初中数学校本教材(完整版)
- 格式:doc
- 大小:630.50 KB
- 文档页数:59
亲爱的新高一的同学们:祝贺你们步入高中时代,下面有一个摆在我们面前的棘手问题急需我们师生共同努力才能解决,即“初高中衔接问题”。
由于课程改革,目前湖北省初中是新课标,而高中也是新课程的学习,初高中不衔接问题现在显得比较突出。
面对教学中将存在的问题,我们高一数学组的老师们假期里加班加点,赶制了一份校本衔接教材,意在培养大家自学能力,同时降低同学们初高中衔接中的不适应度,从而为新学期做好准备。
初升高数学衔接班学法指导一、学习目标:1、认识初高中数学学习的特点和差异2、了解高中数学的考法3、了解高中数学的学习策略和学习方法二、学习重点:1、初高中数学知识差异与学法差异2、针对高中数学的特点与考法,培养适合高中数学的学习方法、养成良好的学习习惯。
三、重点讲解:高中数学的特点是:注重抽象思维,内容庞杂、知识难度大。
高中教材不再像初中教材那样贴近生活,生动形象,知识容量也更为紧密。
客观的说,初高中知识之间存在断层,正是由于这种断层造成很多同学难以在较短时间内适应高中数学的学习。
那么,如何做好初高中数学学习的衔接过渡,使得同学们对高中数学学习有一个正确的认识,并迅速适应新的教学模式呢?下面我们就一起探讨如何应对高中数学的学习。
(一)高中数学教材分析高中数学课程分为必修和选修。
必修课程由5个模块(5本书)构成;选修课程有4个系列,其中系列1、系列2由若干模块构成(系列1两本书、系列2三本书),系列3、系列4由若干专题组成。
内容涉及初等函数、数列、概率与统计、算法、平面解析几何、立体几何等等。
进入高中,我们首先学习的是《必修1》模块,我们应先对这一模块有一个大体的了解。
《必修1》模块由两章构成,分别是:第一章:集合第二章:函数如何理解集合呢?集合是一种数学语言,我们要能够使用最基本的集合语言表示有关的数学对象,提高我们运用数学语言进行交流的能力。
在初中学习函数的基础上,我们还要进一步学习函数,只不过高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,在初中一次函数、二次函数、反比例函数的基础上,我们还将学习指数函数、对数函数、幂函数这些新的函数类型,而函数的思想方法将贯穿高中数学的始终。
教案名称:初中数学七年级下册《平方根》教材版本:人教版课时安排:2课时教学目标:1. 让学生理解平方根的概念,掌握求一个数的平方根的方法。
2. 培养学生运用平方根解决实际问题的能力。
3. 培养学生合作学习、积极思考的能力。
教学重点:平方根的概念及求法。
教学难点:平方根在实际问题中的应用。
教学准备:1. 平方根的相关知识PPT。
2. 练习题及答案。
3. 教学黑板、粉笔。
教学过程:第一课时:一、导入(5分钟)1. 复习平方的相关知识,引导学生回顾平方的意义。
2. 提问:那么,什么是平方根呢?二、新课讲解(15分钟)1. 讲解平方根的概念,引导学生理解平方根的定义。
2. 举例说明平方根的求法,让学生通过实际操作,掌握求平方根的方法。
三、课堂练习(10分钟)1. 布置练习题,让学生独立完成。
2. 对练习题进行讲解,解答学生的疑问。
四、课堂小结(5分钟)1. 总结本节课所学内容,让学生明确平方根的概念和求法。
2. 强调平方根在实际问题中的应用。
第二课时:一、复习导入(5分钟)1. 复习上节课所学的平方根知识。
2. 提问:请大家举个例子,说明如何运用平方根解决实际问题。
二、课堂讲解(15分钟)1. 讲解平方根在实际问题中的应用,引导学生学会运用平方根解决实际问题。
2. 举例分析,让学生通过实际问题,巩固平方根的知识。
三、课堂练习(10分钟)1. 布置练习题,让学生独立完成。
2. 对练习题进行讲解,解答学生的疑问。
四、课堂小结(5分钟)1. 总结本节课所学内容,让学生明确平方根在实际问题中的应用。
2. 强调平方根的知识点,为学生课后学习打下基础。
教学评价:1. 课后收集学生的练习作业,检查学生对平方根知识的掌握程度。
2. 在下一节课开始时,进行课堂提问,了解学生对平方根知识的掌握情况。
3. 关注学生在课堂上的参与度,鼓励学生积极思考、提问。
初中《数学》校本课程教材初中《数学》校本课程教材的开发与实践初中阶段是学生数学学习的重要阶段,这一时期的学生不仅需要掌握基本的数学知识,还需要培养数学思维和解决问题的能力。
然而,传统的数学教材有时难以满足不同学生的学习需求,因此,开发适合学生实际情况的校本课程教材显得尤为重要。
一、确定教材定位和目标初中《数学》校本课程教材的定位应为辅助性教材,旨在补充传统教材的不足,满足学生多元化的学习需求。
教材的目标应包括以下几个方面:1、拓展数学知识,加深学生对教材内容的理解。
2、培养学生的数学思维和解决问题的能力。
3、提高学生的学习兴趣和积极性。
二、分析学生需求和学习内容在校本课程教材的开发过程中,学生需求和学习内容是两个关键因素。
首先,我们需要了解学生的学习需求,包括学生对数学学习的兴趣、学习难点以及对数学知识的需求等。
其次,我们需要分析学习内容,确定教材的知识点、难度和趣味性。
三、设计教材结构和内容在分析了学生需求和学习内容后,我们需要设计教材的结构和内容。
结构上,教材可以包括基础知识、拓展知识、练习和实践等部分。
内容上,可以选择与生活实际相关的案例和问题,引导学生运用数学知识解决实际问题。
此外,还可以设计一些趣味性的数学游戏和活动,提高学生的学习兴趣。
四、深入剖析重难点在校本课程教材的开发过程中,深入剖析重难点是至关重要的。
对于数学教材中的重难点内容,我们需要通过多种方式进行讲解和练习,帮助学生理解和掌握。
例如,可以设计一些探究性问题,引导学生自主探究和解决数学问题。
五、实践运用与反思总结实践是检验真理的唯一标准。
在校本课程教材的使用过程中,我们需要密切关注学生的反馈,了解他们对教材的使用情况。
对于教材中的不足之处,需要及时进行调整和改进。
还需要对教材的使用效果进行反思和总结,以便更好地服务于学生。
总之,初中《数学》校本课程教材的开发与实践是一项具有挑战性的任务。
通过明确教材定位和目标、分析学生需求和学习内容、设计教材结构和内容、深入剖析重难点以及实践运用与反思总结等环节,我们可以逐步完善教材,使其更加符合学生的学习需求。
初中数学教材目录(全)七年级上册(61)第1章有理数(19)第2章整式的加减(8)第3章一元一次方程(18)第4章图形认识初步(16)七年级下册(62)第5章相交线与平行线(14)第6章平面直角坐标系(7)第7章三角形(8)第8章二元一次方程组(12)第9章不等式与不等式组(12)第10章数据库的收集整理与描述(9)八年级上册(62)第11章全等三角形(11)第12章轴对称(13)第13章实数(8)第14章一次函数(17)第15章整式的乘除与因式分解(13)八年级下册(61)第16章分式(14)第17章反比例函数(8)第18章勾股定理(8)第19章四边形(16)第20章数据的分析(15)九年级上册(62)第21章二次根式(9)第22章一元二次方程(13)第23章旋转(8)第24章圆(17)第25章概率初步(15)九年级下册(48)第26章二次函数(12)第27章相似(13)第28章锐角三角函数(12)第29章投影与视图(11)七年级上册第一章有理数1.1 正数和负数阅读与思考用正负数表示加工允许误差1.2 有理数1.3 有理数的加减法实验与探究填幻方阅读与思考中国人最先使用负数1.4 有理数的乘除法观察与思考翻牌游戏中的数学道理1.5 有理数的乘方数学活动小结复习题1 第二章整式的加减2.1 整式阅读与思考数字1与字母X的对话2.2 整式的加减信息技术应用电子表格与数据计算数学活动小结复习题2第三章一元一次方程3.1 从算式到方程阅读与思考“方程”史话3.2 解一元一次方程(一)——合并同类项与移项实验与探究无限循环小数化分数3.3 解一元一次方程(二)——去括号与去分母3.4 实际问题与一元一次方程数学活动小结复习题3第四章图形认识初步4.1 多姿多彩的图形阅读与思考几何学的起源4.2 直线、射线、线段阅读与思考长度的测量4.3 角4.4 课题学习设计制作长方体形状的包装纸盒数学活动小结复习题4 部分中英文词汇索引七年级下册第五章相交线与平行线5.1 相交线5.2 平行线5.3 平行线的性质5.4 平移第六章平面直角坐标系6.1 平面直角坐标系6.2 坐标方法的简单应用第七章三角形7.1 与三角形有关的线段7.2 与三角形有关的角7.3 多边形及其内角和7.4 课题学习镶嵌数学活动小结复习题7第八章二元一次方程组8.1 二元一次方程组8.2 消元8.3 再探实际问题与二元一次方程组数学活动小结复习题8第九章不等式与不等式组9.1 不等式9.2 实际问题与一元一次不等式9.3 一元一次不等式组9.4 课题学习利用不等关系分析比赛(1)第十章实数10.1 平方根10.2 立方根10.3 实数八年级上册第十一章一次函数11.1 变量与函数信息技术应用用计算机画函数图象11.2 一次函数阅读与思考科学家如何测算地球的年龄11.3 用函数观点看方程(组)与不等式第十二章数据的描述12.1 几种常见的统计图表12.2 用图表描述数据信息技术应用利用计算机画统计图阅读与思考作者可能是谁12.3 课题学习从数据谈节水第十三章全等三角形13.1 全等三角形13.2 三角形全等的条件阅读与思考为什么要证明13.3 角的平分线的性质第十四章轴对称14.1 轴对称14.2 轴对称变换信息技术应用探索轴对称的性质14.3 等腰三角形实验与探究三角形中边与角之间的不等关系第十五章整式15.1 整式的加减15.2 整式的乘法15.3 乘法公式15.4 整式的除法15.5 因式分解八年级下册第十六章分式16.1 分式16.1 分式的运算阅读与思考容器中的水能倒完吗16.1 分式方程第十七章反比例函数17.1 反比例函数17.1 实际问题与反比例函数阅读与思考生活中的反比例关系第十八章勾股定理18.1 勾股定理18.2 勾股定理的逆定理第十九章四边形19.1 平行四边形19.1 特殊的平行四边形19.1 梯形观察与猜想平面直角坐标系中的特殊四边形第二十章数据的分析20.1 数据的代表20.2 数据的波动信息技术应用用计算机求几种统计量阅读与思考数据波动的几种度量20.3 课题学习体质健康测试中的数据分析九年级上册第二十一章二次根式21.1 二次根式21.2 二次根式乘除第二十二章一元二次方程22.1 一元二次方程22.2 降次──解一元二次方程阅读与思考黄金分割数22.3 实际问题与一元二次方程观察与猜想发现一元二次方程根与系数的关系第二十三章旋转23.1 图形的旋转23.2 中心对称信息技术应用探索旋转的性质23.3 课题学习图案设计第二十四章圆24.1 圆24.2 与圆有关的位置关系24.3 正多边形和圆24.4 弧长和扇形面积实验与研究设计跑道第二十五章概率初步25.1 概率25.2 用列举法求概率阅读与思考概率与中奖25.3 利用频率估计概率阅读与思考布丰投针实验25.4 课题学习键盘上字母的排列规律九年级下册第二十六章二次函数26.1 二次函数实验与探究推测植物的生长与温度的关系26.2 用函数观点看一元二次方程信息技术应用探索二次函数的性质26.3 实际问题与二次函数第二十四章相似27.1 图形的相似27.2 相似三角形观察与猜想奇妙的分形图形27.3 位似信息技术应用探索位似的性质第二十八章锐角三角函数28.1 锐角三角函数阅读与思考一张古老的三角函数28.2 解直角三角形第二十九章投影与视图29.1 投影29.2 三视图阅读与思考视图的产生与应用29.3 课题学习制作立体模型。
亲爱的新高一的同学们:祝贺你们步入高中时代,下面有一个摆在我们面前的棘手问题急需我们师生共同努力才能解决,即“初高中衔接问题”。
由于课程改革,目前我区初中是新课标,而高中也是新课程的学习,初高中不衔接问题现在显得比较突出。
面对教学中将存在的问题,我们高一数学组的老师们假期里加班加点,赶制了一份校本衔接教材,意在培养大家自学能力,同时降低同学们初高中衔接中的不适应度,希望大家将假期利用起来,一开学对这篇自学教材的学习将有相应的检测,愿大家为新学期做好准备。
一、数与式的运算一)、必会的乘法公式【公式1】ca bc ab c b a c b a 222)(2222+++++=++ 证明:2222)(2)(])[()(c c b a b a c b a c b a ++++=++=++ca bc ab c b a c bc ac b ab a 222222222222+++++=+++++=∴等式成立【例1】计算:22)312(+-x x 解:原式=22]31)2([+-+x x913223822)2(312312)2(2)31()2()(234222222+-+-=-⨯⨯+⨯+-++-+=x x x x x x x x x x说明:多项式乘法的结果一般是按某个字母的降幂或升幂排列. 【公式2】3322))((b a b ab a b a +=+-+(立方和公式)证明: 3332222322))((b a b ab b a ab b a a b ab a b a +=+-++-=+-+ 说明:请同学用文字语言表述公式2.【例2】计算: (2a+b )(4a 2-2ab+b 2)=8 a 3+b 3【公式3】3322))((b a b ab a b a -=++-(立方差公式)1.计算(1)(3x+2y )(9x 2-6xy+4y 2)= (2)(2x-3)(4x 2+6xy+9)=(3))916141(31212++⎪⎭⎫ ⎝⎛-m m m =(4)(a+b )(a 2-ab+b 2)(a-b )(a 2+ab+b 2)=2.利用立方和、立方差公式进行因式分解(1)27m 3-n 3=(2)27m 3-81n 3=(3)x 3-125= (4) m 6-n 6=【公式4】33322()33a b a b a b ab +=+++ 【公式5】33223()33a b a a b ab b -=-+- 【例3】计算:(1))416)(4(2m m m +-+(2))41101251)(2151(22n mn m n m ++-(3))164)(2)(2(24++-+a a a a (4)22222))(2(y xy x y xy x +-++ 解:(1)原式=333644m m +=+ (2)原式=3333811251)21()51(n m n m -=- (3)原式=644)()44)(4(63322242-=-=++-a a a a a (4)原式=2222222)])([()()(y xy x y x y xy x y x +-+=+-+63362332)(y y x x y x ++=+=说明:(1)在进行代数式的乘法、除法运算时,要观察代数式的结构是否满足乘法公式的结构.(2)为了更好地使用乘法公式,记住1、2、3、4、…、20的平方数和1、2、3、4、…、10的立方数,是非常有好处的.【例4】已知2310x x -+=,求331x x +的值. 解:2310x x -+= 0≠∴x 31=+∴xx原式=18)33(3]3)1)[(1()11)(1(2222=-=-++=+-+x x x x xx x x说明:本题若先从方程2310x x -+=中解出x 的值后,再代入代数式求值,则计算较烦琐.本题是根据条件式与求值式的联系,用整体代换的方法计算,简化了计算.请注意整体代换法.本题的解法,体现了“正难则反”的解题策略,根据题求利用题知,是明智之举.【例5】已知0=++c b a ,求111111()()()a b c b c c a a b+++++的值. 解:b a c a c b c b a c b a -=+-=+-=+∴=++,,,0∴原式=abba c ac c ab bc c b a +⋅++⋅++⋅333()()()a a b b c c a b c bc ac ab abc---++=++=- ①abc c ab c c ab b a b a b a 3)3(]3))[((32233+-=--=-++=+abc c b a 3333=++∴ ②,把②代入①得原式=33-=-abcabc说明:注意字母的整体代换技巧的应用.二)、根式0)a ≥叫做二次根式,其性质如下:【例6】化简下列各式:(1)(2)1)x +≥解:(1) 原式=2|1|211+=-=*(2) 原式=(1)(2)2 3 (2)|1||2|(1)(2) 1 (1x 2) x x x x x x x x -+-=->⎧-+-=⎨---=≤≤⎩说明:||a =的使用:当化去绝对值符号但字母的范围未知时,要对字母的取值分类讨论.【例7】计算(没有特殊说明,本节中出现的字母均为正数):(1)83(2)(3)(4) -+解:(1)83=46282383=⨯⨯=(2) 原式623==--(3) 原式(4) 原式=+=-= 说明:(1)二次根式的化简结果应满足:①被开方数的因数是整数,因式是整式;②被开方数不含能开得尽方的因数或因式. (2)二次根式的化简常见类型有下列两种:①被开方数是整数或整式.化简时,先将它分解因数或因式,然后把开得尽方的因数或因式开出来; ②分母中有根式()或被开方数有分母(形式() ,转化为 “分母中有根式”的情况.化简时,要把分母中的根式化为有理式,采取分子、分母同乘以一个根式进行化简.(,其中2+2-).有理化因式和分母有理化有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个代数式叫做有理化因式。
初中数学新教材目录(2012修订)人教版义务教育课程标准实验教科书数学(7~9年级)各章目录及课时参考(2012修订)七年级上(62)第1章有理数(19)1.1 正数和负数(2)1.2 有理数(4)1.2.1 有理数 1.2.2 数轴 1.2.3 相反数 1.2.4 绝对值1.3 有理数的加减法(4)1.3.1 有理数的加法 1.3.2 有理数的减法实验与探究填幻方阅读与思考中国人最先使用负数1.4 有理数的乘除法(4)1.4.1 有理数的乘法 1.4.2 有理数的除法观察与猜想翻牌游戏中的数学道理1.5 有理数的乘方(3)1.5.1 乘方 1.5.2 科学记数法 1.5.3 近似数数学活动小结(2)第2章整式的加减(8)2.1 整式(3)阅读与思考数字1与字母X的对话2.2 整式的加减(4)信息技术应用电子表格与数据计算数学活动小结(1)第3章一元一次方程(19)3.1 从算式到方程(4)3.1.1 一元一次方程 3 .1.2 等式的性质阅读与思考方程史话3.2 解一元一次方程(一)——移项与合并(4)实验与探究无限循环小数化分数3.3 解一元一次方程(二)——去括号与去分母(4)3.4 实际问题与一元一次方程(5)数学活动小结(2)第4章几何图形初步(16)4.1 几何图形(4)4.1.1 立体图形与平面图形 4.1.2 点、线、面、体阅读与思考几何学的起源4.2 直线、射线、线段(3)阅读与思考长度的测量4.3 角(5)4.3.1 角 4.3.2 角的比较与运算 4.3.3 余角和补角4.4 课题学习制作长方体形状的包装盒(2)数学活动小结(2)七年级下(62)第5章相交线与平行线(14)5.1 相交线(3)5.1.1 相交线 5.1.2 垂线 5.1.3 同位角、内错角、同旁内角观察与猜想看图时的错觉5.2 平行线及其判定(3)5.2.1 平行线 5.2.2 平行线的判定5.3 平行线的性质(4)5.3.1 平行线的性质 5.3.2 命题、定理、证明信息技术应用探索两条直线的位置关系5.4 平移(2)数学活动小结(2)第6章实数(8)13.1 平方根(3)13.2 立方根(2)13.3 实数(2)阅读与思考为什么说不是有理数数学活动小结(1)第7章平面直角坐标系(7)7.1 平面直角坐标系(3)7.1.1 有序数对7.1.2 平面直角坐标系阅读与思考用经纬度表示地理位置7.2 坐标方法的简单应用(3)7.2.1 用坐标表示地理位置7.2.2 用坐标表示平移数学活动小结(1)第8章二元一次方程组(12)8.1 二元一次方程组(1)8.2 消元——解二元一次方程组(4)8.3 实际问题与二元一次方程组(3)8.4 三元一次方程组解法(2)阅读与思考一次方程组的古今表示及解法数学活动小结(2)第9章不等式与不等式组(11)9.1 不等式(3)9.1.1 不等式及其解集9.1.2 不等式的性质阅读与思考用求差法比较大小9.2一元一次不等式(4)9.3 一元一次不等式组(2)数学活动小结(2)第10章数据的收集、整理与描述(10)10.1 统计调查(3)实验与探究瓶子中有多少粒豆子10.2 直方图(3)信息技术应用利用计算机画统计图10.3 课题学习:从数据谈节水(2)数学活动小结(2)八年级(上)(62)第11章三角形(8)11.1 与三角形有关的线段(2)11.1.1 三角形的边11.1.2三角形的高、中线与角平分线11.1.3 三角形的稳定性信息技术应用画图找规律11.2 与三角形有关的角(3)11.2.1 三角形的内角7.2.2 三角形的外角阅读与思考为什么要证明11.3 多边形及其内角和(2)11.3.1 多边形11.3.2 多边形的内角和数学活动小结(1)第12章全等三角形(11)12.1 全等三角形(1)12.2 三角形全等的判定(6)信息技术应用探究三角形全等的条件12.3 角的平分线的性质(2)小结(2)第13章轴对称(14)13.1 轴对称(3)13.1.1 轴对称13.1.2 线段的垂直平分线的性质13.2 画轴对称图形(2)信息技术应用用轴对称进行图案设计13.3 等腰三角形(5)13.3.1 等腰三角形13.3.2 等边三角形实验与探究三角形中边与角之间的不等关系13.4 课题学习最短路径问题(2)数学活动小结(2)第14章整式的乘法与因式分解(14)14.1整式的乘法(6)14.1.1 同底数幂的乘法14.1.2 幂的乘方14.1.3 积的乘方14.1.4 整式的乘法14.2 乘法公式(3)14.2.1 平方差公式14.2.2 完全平方公式阅读与思考杨辉三角14.3 因式分解(3)14.3.1 提公因式法14.3.2 公式法阅读与思考型式子的分解数学活动小结(2)第15章分式(15)15.1 分式(4)15.1.1 从分数到分式15.1.2 分式的基本性质15.2 分式的运算(6)15.2.1 分式的乘除 15.2.2 分式的加减 15.2.3 整数指数幂阅读与思考容器中的水能倒完吗?15.3 分式方程(3)数学活动小结(2)八年级下(62)第16章二次根式(9)16.1 二次根式(2)16.2 二次根式的乘除(2)16.3 二次根式的加减(3)阅读与思考海伦——秦九韶公式数学活动第17章勾股定理(9)17.1 勾股定理(4)阅读与思考勾股定理的证明17.2 勾股定理的逆定理(3)阅读与思考费马大定理数学活动小结(2)第18章平行四边形(15)18.1 平行四边形(7)18.1.1 平行四边形的性质18.1.2 平行四边形的判定18.2 特殊的平行四边形(6)18.2.1 矩形18.2.2 菱形18.2.3 正方形实验与探究丰富多彩的正方形数学活动小结(2)第19章一次函数(17)19.1 变量与函数(6)19.1.1 变量与函数19.1.2 函数的图象阅读与思考如何测算岩石的年龄19.2 一次函数(7)19.2.1 正比例函数19.2.2 一次函数 19.2.3一次函数与方程、不等式信息技术应用用计算机画函数图象19.3 课题学习选择方案(2)数学活动小结(2)第20章数据的分析(12)20.1 数据的集中趋势(6)20.1.1 平均数20.1.2 中位数和众数20.2 数据的波动程度(2)阅读与思考数据波动程度的几种度量20.3 课题学习体质健康测试中的数据分析(2)数学活动小结(2)九年级上(62)第21章一元二次方程(13)21.1 一元二次方程(1)21.2 降次——一元二次方程的解法(7)21.2.1 配方法21.2.2 公式法21.2.3 因式分解法21.2.4 一元二次方程的根与系数的关系阅读与思考黄金分割数21.3 实际问题与一元二次方程(3)数学活动小结(2)第22章二次函数(12)22.1 二次函数的图象和性质(6)22.1.1 二次函数22.1.2二次函数y=ax2的图象和性质22.1.3 二次函数y=a(x-h)2+k的图象和性质22.1.4 二次函数y=ax2+bx+c的图象和性质2.2 用函数观点看一元二次方程(1)信息技术应用探索二次函数的性质22.3实际问题与二次函数(3)阅读与思考推测滑行距离与滑行时间的关系数学活动小结(2)第23章旋转(9)23.1 图形的旋转(2)23.2 中心对称(3)23.2.1 中心对称23.2.2 中心对称图形23.2.3 关于原点对称的点的坐标信息技术应用探索旋转的性质23.3 课题学习图案设计(2)数学活动小结(2)第24章圆(16)24.1 圆(5)24.1.1 圆24.1.2 垂直于弦的直径 24.1.3 弧、弦、圆心角24.1.4 圆周角24.2 点和圆、直线和圆的位置关系(5)24.2.1 点和圆的位置关系24.2.2 直线和圆的位置关系实验与探究圆和圆的位置关系24.3 正多边形和圆(2)阅读与思考圆周率π24.4 弧长和扇形面积(2)实验与探究设计跑道数学活动小结(2)第25章概率初步(12)25.1 随机事件与概率(3)25.1.1 随机事件25.1.2 概率阅读与思考概率与中奖25.2 用列举法求概率(3)25.3 用频率估计概率(3)阅读与思考π的估计数学活动小结(2)九年级下(44)第26章反比例函数(8)26.1 反比例函数(3)26.1.1 反比例函数26.1.2 反比例函数的图象和性质信息技术应用探索反比例函数的性质26.2实际问题与反比例函数(3)阅读与思考生活中的反比例关系数学活动小结(2)第27章相似(14)27.1 图形的相似(2)27.2 相似三角形(7)27.2.1 相似三角形的判定27.2.3 相似三角形的性质27.2.2 相似三角形应用举例阅读与思考奇妙的分形图形27.3 位似(3)信息技术应用探索位似的性质数学活动小结(2)第28章锐角三角函数(12)28.1 锐角三角函数(6)28.2 解直角三角形及其应用(4)阅读与思考一张古老的三角函数表数学活动小结(2)第29章投影与视图(10)29.1 投影(2)29.2 三视图(4)阅读与思考视图的产生与应用29.3 课题学习制作立体模型(2)数学活动小结(2)课时合计:代数:165;几何:155;统计概率34:合计354。
初中数学新教材目录(2012修订)人教版义务教育课程标准实验教科书数学(7~9年级)各章目录及课时参考(2012修订)七年级上(62)第1章有理数(19)1.1 正数和负数(2)1.2 有理数(4)1.2.1 有理数 1.2.2 数轴 1.2.3 相反数 1.2.4 绝对值1.3 有理数的加减法(4)1.3.1 有理数的加法 1.3.2 有理数的减法1.4 有理数的乘除法(4)1.4.1 有理数的乘法 1.4.2 有理数的除法1.5 有理数的乘方(3)1.5.1 乘方 1.5.2 科学记数法 1.5.3 近似数第2章整式的加减(8)2.1 整式(3)2.2 整式的加减(4)第3章一元一次方程(19)3.1 从算式到方程(4)3.1.1 一元一次方程 3 .1.2 等式的性质3.2 解一元一次方程(一)——移项与合并(4)3.3 解一元一次方程(二)——去括号与去分母(4)3.4 实际问题与一元一次方程(5)第4章几何图形初步(16)4.1 几何图形(4)4.1.1 立体图形与平面图形 4.1.2 点、线、面、体4.2 直线、射线、线段(3)4.3 角(5)4.3.1 角 4.3.2 角的比较与运算 4.3.3 余角和补角七年级下(62)第5章相交线与平行线(14)5.1 相交线(3)5.1.1 相交线 5.1.2 垂线 5.1.3 同位角、内错角、同旁内角5.2 平行线及其判定(3)5.2.1 平行线 5.2.2 平行线的判定5.3 平行线的性质(4)5.3.1 平行线的性质 5.3.2 命题、定理、证明5.4 平移(2)第6章实数(8)13.1 平方根(3)13.2 立方根(2)13.3 实数(2)第7章平面直角坐标系(7)7.1 平面直角坐标系(3)7.1.1 有序数对7.1.2 平面直角坐标系7.2 坐标方法的简单应用(3)7.2.1 用坐标表示地理位置7.2.2 用坐标表示平移第8章二元一次方程组(12)8.1 二元一次方程组(1)8.2 消元——解二元一次方程组(4)8.3 实际问题与二元一次方程组(3)8.4 三元一次方程组解法(2)第9章不等式与不等式组(11)9.1 不等式(3)9.1.1 不等式及其解集9.1.2 不等式的性质9.2一元一次不等式(4)9.3 一元一次不等式组(2)第10章数据的收集、整理与描述(10)10.1 统计调查(3)10.2 直方图(3)八年级(上)(62)第11章三角形(8)11.1 与三角形有关的线段(2)11.1.1 三角形的边 11.1.2三角形的高、中线与角平分线 11.1.3 三角形的稳定性11.2 与三角形有关的角(3)11.2.1 三角形的内角7.2.2 三角形的外角11.3 多边形及其内角和(2)11.3.1 多边形11.3.2 多边形的内角和第12章全等三角形(11)12.1 全等三角形(1)12.2 三角形全等的判定(6)12.3 角的平分线的性质(2)第13章轴对称(14)13.1 轴对称(3)13.1.1 轴对称13.1.2 线段的垂直平分线的性质13.2 画轴对称图形(2)13.3 等腰三角形(5)13.3.1 等腰三角形13.3.2 等边三角形第14章整式的乘法与因式分解(14)14.1整式的乘法(6)14.1.1 同底数幂的乘法14.1.2 幂的乘方14.1.3 积的乘方14.1.4 整式的乘法14.2 乘法公式(3)14.2.1 平方差公式14.2.2 完全平方公式14.3 因式分解(3)14.3.1 提公因式法14.3.2 公式法第15章分式(15)15.1 分式(4)15.1.1 从分数到分式 15.1.2 分式的基本性质15.2 分式的运算(6)15.2.1 分式的乘除 15.2.2 分式的加减 15.2.3 整数指数幂15.3 分式方程(3)八年级下(62)第16章二次根式(9)16.1 二次根式(2)16.2 二次根式的乘除(2)16.3 二次根式的加减(3)第17章勾股定理(9)17.1 勾股定理(4)17.2 勾股定理的逆定理(3)第18章平行四边形(15)18.1 平行四边形(7)18.1.1 平行四边形的性质18.1.2 平行四边形的判定18.2 特殊的平行四边形(6)18.2.1 矩形18.2.2 菱形18.2.3 正方形第19章一次函数(17)19.1 变量与函数(6)19.1.1 变量与函数19.1.2 函数的图象19.2 一次函数(7)19.2.1 正比例函数19.2.2 一次函数19.2.3一次函数与方程、不等式第20章数据的分析(12)20.1 数据的集中趋势(6)20.1.1 平均数20.1.2 中位数和众数20.2 数据的波动程度(2)九年级上(62)第21章一元二次方程(13)21.1 一元二次方程(1)21.2 降次——一元二次方程的解法(7)21.2.1 配方法21.2.2 公式法21.2.3 因式分解法21.2.4 一元二次方程的根与系数的关系21.3 实际问题与一元二次方程(3)第22章二次函数(12)22.1 二次函数的图象和性质(6)22.1.1 二次函数22.1.2二次函数y=ax2的图象和性质22.1.3 二次函数y=a(x-h)2+k的图象和性质22.1.4 二次函数y=ax2+bx+c的图象和性质22.2 用函数观点看一元二次方程(1)22.3实际问题与二次函数(3)第23章旋转(9)23.1 图形的旋转(2)23.2 中心对称(3)23.2.1 中心对称23.2.2 中心对称图形23.2.3 关于原点对称的点的坐标第24章圆(16)24.1 圆(5)24.1.1 圆24.1.2 垂直于弦的直径24.1.3 弧、弦、圆心角24.1.4 圆周角24.2 点和圆、直线和圆的位置关系(5)24.2.1 点和圆的位置关系24.2.2 直线和圆的位置关系24.3 正多边形和圆(2)24.4 弧长和扇形面积(2)第25章概率初步(12)25.1 随机事件与概率(3)25.1.1 随机事件25.1.2 概率25.2 用列举法求概率(3)25.3 用频率估计概率(3)九年级下(44)第26章反比例函数(8)26.1 反比例函数(3)26.1.1 反比例函数26.1.2 反比例函数的图象和性质26.2实际问题与反比例函数(3)第27章相似(14)27.1 图形的相似(2)27.2 相似三角形(7)27.2.1 相似三角形的判定27.2.2 相似三角形的性质27.2.3 相似三角形应用举例27.3 位似(3)第28章锐角三角函数(12)28.1 锐角三角函数(6)28.2 解直角三角形及其应用(4)第29章投影与视图(10)29.1 投影(2)29.2 三视图(4)。
初中数学校本课程序言数学是打开知识大门的钥匙,是整个科学的基础知识。
创新教学的先行者里斯特伯先生指出:“学生学习数学就是要解决生活问题,只有极少数人才能攻关艰深的高级数学问题,我们不能只为了培养尖端人才而忽略或者牺牲大多数学生的利益,所以数学首先应该是生活概念。
”在生活中学数学,以学生生活中实实在在的鲜活材料来吸引学生对科学的兴趣。
我们选取的都是从学生生活实践中取材,将数学知识巧妙地运用于生活之中,增加了学生对数学的兴趣,实现新课改所倡导的情感体验,培养良好的科学态度和正确价值观的目标。
数学校本课程的开发要满足学生已有的兴趣和爱好,又要激发和培养学生新的兴趣和爱好,要要求和鼓励学生投入生活,亲身实践体验。
选题要尊重学生的实际、学生的探究本能和兴趣,给与每个学生主体性发挥的广阔空间,从而更好的培养学生提出问题、分析问题、解决问题的素质和能力。
使学生成为学习的主人,学有兴趣,习有方法,必有成功。
学生的个性在社会活动中得以健康发展,学生的潜能在自学自育中得到充分开发。
我们的数学校本课程方案包括两个基本部分:一般项目和基本具体方案。
课程纲要一、课程目标:以贴近生活实际、加强数学应用为宗旨,针对数学这门课的特点,从生活中挖掘数学,提高学生应用数学知识解决有关问题的能力,培养学生的观察,分析能力,充分发挥学生的创造性,开发学生自身的潜能,并且加强对学生的动手操作能力的训练,鼓励学生能够展示自己的研究成功,培养学生的成功心态,使学生的心理得到健康的发展,使每位学生的能力得到充分体现。
二、课程概况:本课程由XXX等老师具体负责实施。
本课程在初一、初二、初三级部实施。
三、课程内容与活动安排:让学生体会数学史可发生在我们的周围,我们的生活空间是无穷的数学世界,在课堂上多设情景,应用数学解决问题,让他们充分发挥自己的创造性,感受到数学的乐趣,在愉快、轻松的学习过程中掌握数学知识,从而培养学生良好的学习习惯,观察事物的能力,形成正确的人生观、价值观。
***中学校本教材初中数学运算能力提升部分教学习题案例2018年12月《初中数学运算能力提升教学习题案例》校本教材解读运算能力、逻辑思维能力、空间想象能力是数学三大能力,数学运算能力是数学三大能力之首,从运算能力反映出学生学习的基本功、耐心.数学教学必须将学生的运算能力进一步进行提升。
运算能力指运用有关运算的知识进行运算、推理求得运算结果的能力。
初中阶段运算实际上是一个演绎推理过程,运算即是推理。
数学运算在初中数学阶段主要是四则运算,整式、有理式、根式运算,指数、对数及三角函数运算。
要培养上述各种运算能力,首先要学生掌握各种运算的有关知识(如运算的定义、法则等)。
在运算过程中必须对上列各种因素进行全面的、足够的训练。
提高中学生的运算能力,一直是所有中学数学教师关注的重要问题。
数学运算能力是初中生应具备的一种重要的数学能力,是影响学生数学学习成绩的一个重要因素。
数学学科还直接影响到学生对理、化等学科的学习,而运算能力又是数学学科的基础。
所以,培养学生的计算能力,不仅要了解运算的内容、运算能力的结构,还要研究学生这个主体,了解学生在运算过程中容易产生的问题。
学生在运算时常常出现差错,已经不是什么新鲜事了,这也是令数学教师最头疼的问题。
要避免这些现象的出现,作为数学教师首先准确找出学生运算中的主要问题,然后分析原因,找出解决运算能力的基本方法,以便对症下药,确保教学质量。
本课程从初中数学运算能力提升这一视角进行各章节内容教学案例展示,与大家交流。
经过亲身体验和教学案例分析,我们认为要提高中学生的运算能力重在把握以下两点:数学的基础知识和数学的逻辑思维。
数学基础知识是指:计算公式、计算法则,并能准确地运用公式和法则进行计算;能否应用概念、性质、定理进行有关的计算,这些应该是每个学生必须掌握,而且以后进行更深入学习的基础,可见其相当重要。
数学的逻辑思维是指:是否合理的使用公式、法则。
运算方法和运算过程是否简捷;能否简化运算过程,进行“跳步”计算:心算、速算、估算能力的应用,从这些可以看出,逻辑思维可以让学生做题更有条理性,更快速高效的解决掉问题,这在以往的学习中对学生帮助巨大。
初中数学校本教材————《生活与数学》序言一、把握数学的生活性——“使教学有生活味”《数学课程标准》中指出:“数学可以帮助人们更好地探求客观世界的规律,并对现代社会中大量纷繁复杂的信息做出恰当的选择和判断,进而解决问题,直接为社会创造价值”。
这说明数学来源于社会,同时也反作用于社会,社会生活与数学关系密切,它已经渗透到生活的每个方面,我们的衣食住行都离不开它。
现代数学论认为:数学源于生活,又运用于生活,生活中充满数学,数学教育寓于生活实际。
有意识地引导学生沟通生活中的具体问题与有关数学问题的联系,借助学生熟悉的生活实际中的具体事例,激发学生学习数学的求知欲,帮助学生更好的理解和掌握数学基础知识,并运用学到的数学知识去解决实际生活中的数学问题。
二、把握数学的美育性——“使教学有韵味”数学家克莱因认为:“数学是人类最高超的智力成就,也是人类心灵最独特的创作。
音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。
” 美作为现实的事物和现象,物质产品和精神产品、艺术作品等属性总和,具有:匀称性、比例性、和谐性、色彩变幻、鲜明性和新颖性。
作为精神产品的数学就具有上述美的特点。
简练、精确是数学的美。
数学的基本定理说法简约,却又涵盖真理,让人阅读简便却又印象深刻。
数学语言是如此慎重的、有意的而且经常是精心设计的,凭借数学语言的严密性和简洁性,我们就可以表达和研究数学思想,这种简洁性有助于思维的效率。
数学很讲究它的逻辑美。
数学的应用是被人们广泛认同的,可学习数学还能训练人的逻辑思维能力。
尤其是几何的证明讲究前因后果,每一步都要前后呼应,抽象的数学也显示它模糊的美。
抽象给我们想象的余地,让我们思维海阔天空,给学生留有了思索和创新的空间。
抽象的数学不正展示它的魅力吗?数学上有很多知识是和对称有关的。
对称给人协调,平稳的感觉,像圆,正方体等,它们的形式是如此的匀称优美。
正是由于几何图形中有这些点对称、线对称、面对称,才构成了美丽的图案,精美的建筑,巧夺天工的生活世界,也才给我们带来丰富的自然美,多彩的生活美。
中学数学的美育性,除了上述一些方面,还有其它美妙的地方,只要我们用心挖掘和捕捉,就会发现数学蕴涵着如此丰富的美的因素,教师要善于挖掘美的素材,在学生感受美的同时既提高教学质量,又使教学韵味深厚。
三、把握校本教材的可读性-------“使教学有拓展性”陶行知先生早就说过:“在现状下,把学习的基本自由还给学生。
”,经过我们反复的思考和研究,同时邀请专家亲临指点,最终我们确定本课程的基本框架,本课程的设计理念就是要“把学习的基本自由还给学生”,所有的过程基本上都是以学生的活动展开的,真正实现“自主、合作、探究”的学习方式的变革,本课程共分为六个章节,分别是:《古老的数学》,《好玩的数学》,《有用的数学》,《智慧的数学》,《先进的数学》和《美丽的数学》。
在《古老的数学》一章中,并不是把数学史作为一门研究数学的起源、发展过程和规律的学科,而是根据现代心理学发现的一个体现数学史的认知功能的“遗传法则”。
从数学一次又一次的飞跃中寻找数学发现的故事,用故事的形式让学生了解这些数学知识产生的背景、体会数学家们为寻找这些知识的付出的艰辛。
这样一方面可以让学生从本质上更好的理解自己所学的知识;另一方面也可以以此作为人生观与价值观教育的教材,让学生体会“只有付出努力才会获得成功的人生道理”,“为实现理想而不懈追求的数学精神”。
在《好玩的数学》一章中,利用心理学中“兴趣是学习最好的老师”的规律,以一系列数学游戏为载体,让学生感受到数学并不是“枯燥”的代名词,真正的数学其实可以是乐趣无穷的,以此来激发学生的学习兴趣,并以这种兴趣作为他以后学习数学的动力和源泉。
这样一方面可以让学生主动意识到自己爱玩的游戏原来与数学紧密相连,从而为学生学好数学培养内在驱动力;另一方面,也可以在学生玩游戏的过程中帮助学生巩固看似乏味的知识,让学生的学科知识在游戏中得到锻炼和提升。
在《有用的数学》一章中,根据《数学课程标准》:义务教育阶段的数学课程要求“人人学有价值的数学”,设计了很多贴近学生、符合实际、利用学生现有知识能够解决的生活实例。
这样做可以使学生深刻的感受到生活中处处存在着数学,数学来源于生活。
这些在生活中经常碰到的数学问题需要我们去探究,学生通过对这些数学问题的解决,能够更具体更深刻的理解什么是数学,知道学习和学好数学是很有用的,从而进一步培养学生学习数学的兴趣、增强学生学好数学的内在驱动力。
在《智慧的数学》一章中,通过穿插一些有趣的数学小故事,以改变人们认为科学研究枯燥无味的看法。
本章内容主要包括有趣的数学问题、经典的数学问题、奇怪的数学问题。
通过对“有趣的数学问题”的研究,使学生对数学中的存在的智慧产生强烈的好奇与追求,从而激发学生天生的求知欲;通过对“经典的数学问题”的研究使学生掌握一些基本的数学方法,学会用数学的方法解决问题;通过对“奇怪的数学问题”的研究,帮助学生开阔眼界,增长知识、锻炼和培养学生的创新思维。
在《先进的数学》一章中,主要学习和研究数学软件“几何画板”的使用方法。
通过对几何画板软件的学习,可以激发学生的学习兴趣,拓宽学生的知识面,改变学生“数学枯燥论”和“数学无用论”的观点;可以开发学生的学习潜能,培养学生的学习习惯,改变学生的学习方式,从而实现提高学生数学素养的目的;另外,通过对几何画板软件的学习,可为学生学习其他计算机软件打下了一个结实的基础,从而提高学生的电脑素养,为学生终身发展和可持续发展做出数学教育上的贡献。
在《美丽的数学》一章中,展示给大家的是数学的美丽无所不在,数学的符号、公式、算法、图形、表格、方程、解题思路、解题方法……都是很美丽的。
这些“数学之美”都需要我们能够和我们的学生一起去寻找、去发现、去挖掘、去欣赏,使美丽的数学成为学生快乐学习的源泉。
数学的美丽使我们深刻感受到数学的教育不应该仅仅是作为对数学学科的教学,更应该把它作为一种审美教育的载体,用它来感染和启迪学生的心灵,让学生的人格更健全,心灵更美好。
开发校本课程要有高度的责任感、使命感和强烈的事业心,决不能仅仅凭着自己的兴趣,更重要的是要把它作为自己的事业来做,要付出艰辛的努力、经历痛苦的历程,只有付出艰辛的努力、经历痛苦的历程才能在这个过程中感受成功的喜悦与幸福。
开发校本课程,首先要有一个追求(对我们国家的教育事业无比热爱,功利心不能太强,不要一说到数学研究就问这件事情对我职称评审有没有用,对我评骨干教师有没有用……),要确定一个核心思想(即开发的核心宗旨、研究方向、基本要求),要充分利用校内外各类资源,要不断地进行课程资源的积累和课程特色的培育;校本课程的规划要根据学生的课程需要来制订;要选择贴近时代特点、社会发展与学生实际的课程内容,要变革教学方式和学习方式,充分发挥师生的独立性、自主性和创造性,引导学生在身心愉悦的环境中实践和研究。
校本课程的开发和建设是一个漫长的道路,需要我们时时刻刻做一个有心人,心中时时刻刻装着为学生的终身发展和可持续发展考虑,装着为我们数学教学向数学教育转变服务的理想和追求。
第一章兴趣数学第一节七桥问题(一笔画问题)18世纪时,欧洲有一个风景秀丽的小城哥尼斯堡,那里有七座桥。
如图1所示:河中的小岛A与河的左岸B、右岸C各有两座桥相连结,河中两支流间的陆地D与A、B、C各有一座桥相连结。
当时哥尼斯堡的居民中流传着一道难题:一个人怎样才能一次走遍七座桥,每座桥只走过一次,最后回到出发点?大家都试图找出问题的答案,但是谁也解决不了这个问题。
七桥问题引起了著名数学家欧拉(1707—1783)的关注。
他把具体七桥布局化归为图所示的简单图形,于是,七桥问题就变成一个一笔画问题:怎样才能从A、B、C、D中的某一点出发,一笔画出这个简单图形(即笔不离开纸,而且a、b、c、d、e、f、g各条线只画一次不准重复),并且最后返回起点?欧拉经过研究得出的结论是:图是不能一笔画出的图形。
这就是说,七桥问题是无解的。
这个结论是如何产生呢?如果我们从某点出发,一笔画出了某个图形,到某一点终止,那么除起点和终点外,画笔每经过一个点一次,总有画进该点的一条线和画出该点的一条线,因此就有两条线与该点相连结。
如果画笔经过一个n次,那么就有2n条线与该点相连结。
因此,这个图形中除起点与终点外的各点,都与偶数条线相连。
如果起点和终点重合,那么这个点也与偶数条线相连;如果起点和终点是不同的两个点,那么这两个点部是与奇数条线相连的点。
综上所述,一笔画出的图形中的各点或者都是与偶数条线相连的点,或者其中只有两个点与奇数条线相连。
图2中的A点与5条线相连结,B、C、D各点各与3条线相连结,图中有4个与奇数条线相连的点,所以不论是否要求起点与终点重合,都不能一笔画出这个图形。
欧拉定理:如果一个图是连通的并且奇顶点的个数等于0或2,那么它可以一笔画出;否则它不可以一笔画出。
一笔画:■⒈凡是由偶点组成的连通图,一定可以一笔画成。
画时可以把任一偶点为起点,最后一定能以这个点为终点画完此图。
■⒉凡是只有两个奇点的连通图(其余都为偶点),一定可以一笔画成。
画时必须把一个奇点为起点,另一个奇点终点。
■⒊其他情况的图都不能一笔画出。
(奇点数除以二便可算出此图需几笔画成。
)练习:你能笔尖不离纸,一笔画出下面的每个图形吗?试试看。
(不走重复线路)图例1图例2图例3图例4第二节四色问题人人都熟悉地图,可是绘制一张普通的政区图,至少需要几种颜色,才能把相邻的政区或区域通过不同的颜色区分开来,就未必是一个简单的问题了。
这个地图着色问题,是一个著名的数学难题。
大家不妨用一张中国政区图来试一试,无论从哪里开始着色,至少都要用上四种颜色,才能把所有省份都区别开来。
所以,很早的时候就有数学家猜想:“任何地图的着色,只需四种颜色就足够了。
”这就是“四色问题”这个名称的由来。
四色问题又称四色猜想,是世界近代三大数学难题之一。
四色问题的内容是:“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。
”用数学语言表示,即“将平面任意地细分为不相重迭的区域,每一个区域总可以用1,2,3,4这四个数字之一来标记,而不会使相邻的两个区域得到相同的数字。
”(上右图)。
这里所指的相邻区域,是指有一整段边界是公共的。
如果两个区域只相遇于一点或有限多点,就不叫相邻的。
因为用相同的颜色给它们着色不会引起混淆。
数学史上正式提出“四色问题”的时间是在1852年。
当时伦敦的大学的一名学生法朗西斯向他的老师、著名数学家、伦敦大学数学教授莫根提出了这个问题,可是莫根无法解答,求助于其它数学家,也没有得到答案。