造、电子制造、建筑等各个领域。
本手册旨在为初学者提供一些关于KUKA机器人操作和编程的基础知识。
操作手册1. KUKA机器人的启动和关闭KUKA机器人的启动和关闭是使用KUKA KR C4控制器进行操作的。
下面是启动和关闭机器人的步骤:1.打开控制器电源2.使用控制器上的开关将机器人系统启动3.等待机器人系统自检完成4.通过控制器进行机器人的操作5.关闭机器人系统前,确保机器人处于安全位置6.使用控制器上的开关关闭机器人系统2. 机器人的基本移动KUKA机器人具有多种不同类型的运动,包括直线运动、旋转运动和关节运动。
下面是一些基本的机器人移动指令示例:•直线运动:LIN X100 Y100 Z100 A45 B45 C45•旋转运动:CIRC P100 P200 R50•关节运动:JNT J1=90 J2=453. 机器人编程语言KUKA机器人使用KRL(KUKA Robot Language)作为其编程语言。
KRL是一种结构化编程语言,类似于C或Pascal。
下面是一个简单的KRL程序示例:DEF myProgram()DECL int iDECL bool conditioni = 0condition = trueWHILE condition DOINC iIF i == 10 THENcondition = falseENDIFENDWHILEENDDEF4. 机器人的传感器和反馈KUKA机器人可以配备各种传感器,以便实时监测机器人的状态和周围环境的信息。
一些常见的传感器包括力传感器、视觉传感器和温度传感器。
通过这些传感器,机器人可以感知和适应外部环境的变化。
5. 机器人的安全措施在操作KUKA机器人时,安全是至关重要的。
以下是一些常见的机器人安全措施:•确保机器人周围没有障碍物•执行安全风险评估,并根据评估结果制定相应的操作计划•对机器人进行定期维护和检查,确保其正常运行•使用必要的个人防护设备,例如手套和护目镜结论本手册提供了初学者入门KUKA机器人操作和编程的基本知识。
KUKA机器人编程手册KUKA编程手册一、KUKA基本概念1.1 什么是KUKA?KUKA是由德国库卡公司(KUKAAG)生产的一系列工业,广泛应用于汽车、航空、电子、医疗、消费品等行业的生产和制造过程中。
KUKA具有高精度、高速度、高灵活性、高可靠性等特点,能够满足各种复杂和多变的工作需求。
1.2 KUKA的组成部分机械臂:机械臂是KUKA的主体部分,由若干个关节和连杆构成,能够在空间中进行多自由度的运动。
机械臂的末端可以安装不同的工具或夹具,以适应不同的工作任务。
控制柜:控制柜是KUKA的核心部分,负责对机械臂进行电气和逻辑控制。
控制柜内部安装了操作系统、应用软件、驱动器、电源等模块,以及与外部设备通信的接口。
操作面板:操作面板是KUKA的交互部分,用于对进行设置、编程、调试和运行等操作。
操作面板上有显示屏、按键、旋钮等元件,以及与控制柜连接的数据线。
安全设备:安全设备是KUKA的保护部分,用于防止发生故障或异常情况时造成危害。
安全设备包括紧急停止按钮、安全门、安全光栅、碰撞检测等。
二、KUKA操作系统2.1 KUKA.ControlStudio2.2 KUKA.ControlStudio主要功能项目管理:项目管理模块用于创建和管理KUKA的项目文件,包括程序文件、数据文件、配置文件MODULE 模块名声明部分语句部分ENDMODULEVAR INT a;VAR REAL b;VAR BOOL c;VAR CHAR d;VAR STRING e;VAR ENUM {red, green, blue} f; VAR STRUCT {INT x; REAL y;} g; VAR ARRAY [1..10] OF INT h; VAR POINTER TO REAL i;a := 10;b := 3.14;c := TRUE;d := 'A';e := "Hello";f := red;g.x := 1;g.y := 2.0;h[1] := 100;i := ADR(b);a := a + 1;b := b * 2.0;c := NOT c;d := TO_CHAR(65);e := e + " World";f := TO_ENUM(1);g.x := g.x 1;g.y := g.y / 2.0;h[1] := h[1] * 10;i := DREF(i);PTP {X 100, Y 200, Z 300} C_PTP; -点对点运动到绝对坐标(100,200,300)LIN REL {X -50, Y -50, Z -50} C_DIS; -直线运动到相对坐标(-50,-50,-50)CIRC {KUKA编程手册一、概述KUKAControlStudio是一个基于Windows的软件平台,用于开发和执行程序。
KUKA机器人编程手册KUKA编程手册一、系统简介1.1 系统组成本体:由机械臂、电动机、传感器、电缆等组成,负责执行物理运动。
控制柜:包含电源模块、驱动模块、控制模块、通信模块等,负责控制和监测的运行状态。
操作面板:提供了一个触摸屏和一些按键,用于与进行交互和操作。
外部设备:根据不同的应用场景,可以连接一些外部设备,如工具、传送带、视觉系统等,以实现更复杂的功能。
1.2 操作系统实时内核:负责处理与运动相关的实时任务,如轨迹规划、运动控制、碰撞检测等。
用户界面:负责提供一个图形化的用户界面,让用户可以通过操作面板或远程终端来访问和操作系统。
应用软件:负责提供一些预定义或自定义的应用软件,让用户可以根据不同的需求来配置和使用系统。
1.3 应用软件KUKA.ControlStudio:是一个集成开发环境(IDE),让用户可以使用图形化或文本化的方式来编写和调试程序。
KUKA.PC.API:是一个应用程序接口(API),让用户可以使用C或其他.NET语言来开发基于PC的远程控制或监控应用程序。
KUKA.MC-Basic:是一种基于文本的编程语言,让用户可以使用类似于BASIC语言的语法来编写和运行程序。
二、学习手动移动在开始编写和运行程序之前,需要先学习如何手动移动。
手动移动有助于熟悉的结构和运动范围,以及检查是否正常工作²。
2.1 启动和停止要启动或停止,需要使用操作面板上的开关键²:自动模式:在自动模式下,会根据预设的程序自动运行,不需要用户干预。
这种模式适用于正式的生产环境。
手动模式:在手动模式下,会根据用户的操作进行移动,不会执行任何程序。
这种模式适用于学习和调试的目的。
停止键:按下停止键后,会立即停止运动,并进入待机状态。
如果出现故障或危险情况,可以随时按下停止键来紧急停止。
2.2 使用操作杆移动要使用操作杆移动,需要先将操作面板上的启动模式切换到手动模式²。
KUKA机器人编程手册KUKA编程手册一、概述二、系统组成本体:本体是由多个关节和连杆构成的可移动结构,它可以在空间中执行各种运动。
本体上还安装了各种传感器和执行器,用于控制和监测的状态。
控制柜:控制柜是系统的核心部分,它包含了的控制器、电源、驱动器、通讯模块等硬件设备。
控制柜负责接收和处理来自操作员或外部设备的指令,以及向本体发送控制信号。
操作面板:操作面板是系统的人机交互界面,它可以通过有线或无线方式与控制柜连接。
操作面板上有显示屏、按键、开关、指示灯等组件,用于显示和输入的相关信息和参数。
外部设备:外部设备是指与系统相连的其他设备,例如工具、夹具、传送带、视觉系统等。
外部设备可以通过数字或模拟信号、以太网、总线等方式与控制柜通讯,实现与的协同作业。
三、操作3.1 启动和停止启动:在控制柜上按下启动按钮,控制柜将进入就绪状态,并向操作面板发送启动信号。
在操作面板上按下确认按钮,控制柜将进入运行状态,并向本体发送使能信号。
此时,可以接收并执行指令。
停止:在操作面板上按下停止按钮,控制柜将进入停止状态,并向本体发送停止信号。
此时,将停止当前的运动,并保持当前的位置。
在控制柜上按下停止按钮,控制柜将进入关闭状态,并断开与操作面板和外部设备的通讯。
3.2 模式切换自动模式:自动模式是系统的正常工作模式,也是最常用的模式。
在自动模式下,可以自动执行存储在控制柜中的程序,并根据程序中的逻辑和条件进行判断和分支。
自动模式下,操作员只能通过操作面板上的启动、停止、暂停等按钮控制的运行,不能通过手动移动的方式进行操作。
手动模式:手动模式是系统的调试和维护模式,也是编程的基础模式。
在手动模式下,可以通过操作面板上的方向键或手轮进行手动移动,也可以通过操作面板上的其他按钮进行参数设置、程序编辑、故障诊断等操作。
手动模式下,的运行速度受到限制,以保证操作员的安全。
外部模式:外部模式是系统的扩展模式,用于与外部设备进行协同作业。
引言:KUKA是一种先进的工业,广泛应用于制造业各个领域。
它的操作方法与传统的机器设备有所不同,需要专业人士来进行操作和编程。
本文将详细介绍KUKA的操作方法,以帮助读者更好地理解和掌握该的使用。
概述:KUKA的操作方法可以分为硬件操作和软件编程两个方面。
硬件操作包括的基本操作、安全操作和示教操作;软件编程包括的运动控制、路径规划和逻辑编程。
本文将通过五个大点来详细阐述KUKA 的操作方法。
正文:一、硬件操作1.的基本操作a.的启动和关闭b.的急停和复位操作c.的示教模式和自动模式切换2.安全操作a.的安全设置和紧急停机装置b.安全栅栏和安全门的使用c.安全示教器的操作和使用3.示教操作a.示教器的使用和功能介绍b.示教器的示教方式和操作步骤c.示教后的验证和修改二、软件编程1.运动控制a.的坐标系和坐标变换b.的运动学和逆运动学c.运动指令的编程和调试2.路径规划a.的路径规划算法和方法b.的轨迹规划和插补c.路径优化和轨迹跟踪3.逻辑编程a.的逻辑控制和条件判断b.的循环和分支结构c.的函数和模块化编程4.视觉引导a.的视觉传感器和图像处理b.的视觉引导和定位c.的视觉检测和测量5.网络通信a.的通信接口和协议b.与其他设备的数据交互c.的远程监控和管理总结:KUKA的操作方法涵盖了硬件操作和软件编程两个方面。
在硬件操作中,正确的基本操作、安全操作和示教操作是使用的前提条件。
而在软件编程中,掌握运动控制、路径规划、逻辑编程、视觉引导和网络通信让可以更高效地完成各种任务。
通过本文的介绍,读者可以更加深入地理解KUKA的操作方法,并在实际应用中灵活运用。
kuka机器人操作说明(草稿)(精选5篇)第一篇:kuka机器人操作说明(草稿)系统自动运行操作流程(草稿)1,打开气源2,机器人开机3,T1模式,手动操作,进入专家界面(菜单“配置”下选择“用户组”,选择“专家“,输入密码“KUKA”)4,首先查看,菜单“显示”下选择“WINACPANEL”,查看PLC是否运行,或者查看三色灯黄灯是否亮5,然后,I/O重新配置,菜单“配置”下选择“输入输出”,再选择“输入输出重新配置” 6,选择CELL程序,手动运行CELL程序(RUN HOME时,即机器人运行到HOME时,要注意观察有无干涉),机器人到HOME点后,继续启动运行CELL程序(再按一次KCP上“启动“),运行到“AUTOEXT INI”这一行后;再选择菜单“程序“下其“程序复位”选项,然后,再手动运行CELL程序到HOME点这一行即可7,确认信息8,选择“EXT”模式,即外部自动模式9,按KOP上“复位”按钮(确认安全门)10,注塑机选择自动11,再按“启动”按钮12,再按注塑机上“启动”按钮13,系统启动另外:1,模具间有工件的处理:注塑机选择手动,再按一下KOP上“功能键“按钮;机器人手动回HOME点(注意干涉),CELL程序复位,系统再重新启动运行。
2,夹具掉件的处理:(掉件启用时)a,系统自动运行,掉件,确认信息,出现等待(WAIT FOR $IN[357]),此时,可以取消等待(按一下KOP上功能键),系统正常运行回HOME点(不带件)。
b,系统自动运行,掉件,确认信息,没有出现等待,则系统正常运行回HOME点后(不带件),再按一下KOP上“功能键“按钮。
c,若是系统自动运行,掉件,机器人停在中间,则确认信息,手动把机器人带回安全位置,然后,再重做上面“系统自动运行操作流程“第5步开始以后的步骤即可。
注意:如果掉件暂时不用报警信息提示,则可以把R1Systemsps.sub文件打开,文件里面:IF $IN[291] THENIF $IN[291] THENGRP_MSG(1)改为;GRP_MSG(1)即可。
项目四 KUKA工业机器人涂胶编程与操作一、KUKA 工业机器人涂胶系统的组成KUKA 工业机器人涂胶系统通常由机器人本体、涂胶枪、供胶系统、控制系统以及工装夹具等部分组成。
机器人本体是整个系统的核心执行机构,具备高精度的运动控制能力和多自由度的灵活操作特性。
涂胶枪则负责将胶水准确地涂布在工件表面,其设计和性能直接影响涂胶的质量和效率。
供胶系统负责为涂胶枪提供稳定的胶水供应,包括胶桶、胶泵、胶管等组件。
控制系统则是整个涂胶系统的“大脑”,通过编程和参数设置,指挥机器人完成各种复杂的涂胶动作。
工装夹具用于固定工件,确保在涂胶过程中工件的位置准确无误。
二、涂胶编程的基本原理KUKA 工业机器人的涂胶编程基于机器人编程语言和运动控制原理。
编程人员需要根据涂胶工艺的要求,确定机器人的运动轨迹、速度、涂胶压力等参数。
首先,要对工件的形状和涂胶区域进行精确的测量和分析,以确定机器人的运动路径。
然后,使用 KUKA 机器人专用的编程软件,如KUKAWorkVisual 等,通过示教编程或离线编程的方式,编写机器人的运动程序。
示教编程是一种较为直观的编程方法,编程人员通过手动操作机器人,使其沿着期望的轨迹运动,机器人会自动记录下这些运动点的位置和姿态信息。
离线编程则是在计算机上利用三维建模软件创建工件模型,并在虚拟环境中进行机器人编程和仿真,最后将生成的程序下载到机器人控制器中。
三、涂胶编程的具体步骤1、工艺分析在编程之前,需要对涂胶工艺进行详细的分析,包括胶水的类型、涂胶厚度、涂胶速度等要求,以及工件的形状、尺寸和表面特性等。
2、建立坐标系根据工件的安装位置和涂胶方向,建立合适的坐标系,如基坐标系、工具坐标系和工件坐标系等。
坐标系的正确建立是保证涂胶精度的关键。
3、规划运动轨迹根据工艺分析的结果,规划机器人的运动轨迹。
这包括直线运动、圆弧运动、关节运动等多种运动方式的组合,以实现对复杂涂胶区域的覆盖。
4、设定运动参数确定机器人的运动速度、加速度、涂胶压力等参数。
KUKA机器人编程手册KUKA编程手册一、概述二、结构机械臂:机械臂是的主体部份,由多个关节和连杆组成,可以在空间中进行多自由度的运动。
机械臂的末端可以安装不同的工具或者末端执行器,以适应不同的应用场景。
控制柜:控制柜是的控制中心,包含了电源模块、驱动模块、通信模块、安全模块等,负责为机械臂提供电力和信号,并与外部设备进行数据交换。
操作面板:操作面板是的人机交互界面,由触摸屏和按键组成,可以显示的状态信息、参数设置、故障诊断等,并提供手动操作和编程的功能。
软件系统:软件系统是的核心部份,包含了操作系统、应用软件、编程语言等,决定了的功能和性能。
KUKA使用了专门开辟的KUKA.Co ntrolStudio作为操作系统,支持多种应用软件和编程语言。
三、编程语言MC-Basic:MC-Basic是一种基于文本的编程语言,类似于C语言,可以实现对运动和逻辑控制的精确描述。
MC-Basic支持变量、数据类型、运算符、函数、流程控制等基本语法元素,并提供了一系列专门针对控制的指令和函数。
KRL:KRL是一种基于文本的编程语言,类似于Pascal语言,可以实现对运动和逻辑控制的简洁描述。
KRL支持变量、数据类型、运算符、函数、流程控制等基本语法元素,并提供了一系列专门针对控制的指令和函数。
PC-API:PC-API是一种基于对象的编程接口,可以通过C或者C++等高级语言,在PC端对进行远程控制。
PC-API提供了一系列封装了功能的类和方法,并支持事件驱动和异步通信等特性。
四、操作系统系统管理:系统管理是操作系统的基础功能,负责的启动、关闭、重启、更新、配置、备份、恢复等操作,并提供了一系列的系统工具和设置选项。
程序管理:程序管理是操作系统的核心功能,负责的编程、编辑、调试、运行、住手、暂停、恢复等操作,并提供了一系列的程序工具和设置选项。
设备管理:设备管理是操作系统的扩展功能,负责与外部设备的连接、通信、控制等操作,并提供了一系列的设备工具和设置选项。
KUKA机器人编程手册KUKA编程手册一、概述采用模块化设计,可根据不同的应用需求选择不同的型号、负载、工作半径和控制柜等组件。
采用先进的控制技术,可实现多种运动模式,如点对点运动、连续路径运动、外部轴运动等。
采用灵便的编程方式,可通过手持式操作装置(KUKA smartPAD)、PC软件(KUKA.ControlStudio)或者自定义接口(KUKA.PC .API)进行编程。
采用标准化的通信协议,可与其他设备或者系统进行数据交换和协同控制,如以太网(Ethernet)、现场总线(Fieldbus)、工业以太网(Industrial Ethernet)等。
采用丰富的软件功能,可实现多种功能和优化,如安全功能(Safe Operation)、碰撞检测(CollisionDetection)、能量管理(Energy Management)等。
二、学习手动挪移在开始编程之前,需要先了解如何手动挪移。
手动挪移是指通过手持式操作装置(KUKAsmartPAD)上的按键或者触摸屏来控制的位置和姿态。
手动挪移有助于熟悉的结构和运动范围,以及设置的坐标系和工具参数。
显示的状态信息,如电源状态、错误信息、警告信息等。
设置的操作模式,如自动模式(AUT)、外部模式(EXT)、T1模式(T1)、T2模式(T2)等。
设置的速度级别,如百分比速度(%VEL)、最大速度(MAX VEL)、最小速度(MIN VEL)等。
设置的运动模式,如关节坐标系运动(AXIS)、笛卡尔坐标系运动(CART)、基坐标系运动(BASE)、工具坐标系运动(TOOL)等。
设置的坐标系和工具参数,如基坐标系(BASEDATA)、工具坐标系(TOOL DATA)、用户坐标系(USER FRAME)等。
编辑和执行程序,如创建程序(NEW PGM)、打开程序(OPEN PGM)、保存程序(SAVE PGM)、运行程序(RUN PGM)等。
1. 打开控制柜电源,并等待系统启动完成。
KUKA机器人编程手册KUKA编程手册一、概述二、学习手动挪移在开始编程之前,用户需要了解如何手动挪移,以便对的运动范围、速度和方向有一个直观的感受。
手动挪移的步骤如下:1. 打开控制柜的电源开关,等待系统启动完成。
2. 在控制柜上选择“手动”模式,并按下“启动”按钮。
3.在操作面板上选择“轴”模式或者“空间”模式,根据需要调整速度百分比。
4.在操作面板上按住“死人开关”,并使用方向键或者摇杆来挪移的各个关节或者末端执行器。
5.在挪移过程中,注意观察的实际位置和目标位置,以及各个关节的角度和转速,避免发生碰撞或者超出极限。
6.在挪移完成后,松开“死人开关”,并将控制柜切换回“自动”模式。
三、项目配置在开始编程之前,用户需要对项目进行配置,以便将电脑和通过网线连接,并设置相关的参数和选项。
项目配置的步骤如下:1. 设置IP地址。
在控制柜上打开KUKA.ControlStudio软件³,并进入“设置”菜单。
在“网络”选项卡中,输入一个合适的IP地址(如192.168.0.10),并保存设置。
2.电脑和通过网线连接。
在电脑上安装KUKA.ControlStudio软件³,并进入“设置”菜单。
在“网络”选项卡中,输入一个与IP地址相同网段的IP地址(如192.168.0.11),并保存设置。
然后使用一根网线将电脑和控制柜连接起来。
3. 查找并打开项目。
在电脑上打开KUKA.ControlStudio软件³ ,并进入“文件”菜单。
在“打开项目”选项中,选择一个已经存在的项目或者创建一个新的项目,并“打开”按钮。
4. 项目配置。
在电脑上打开KUKA.ControlStudio软件³,并进入“项目”菜单。
在“配置”选项中,可以设置项目的名称、描述、版本、语言等信息,并保存设置。
5. 项目。
在电脑上打开KUKA.ControlStudio软件³,并进入“文件”菜单。
.
.
开放性实验项目指导书
实验项目名称六自由度KUKA机器人的编程与操作
学院(中心):现代工程训练中心
实验室名称:工程认知与文化馆1-202和1-203
指导教师:李全城
面向专业:机械、电气、计算机、自动化等
.
.
2016 年03月08日
实验:六自由度KUKA机器人的编程与操作
一、实验目的
1)了解机器人在智能制造中的作用;
2)学习KUKA机器人的简单编程及调试;
3)掌握KUKA机器人的手动和自动操作。
二、实验设备
1)六自由度KUKA机器人一台;
2)柔性制造线相关设备;
3)轴类、盘类坯料若干。
三、实验内容
工业机器人是面向工业领域的多关节机械手或多自由度的机器装置,它能自动执行工作,是靠自身动力和控制能力来实现各种功能的一种机器。
工业机器人的典型应用包括焊接、刷漆、组装、采集和放置(例如包装、码垛和SMT)、产品检测和测试等,所有的工作的完成都具有高效性、持久性和准确性。
工业机器人技术涉及到力学、机械学、电气液压技术、自动控制技术、传感器技术和计算机技术等科学领域,是一门跨学科综合技术。
给定一台机器人和相关任务要求,要求学生在教师的指导下,自己编写并调试相关机器人程序。
要求程序编写正确,且机器人可按要求安全自动地运行,最后作总结。
.
.
图1 KUKA机器人图2 柔性制造线现场布局图
四、实验步骤
1. 学习机器人的手动操作。
(1)将示教器上方黑色旋钮由竖向旋为横向。
如图3所示。
(2)选择模式中的第一个,T1模式(内部自动),如图
4所示。
图3 机器人示教器模式选择图4 机器人四种模式
(3)按下底部的伺服ON,点动控制机器人,如图5。
(4)按下方向键,移动机器人,如图
6。
图5 机器人示教器底部伺服启动按键图6 机器人示教器方向键
2. 编写并调试相关机器人程序。
3. 机器人的自动运行操作。
(1)将示教器上方黑色旋钮由竖向旋为横向。
如图3。
.
. (2)选择模式中的第三个,AUT模式(内部自动),如图4。
(3)启动程序。
(4)按下机器人启动按钮:自动状态下,按下急停按钮时,机器人停止运行。
只有复位急停
按钮,并消除报警,激活驱动装置才可重新操作运行;自动状态下,按下停止按钮时,机器人停止运行。
只有重新按下启动按钮后,机器人方可继续运行。
五、实验报告要求
1、写出机器人在工业生产中的作用。
2、写出自己所完成的机器人运动路径的程序。