生物化学:脂肪酸的分解代谢
- 格式:ppt
- 大小:4.63 MB
- 文档页数:70
一、填空题1.在所有细胞中乙酰基的主要载体是,ACP是,它在体内的作用是。
2.脂肪酸在线粒体内降解的第一步反应是脱氢,该反应的载氢体是。
3.发芽油料种子中,脂肪酸要转化为葡萄糖,这个过程要涉及到三羧酸循环,乙醛酸循环,糖降解逆反应,也涉及到细胞质,线粒体,乙醛酸循环体,将反应途径与细胞部位配套并按反应顺序排序为。
4.脂肪酸b—氧化中有三种中间产物:甲、羟脂酰-CoA; 乙、烯脂酰-CoA 丙、酮脂酰- CoA,按反应顺序排序为。
5.是动物和许多植物的主要能量贮存形式,是由与3分子脂化而成的。
6.三脂酰甘油是由和在磷酸甘油转酰酶作用下,先生成磷脂酸再由磷酸酶转变成,最后在催化下生成三脂酰甘油。
7.每分子脂肪酸被活化为脂酰-CoA需消耗个高能磷酸键。
8.一分子脂酰-CoA经一次b-氧化可生成和比原来少两个碳原子的脂酰-CoA。
9.一分子14碳长链脂酰-CoA可经次b-氧化生成个乙酰-CoA, 个NADH+H+,个FADH2 。
10.真核细胞中,不饱和脂肪酸都是通过途径合成的。
11.脂肪酸的合成,需原料、、和等。
12.脂肪酸合成过程中,乙酰-CoA来源于或,NADPH主要来源于。
13.乙醛酸循环中的两个关键酶是和,使异柠檬酸避免了在循环中的两次反应,实现了以乙酰-CoA合成循环的中间物。
14.脂肪酸合成酶复合体I一般只合成,碳链延长由或酶系统催化,植物Ⅱ型脂肪酸碳链延长的酶系定位于。
15.脂肪酸b-氧化是在中进行的,氧化时第一次脱氢的受氢体是,第二次脱氢的受氢体。
二、选择题1.脂肪酸合成酶复合物I释放的终产物通常是:A、油酸B、亚麻油酸C、硬脂酸D、软脂酸2.下列关于脂肪酸从头合成的叙述错误的一项是:A、利用乙酰-CoA作为起始复合物B、仅生成短于或等于16碳原子的脂肪酸C、需要中间产物丙二酸单酰CoAD、主要在线粒体内进行3.脂酰-CoA的b-氧化过程顺序是:A、脱氢,加水,再脱氢,加水B、脱氢,脱水,再脱氢,硫解C、脱氢,加水,再脱氢,硫解D、水合,脱氢,再加水,硫解4.缺乏维生素B2时,b-氧化过程中哪一个中间产物合成受到障碍A、脂酰-CoAB、b-酮脂酰-CoAC、a, b–烯脂酰-CoAD、L-b羟脂酰- CoA5.下列关于脂肪酸a-氧化的理论哪个是不正确的?A、a-氧化的底物是游离脂肪酸,并需要氧的间接参与,生成D-a-羟脂肪酸或少一个碳原子的脂肪酸。
28饱和脂肪酸在一系列酶的作用下,羧基端的β位C原子发生氧化,碳链在α位C 原子与β位C原子间发生断裂,每次生成一个乙酰COA和较原来少二个碳单位的脂肪酸,这个不断重复进行的脂肪酸氧化过程称为β-氧化脂肪酸在一些酶的催化下,其α-C原子发生氧化,结果生成一分子CO2和较原来少一个碳原子的脂肪酸,这种氧化作用称为α-氧化。
脂肪酸在酶催化下,其ω碳(末端甲基C)原子发生氧化,先生成ω-羟脂酸,继而氧化成α,ω-二羧酸的反应过程,称为ω-氧化。
酮体(ketone bodies):脂肪酸在肝脏中分解氧化时生成的乙酰-CoA在酶的催化下转变成的三种中间代谢物的总称。
包括乙酰乙酸﹑β–羟丁酸和丙酮。
脂肪酸代谢的调节(一)脂肪酸进入线粒体的调控在细胞内,脂肪酸分解代谢的调控主要由线粒体控制脂肪酸进入线粒体内。
脂肪酸进入细胞后,在细胞质中由硫激酶催化生成脂酰-CoA,脂酰-CoA必须转化为脂酰肉碱才能穿越线粒体内膜,脂酰肉碱是由外膜上的脂酰肉碱转移酶Ⅰ催化脂酰-CoA和肉碱而生成的,该酶强烈地受丙二酸单酰-CoA抑制,当丙二酸单酰-CoA浓度高时,阻止脂肪酸的分解。
(二)心脏中脂肪酸氧化的调节脂肪酸在心脏中主要是分解代谢。
分解产生的能量是心脏能量的主要来源。
如果心脏用能减少,柠檬酸循环和氧化磷酸化的活动随之减弱,导致乙酰-CoA 和NADH的积聚。
乙酰-CoA浓度升高抑制了硫解酶的活性,从而抑制了β-氧化。
NADH增高,NAD+减少,影响了L-3-羟脂酰-CoA脱氢酶活性,从而也抑制了氧化。
(三)激素对脂肪酸代谢的调节胰高血糖素和肾上腺素能使脂肪组织中的cAMP含量升高。
cAMP激活了cAMP-依赖性蛋白激酶,使三酰甘油脂肪酶磷酸化转变为有活性形式,从而加速了脂肪组织中的脂肪水解作用,提高了血液中脂肪酸水平。
最终活化了其他组织中的β-氧化。
此外cAMP-依赖性蛋白激酶还抑制了脂肪酸合成的关键酶——乙酰-CoA羧化酶,抑制了脂肪酸的合成。
脂类代谢Metabolism of lipids概论脂类(lipid)是脂肪(fat)及类脂(lipoid)的总称,是一类不溶于水而易溶于有机溶剂,并能为机体利用的有机化合物。
主要生理功能是储存能量及氧化供能。
基本特点不溶于水能溶解于一种或一种以上的有机溶剂分子中常含有脂肪酸或能与脂肪酸起酯化反应能被生物体所利用分类:脂肪(甘油三酯),类脂(固醇,固醇脂,磷脂,糖脂)脂肪酸(fatty acids):包括饱和脂酸(saturated fatty acid)和不饱和脂酸(unsaturated fatty acid),其中多不饱和脂酸多为营养必须脂酸(亚油酸,亚麻酸,花生四烯酸)。
基本构成:甘油磷脂(两个羟基接脂肪酸,一个接磷酸,磷酸一个羟基被X取代,如胆碱,水,乙醇胺,丝氨酸etc)胆固醇脂(胆固醇羟基接脂肪酸)鞘脂(鞘氨醇接一个脂肪酸)鞘磷脂(鞘脂下在一个羟基接取代磷酸基)鞘糖脂(鞘脂下一个羟基接糖)脂蛋白:脂质基本转运形式,分为细胞内脂蛋白和血浆脂蛋白第一节脂质的消化吸收Digestion and absorption of lipids人体内脂类来源自身合成饱和脂肪酸或单不饱和脂肪酸食物供给各种,特别是不饱和脂酸维持机体脂质平衡小肠:介于机体内外脂质间的选择性屏障,通过过多体内脂质堆积,通过过少会有营养障碍。
消化吸收能力有可塑性,脂质介导小肠脂质消化吸收能力增加脂消化酶及胆汁酸盐脂类在小肠上段,被乳化剂(胆汁酸盐,甘油一脂,甘油二脂)乳化成微团(micelles)再经酶催化消化。
甘油三酯被胰脂酶和辅酯酶消化成2-甘油一脂,磷脂被磷脂酶A2分解为溶血磷脂+1FFA,胆固醇脂被胆固醇酯酶分解成胆固醇脂肪与类脂的消化产物形成混合微团(mixed micelles),被肠粘膜细胞吸收。
胆汁酸盐:强乳化作用脂质消化酶:◆胰脂酶(pancreatic lipase):特异水解甘油三酯1位及3位酯键◆辅脂酶(colipase):胰脂酶发挥脂肪消化作用的蛋白质辅因子◆磷脂酶A2(phospholipase A2)水解磷脂◆胆固醇酯酶(cholesteryl esterase)水解胆固醇辅酯酶进入肠腔后酶原激活,它有与脂肪及酯酶结合的结构域,与胰脂酶结合是通过氢键进行的;它与脂肪通过疏水键进行结合。
脂肪动员(fat mobilization): 储存在脂肪细胞中的脂肪,被脂肪酶逐步水解为游离脂酸(free fatty acid, FFA)及甘油并释放入血以供其他组织氧化利用的过程。
脂解激素:能直接激活甘油三酯脂肪酶,促进脂肪分解的激素,如胰高血糖素、肾上腺素、去甲肾上腺素等。
酮体的定义:脂肪酸在分解代谢过程中生的乙酰乙酸(acetoacetate)、β-羟丁酸(β-hydroxybutyrate)及丙酮(acetone),三者统称酮体(ketone bodies)。
血脂:血浆所含脂类统称血脂,包括:三酰甘油及少量二酰甘油及单酰甘油,胆固醇及其酯、磷脂以及游离脂酸。
载脂蛋白:载脂蛋白(apolipoprotein, apo) 指血浆脂蛋白中的蛋白质部分。
LDL受体:能特异识别与结合含ApoE或Apo B100的脂蛋白。
必需脂肪酸:人体自身不能合成,必须从食物中获得的脂肪酸。
脂肪酸的B-氧化:脂肪酸的氧化分解是从B-碳原子开始,两个两个碳原子依次进行水解。
这一过程称为脂肪酸的B-氧化氮平衡(nitrogen balance):每日氮的摄入量与排出量的对比关系。
蛋白质的腐败作用(putrefaction):肠道细菌对未被消化和吸收的蛋白质及其消化产物的分解与转化作用。
转氨基作用(transamination):在转氨酶(transaminase)的作用下,某一氨基酸去掉α-氨基生成相应的α-酮酸,而另一种α-酮酸得到此氨基生成相应的氨基酸的过程,即α-氨基酸和α-酮酸在转氨酶作用下实现氨、酮二基的互换过程。
氧化脱氨基作用:氨基酸先经脱氢作用生成不稳定的亚氨基酸,然后水解产生a-酮酸和氨。
联合脱氨基作用:转氨和脱氨相偶联而脱掉氨基的作用称为联合脱氨基作用。
鸟氨酸循环:肝中合成尿素的代谢通路。
由氨及二氧化碳与鸟氨酸缩合形成瓜氨酸、精氨酸,再由精氨酸分解释出尿素。
此过程中鸟氨酸起了催化尿素产生的作用S-腺苷甲硫氨酸(SAM):它是甲硫氨酸的活性形式,在动植物体内广泛存在,它是由底物L-甲硫氨酸和ATP经S-腺苷甲硫氨酸合成酶酶促合成的高血氨症( hyperammonemia):血氨浓度升高,常见于肝功能严重损伤时。
第七章脂代谢学习要点一、脂类降解 1.脂肪的酶促降解:脂肪(甘油+脂肪酸2.甘油的降解:甘油(糖酵解3.脂肪酸的氧化分解:(1) (-氧化:激活,(-氧化过程(脱氢,加水,脱氢,裂解),能量计算(n个碳的脂肪酸产生ATP数为:[(n/2-1)×3+(n/2-1)×2+n/2×12-2])(2)(-氧化、(-氧化4.乙醛酸循环:底物(乙酰辅酶A),产物(琥珀酸)意义:在油料种子发芽时,脂肪转化为糖的主要途径二、脂肪的合成 1.磷酸甘油的合成:甘油(磷酸甘油(磷酸二羟丙酮2.脂肪酸的合成:(1)丙二酸单酰CoA的合成:乙酰CoA羧化酶系催化;(2)脂肪酸合成酶系:酶系(I型):6种酶,1个酰基载体蛋白(ACP),从头合成到16碳反应:转移(缩合(还原(脱水(还原特点:NADPH为还原力,乙酰CoA为底物,丙二酸单酰CoA为直接底物,反应时中间产物一直与ACP结合,每次增加两个碳(3)脂肪酸链的延长:II型:到18碳,III型:20和20碳以上(4)不饱和脂肪酸合成:饱和脂肪酸的去饱和作用习题一、选择题1.脂肪酸的(-氧化具有下列特点,但除()外:起始于脂酰-CoA b.需要NAD+、FAD作为受氢体c.产物为乙酰CoAd.在胞液中进行2. 脂肪酸的(-氧化的酰基载体是:a. CoAb.ACPc.甘油d.琥珀酸3.脂肪酸从头合成途径具有下列特点,但除()以外:利用乙酰CoA作为活化底物 b.生成16碳脂肪酸c.需要脂肪酸合成酶系催化d.在细胞质中进行4.脂肪酸从头合成以什么为还原剂?a.NADHb.NADPHc.FADH2d.还原态铁氧还蛋白5.生物体内脂肪酸氧化的主要途径是a.(—氧化 B. (—氧化 C. (—氧化 D.过氧化6.下列关于乙醛酸循环的论述哪个是不正确的?以乙酰CoA为底物存在于油料种子萌发时的乙醛酸体中c.动物体内也存在乙醛酸循环d.主要生理功能是合成三羧酸循环的中间产物琥珀酸7.脂肪酸从头合成时的酰基载体是:a.ACPb.CoAc.TPPd.生物素8.甘油的代谢与哪个代谢途径有关?a.糖酵解b.三羧酸循环c.脂肪酸氧化d.乙醛酸循环9.脂肪酸氧化产生的乙酰CoA可进一步代谢成为:a.葡萄糖b.天冬基酸c.CO2d.核苷酸10.脂肪酸合成的活化底物是:a.乙酰CoAb.丙二酸单酰CoAc.脂酰ACPd.乙酰ACP二、填空题1._脂肪_是动物和许多植物的主要能量贮存形式,是由甘油_与3分子脂肪酸_酯化而成的。
动物生物化学中的代谢途径与能量转化动物的生命活动离不开能量的供给与转化,而生物化学是研究生物体中化学反应的科学。
代谢是指生物体内发生的化学反应,其中包括能量的合成与消耗。
本文将介绍动物生物化学中的代谢途径及能量转化的过程。
一、糖代谢途径1. 糖酵解糖酵解是一种将葡萄糖分解为乳酸(动物细胞无氧呼吸时)或丙酮酸(动物细胞有氧呼吸时)的代谢途径。
这一过程中,葡萄糖分子被分解为两个三碳的化合物,然后进一步转化生成乳酸或丙酮酸。
糖酵解过程产生了可用于细胞能量供应的ATP。
2. 糖异生糖异生是指动物体内通过非糖源合成葡萄糖的过程。
在需要时,动物体内的蛋白质、脂肪等可以通过代谢途径转化为葡萄糖,以满足能量需求。
这一过程主要发生在肝脏和肌肉组织中。
二、脂类代谢途径1. 脂肪酸氧化脂肪酸氧化是指将脂肪酸分解为较短的脂肪酸和乙酰辅酶A的过程。
这些脂肪酸进一步被氧化为乙酰辅酶A,然后参与三羧酸循环,最终生成ATP。
脂肪酸氧化是细胞内能量供应的重要来源。
2. 油脂合成油脂合成是指将葡萄糖、氨基酸等非脂肪物质转化为甘油三酯的过程。
在此过程中,乙酰辅酶A与甘油结合,形成甘油三酯,作为能量的储存形式存在于动物体内。
三、蛋白质代谢途径1. 蛋白质分解蛋白质分解是指将蛋白质分解为氨基酸的过程。
在蛋白质代谢过程中,体内的酶会将蛋白质分解成氨基酸,然后这些氨基酸会参与能量供应或合成其他重要的生物分子。
2. 蛋白质合成蛋白质合成是指将氨基酸合成为蛋白质的过程。
在细胞内,基因通过转录和翻译的方式合成相应的蛋白质,以满足细胞的结构和功能需求。
四、能量转化1. ATP的合成ATP是生物体内能量的主要形式。
在糖酵解和脂肪酸氧化过程中,通过转化生成的乙酰辅酶A进入三羧酸循环和电子传递链,在线粒体内产生ATP。
同时,蛋白质代谢过程中氨基酸的代谢也可以产生相应的能量。
2. ATP的利用ATP的利用是指将ATP分解为ADP和无机磷酸盐的过程。
细胞在需要能量时,通过将ATP分解为ADP和无机磷酸盐来释放出能量,供细胞活动所需。
生物化学脂类代谢在我们的生命活动中,脂类代谢是一个至关重要的过程。
脂类不仅是细胞结构的重要组成部分,还在能量储存、信号传递以及许多生理功能中发挥着关键作用。
脂类,简单来说,包括脂肪、磷脂、固醇等。
脂肪,也就是我们常说的甘油三酯,是体内主要的储能物质。
当我们摄入的能量超过身体即时所需时,多余的部分就会被转化为脂肪储存起来,以备不时之需。
脂类的消化和吸收是脂类代谢的第一步。
在我们的消化道中,胆汁起着重要的作用。
胆汁能够乳化脂肪,使其变成微小的颗粒,增加与消化酶的接触面积,从而便于脂肪的消化。
脂肪酶将甘油三酯分解为甘油和脂肪酸,这些小分子物质可以被小肠上皮细胞吸收。
吸收进来的脂肪酸和甘油会重新合成甘油三酯,并与载脂蛋白等结合形成乳糜微粒。
乳糜微粒通过淋巴系统进入血液循环,最终被运输到脂肪组织、肌肉等部位储存或利用。
当身体需要能量时,储存的脂肪会被动员起来。
在激素敏感性脂肪酶的作用下,甘油三酯被水解为甘油和脂肪酸。
脂肪酸进入血液,与血浆清蛋白结合形成脂肪酸清蛋白复合物,被运输到各个组织器官,如肝脏、肌肉等,通过β氧化途径进行分解代谢,产生大量的能量。
β氧化是脂肪酸分解的主要途径。
脂肪酸首先被活化成脂酰 CoA,然后进入线粒体。
在一系列酶的作用下,经过脱氢、加水、再脱氢和硫解等步骤,每次生成一个乙酰 CoA 和比原来少两个碳原子的脂酰CoA。
乙酰 CoA 可以进入三羧酸循环进一步氧化分解,产生能量。
除了脂肪酸,磷脂也是脂类的重要组成部分。
磷脂在细胞膜的构成中起着关键作用,它能够保证细胞膜的流动性和稳定性。
磷脂的代谢与脂肪酸的代谢密切相关,一些酶参与了磷脂的合成和分解过程。
固醇类物质,如胆固醇,在体内既可以从食物中摄取,也可以自身合成。
胆固醇是合成胆汁酸、类固醇激素等重要生理活性物质的前体。
然而,过高的胆固醇水平会增加心血管疾病的风险,因此体内胆固醇的平衡调节非常重要。
肝脏在脂类代谢中扮演着“核心角色”。
它不仅能够合成和分解脂肪,还参与磷脂、胆固醇等的代谢。