八年级下学期第三次月考数学试卷附带答案
- 格式:docx
- 大小:293.13 KB
- 文档页数:12
初二数学下册第三次月考试卷(带答案)学校:___________班级:___________姓名:___________考号:___________【不等关系、不等式的基本性质与不等式的解集(100分)】1.(5分)用不等号填空:(1)-π__________-3;(2)x2__________0;(3)|x|+|y|__________|x+y|;(4)(-5)÷(-1)__________(-6)÷(-7);(5)当a__________0时,|a|=-a.2.(3分)若a>b,则下列不等式变形正确..的是()A.ac2>bc2B.ab>1 C.-ca>-cb D.3a-c>3b-c3.(3分)下列不等式变形中,一定正确....的是()A.若ac>bc,则a>bB.若a>b,则am2>bm2C.若ac2>bc2,则a>bD.若m>n,则-m2>-n24.(3分)若关于x的不等式mx+1>0的解集为x<15,则关于x的不等式(m-1)x>-1-m的解集为_______________.5.(8分)若|x-4|+(5x-y-m)2=0,求当y≥0时,m的取值范围.6.(6分)已知x=3是不等式mx+2<1-4m的一个解,如果m是整数,求m的最大值.7.(7分)若不等式2x<4的解都能使不等式x-a<5成立,求a的取值范围.8.(3分)实数a,b,c满足a<b<0<c,则下列式子中正确..的是()A.ac>bcB.|a-b|=a-bC.-a<-b<cD.-a-c>-b-c9.(3分)在△ABC中,若AB=8,BC=6,则第三边AC的长度m的取值范围是__________;若m的值为偶数,则m=______________________________. 10.(3分)若实数a是不等式2x-1>5的解,但实数b不是不等式2x-1>5的解,则下列选项中,正确..的是()A.a<bB.a>bC.a≤bD.a≥b11.(6分)若不等式a(x-1)>x+1-2a的解集为x<-1,求a的取值范围.12.(7分)已知不等式3x-a≤0的正整数解有3个:1,2,3,求a的取值范围.13.(7分)题目:2x+13-x+52≥______已知这道题的正确答案是x≥7,且“______”是一个常数项,请求出“______”中的数.14.(4分)若关于x的不等式|x-2|+|x+3|≥a对于x取任何值都成立,请直接写出a的取值范围.15.(7分)(1)比较a2+b2与2ab的大小关系:①当a=3,b=5时,a2+b2__________2ab;②当a=-3,b=5时,a2+b2__________2ab;③当a=b=1时,a2+b2__________2ab.(2)根据上述结果请你猜想a2+b2与2ab的大小关系:__________ 并进行验证.16.(7分)已知关于x的不等式ax+2x<2a+4.(1)当a=1时,求该不等式的解集;(2)a取何值时,该不等式有解?并求出解集.17.(每题3分,共18分)解下列不等式:(1)2(x-3)<3(x-1);(2)2y3-1<y4+4;(3)5(x-2)+8<6(x-1)+7;(4)2x-13-3x-12<1;(5)x-x-12≤2-x+23;(6)x-3(x-3)<3[x-2(x-2)].【一元一次方程、不等式的应用(20分)】18.[一元一次不等式](8分)矿山爆破时,为了确保安全,点燃引火线后,人要在爆破前转移到300m以外的安全地区.引火线燃烧的速度是0.8cm/s,人离开的速度是5m/s,问:引火线的长度至少应为多少cm?19.[一元一次方程](8分)上海浦东机场(PVG)到新加坡樟宜机场(SIN)的直线距离约为5000km,一架波音式飞机的速度约为800km/h;一架普通飞机的速度约为500km/h.两架飞机都从上海飞往新加坡.普通飞机航班先出发,3h后,波音式飞机航班出发,问:波音式飞机什么时候追上普通飞机,这时离新加坡樟宜机场还有多远?20.(4分)现有若干本连环画册分给小朋友,如果每人分8本,那么不够分,现在如果每人分7本,还多10本,则小朋友人数最少有()A.7人B.8人C.10人D.11人参考答案阅卷提示:提供的答案除选择题和填空题外,不一定都是唯一正确的,对于那些与此答案不同的答案正确的同样给分.评分标准只是根据一种思路与方法给出的,在阅卷时会出现各种不同情况,可根据本评分标准的精神制定出具体的方案,但不要与评分标准有太大的偏离.【不等关系、不等式的基本性质与不等式的解集(100分)】1.(1)<;(2)≥;(3)≥;(4)>;(5)≤.(每空1分,共5分)2.D(3分)3.C(3分).(3分)4.x<-235.m≤20.(8分)6.-1.(6分)7.a≥-3.(7分)8.D(3分)9.2<m<14;(2分) 4或6或8或10或12. (1分)10.B(3分)11.a<1.(6分)12.9≤a<12.(7分)13.“______”中的数为-1.(7分)14.a≤5.(4分)15.(1)①>;②>;③=.(每空1分,共3分)(2)a2+b2≥2ab,(1分)证明过程略.(3分)16.(1)x<2;(2分)(2)当x≠-2时有解;(1分)解集:x<2或x>2(每个解集2分,共4分)17.(1)x>3;(2)y≤12;(3)x>3;(4)x>-1;(5)x≤1;(6)x<3. (每题3分,共18分)【一元一次方程、不等式的应用(20分)】18.48cm.(8分)19.5h后追上(5分),距新加坡还有1000km.(3分)20.D(4分)。
八年级下学期3月份月考数学试题含答案一、选择题1.下列计算正确的是( )A =B .3=C 2=D 2.下列计算正确的是( )A 1BCD ±3.下列运算错误的是( )A =B .=C .)216=D .)223=4.下列运算正确的是( )A =B . 3C =﹣2D =5.在实数范围内有意义,则x 的取值范围是( ) A .x >3B .x >-3C .x≥-3D .x≤-36.下列各式中,无意义的是( )A B C D .310-7.下列方程中,有实数根的方程是( )A 0=B 10=C 2=D 1=.8.下列二次根式是最简二次根式的是( )AB C D9.下面有四个命题:①两条直线被第三条直线所截,同位角相等;②0.1的算术平方根是0.01)=5;④如果点P (3-2n ,1)到两坐标轴的距离相等,那么n =1,其中假命题的有( ) A .1个 B .2个C .3个D .4个10.以下运算错误的是( )A =B .2= CD 2=a >0)11.x y x x y >=->+中,二次根式有( ) A .2个B .3个C .4个D .5个12.下列运算一定正确的是( )A a =B =C .222()a b a b ⋅=⋅D ()0na m=≥ 二、填空题13.能力拓展:1A =2A =;3:A =;4A =________.…n A :________.()1请观察1A ,2A ,3A 的规律,按照规律完成填空.()2比较大小1A 和2A()3-14.=___________.15.3=,且01x <<=______.16.)30m -≤,若整数a 满足m a +=a =__________.17.把18.若0xy >,则二次根式________.19.已知x ,y ,则x 2+xy +y 2的值为______. 20.x 的取值范围是_____.三、解答题21.阅读材料,回答问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式a =,)111=11互为有理化因式.(1)1的有理化因式是;(2)这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:3==,25384532++====-进行分母有理化.(3)利用所需知识判断:若a=,2b=ab,的关系是.(4)直接写结果:)1=.【答案】(1)1;(2)7-;(3)互为相反数;(4)2019【分析】(1)根据互为有理化因式的定义利用平方差公式即可得出;(2)原式分子分母同时乘以分母的有理化因式(2,化简即可;(3)将a=(4)化简第一个括号内的式子,里面的每一项进行分母有理化,然后利用平方差公式计算即可.【详解】解:(1)∵()()1111=,∴1的有理化因式是1;(2=(()()22722-==-+-(3)∵2a===,2b=-,∴a和b互为相反数;(4))1++⨯=)11⨯=)11=20201- =2019, 故原式的值为2019. 【点睛】本题考查了互为有理化因式的定义及分母有理化的方法,并考查了利用分母有理化进行计算及探究相关式子的规律,本题属于中档题.22.计算(1)2213113a a a a a a +--+-+-;(2)已知a 、b +b =0.求a 、b 的值 (3)已知abc =1,求111a b cab a bc b ac c ++++++++的值【答案】(1)22223a a a ----;(2)a =-3,b ;(3)1. 【分析】(1)先将式子进行变形得到()()113113a a a a a a +--+-+-,此时可以将其化简为1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭,然后根据异分母的加减法法则进行化简即可;(2)根据二次根式及绝对值的非负性得到2a +6=0,b =0,从而可求出a 、b ; (3)根据abc =1先将所求代数式转化:11b ab abbc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,然后再进行分式的加减计算即可.【详解】解:(1)原式=()()113113a a a a a a +--+-+- =1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭=1113a a --+- =()()()()3113a a a a -++-+-=22223a a a ----;(2)∵2620a b ++-=, ∴2a +6=0,b -2=0, ∴a =-3,b =2; (3)∵abc =1, ∴11b ab ab bc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,∴原式=1111a ab ab a ab a ab a ++++++++=11a ab ab a ++++=1.【点睛】本题考查了分式的化简求值和二次根式、绝对值的非负性,分式中一些特殊求值题并非一味的化简,代入,求值,熟练掌握转化、整体思想等解题技巧是解答这类题目的关键.23.阅读下列材料,然后解答下列问题: 在进行代数式化简时,我们有时会碰上如53,231+这样的式子,其实我们还可以将其进一步化简: (一)53533333⨯==⨯; (二)231)=3131(31)(31)-=-++-(; (三) 22(3)1(31)(31)=3131313131-+-===-++++.以上这种化简的方法叫分母有理化. (1)请用不同的方法化简5+3: ①参照(二)式化简5+3=__________. ②参照(三)式化简5+3=_____________ (2)+315+37+599+97+【答案】见解析.【分析】(1)原式各项仿照题目中的分母有理化的方法计算即可得到结果; (2)原式各项分母有理化,计算即可. 【详解】 解:(1)①;②; (2)原式故答案为:(1)①;②【点睛】此题主要考查了二次根式的有理化,解答此题要认真阅读前面的分析,根据题目的要求选择合适的方法解题.24.在学习了二次根式后,小明同学发现有的二次根式可以写成另一个二次根式的平方的形式.比如:22242332313231131-=-=-+=)).善于动脑的小明继续探究:当a b m n 、、、为正整数时,若222a b m n +=+),则有222(2)+22a b m n mn =+,所以222a m n =+,2b mn =.请模仿小明的方法探索并解决下列问题:(1)当a b m n 、、、为正整数时,若233a b m n =+),请用含有mn 、的式子分别表示a b 、,得:a = ,b = ; (2)填空:133-( - 23);(3)若2655a m n +=(),且a m n 、、为正整数,求a 的值.【答案】(1)223a m n =+,2b mn =;(2)2133=(123)--;(3)14a =或46. 【解析】 试题分析: (1)把等式)233a b m n +=+右边展开,参考范例中的方法即可求得本题答案;(2)由(1)中结论可得:2231324a m nb mn ⎧=+=⎨==⎩ ,结合a b m n 、、、都为正整数可得:m=2,n=1,这样就可得到:213(1-=-;(3)将()2a m +=+右边展开,整理可得:225a m n =+,62mn =结合a m n 、、为正整数,即可先求得m n 、的值,再求a 的值即可.试题解析:(1)∵2a n =+),∴223a m n +=++, ∴2232a m n b mn =+=,;(2)由(1)中结论可得:2231324a m n b mn ⎧=+=⎨==⎩,∵a b m n 、、、都为正整数,∴12m n =⎧⎨=⎩或21m n =⎧⎨=⎩ ,∵当m=1,n=2时,223713a m n =+=≠,而当m=2,n=1时,22313a m n =+=, ∴m=2,n=1,∴(2131--;(3)∵222()52a m m n +=+=++ ∴225a m n =+,62mn = , 又∵a m n 、、为正整数, ∴=1=3m n ,, 或者=3=1m n ,,∴当=1=3m n ,时,46a =;当=3=1m n ,,14a =, 即a 的值为:46或14.25.先化简再求值:4y x ⎛- ⎝,其中30x -=.【答案】(2x - 【分析】先根据二次根式的混合运算顺序和运算法则化简原式,再利用非负数的性质得出x ,y 的值,继而将x 、y 的值代入计算可得答案. 【详解】解:4y x ⎛- ⎝ ((=-(2x =-∵ 30x -∴ 3,4x y == 当3,4x y ==时原式(23=-==【点睛】本题主要考查了二次根式的化简求值,解题的关键是掌握非负数的性质和二次根式的混合运算顺序和法则.26.计算下列各式:(1;(2【答案】(12 ;(2) 【分析】先根据二次根式的性质化简,再合并同类二次根式即可. 【详解】(1)原式2=-2=;(2)原式==. 【点睛】本题考查了二次根式的加减,熟练掌握性质是解答本题的关键(0)(0)a a a a a ≥⎧==⎨-<⎩,)0,0a b =≥≥=(a ≥0,b >0).27.(1)已知a 2+b 2=6,ab =1,求a ﹣b 的值; (2)已知b =,求a 2+b 2的值. 【答案】(1)±2;(2)2. 【分析】(1)先根据完全平方公式进行变形,再代入求出即可;(2)先分母有理化,再根据完全平方公式和平方差公式即可求解.【详解】(1)由a 2+b 2=6,ab=1,得a 2+b 2-2ab=4, (a-b )2=4, a-b=±2. (2)a ===b ===2222()22312a b a b ab +=+-=-=-=⎝⎭【点睛】本题考查了分母有理化、完全平方公式的应用,能灵活运用公式进行变形是解此题的关键.28.计算 (1))(121123-⎛⨯-- ⎝⎭(2)已知:11,22x y ==,求22x xy y ++的值.【答案】(1)28-;(2)17. 【分析】(1)先利用完全平方公式和平方差公式计算二次根式的乘法、负指数幂运算,再计算二次根式的加减法即可得;(2)先求出x y +和xy 的值,再利用完全平方公式进行化简求值即可得. 【详解】(1)原式()((221312⎡⎤=⨯+--⎢⎥⎣⎦,(()1475452=⨯+---230=+28=-;(2)(1119,22x y==,1122x y∴+=+=,()11119112224xy =⨯=⨯-=,则()222x xy y x y xy ++=+-,22=-,192=-, 17=. 【点睛】本题考查了二次根式的混合运算、完全平方公式和平方差公式等知识点,熟练掌握二次根式的运算法则是解题关键.29.(1)计算)(2201113-⎛⎫--•- ⎪⎝⎭(2)已知,,a b c为实数且2c =2c ab-的值【答案】(1)13;(2)12-【分析】(1)利用完全平方公式、负整数指数幂、零指数幂分别计算再合并即可; (2)先依据二次根式有意义的条件,求得a 、b 、c 的值,然后再代入计算即可. 【详解】(1))(2201113-⎛⎫--•- ⎪⎝⎭31=+⨯=4+9 =13;(2)根据二次根式有意义的条件可得:∵()2303010a a b ⎧-≥⎪⎪-≥⎨⎪-+≥⎪⎩, ∴3a =,1b =-, ∴2c =∴(()2223112c ab -=-⨯-=-【点睛】本题主要考查了二次根式的混合运算,二次根式有意义的条件以及二次根式的化简求值,熟练掌握二次根式有意义的条件是解题的关键.30.化简求值:212(1)211x x x x -÷-+++,其中1x =.【答案】3【解析】 分析:先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可. 详解:原式2112,2111x x x x x x -+⎛⎫=÷- ⎪++++⎝⎭2112,211x x x x x -+-=÷+++ ()211,11x x x x -+=⋅-+ 1.1x =+当1x =时,113x ==+ 点睛:考查分式的混合运算,掌握运算顺序是解题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据二次根式的运算法则逐项计算即可判断.【详解】解:AB 、C 2÷=2,故错误;D ,故正确.故选D.【点睛】本题考查了二次根式的四则运算.2.A解析:A【解析】2÷故选A.3.C解析:C【分析】根据二次根式的化简、乘法、完全平方公式、平方差公式逐项判断即可得.【详解】A =,此项正确;B 、=C 、)21516=+=+D 、)22743=-=,此项正确; 故选:C .【点睛】本题考查了二次根式的化简与乘法运算,熟记运算法则是解题关键.4.D解析:D【分析】直接利用二次根式的混合运算法则分别判断得出答案.【详解】解:AB 、=,故此选项错误;C 2,故此选项错误;D ,正确;故选:D .【点睛】本题考查二次根式的混合运算,熟练掌握计算法则是关键.5.C解析:C【解析】分析:根据被开方数大于等于0列式进行计算即可得解.详解:根据题意得,x+3≥0,解得x≥-3.点睛:本题考查的知识点为:二次根式的被开方数是非负数,这也是解答本题的关键.6.A解析:A【分析】直接利用二次根式有意义的条件、负整数指数幂的性质分析得出答案.【详解】AB ,有意义,不合题意;C D 、33110=10-,有意义,不合题意; 故选A.【点睛】 此题主要考查了二次根式有意义的条件、负整数指数幂的性质,正确把握二次根式的定义是解题关键.7.C解析:C 【分析】k =的形式,再根据二次根式成立的条件逐个进行判断即可.【详解】解:A 、x 2+4=0,此时方程无解,故本选项错误;B 10=,1-,∵算术平方根是非负数,∴此时方程无解,故本选项错误;C 2=,∴x+1=4,∴x=3,故本选项正确;D 1=,∴x-3≥0且3-x≥0,解得:x=3,代入得:0+0=1,此时不成立,故本选项错误;故选:C .本题考查了二次根式的意义,能根据二次根式成立的条件进行判断是解此题的关键.8.A解析:A【分析】根据最简二次根式的定义即可得.【详解】A是最简二次根式,此项符合题意B=C、当0x<D=不是最简二次根式,此项不符题意故选:A.【点睛】本题考查了最简二次根式的定义,熟记定义是解题关键.9.D解析:D【分析】利用平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质分别判断后即可确定正确的选项.【详解】解:①两条平行线直线被第三条直线所截,同位角相等,故错误;②0.01的算术平方根是0.1,故错误;)=17322+=,故错误;④如果点P(3-2n,1)到两坐标轴的距离相等,则n=1或n=2,故错误,故选D.【点睛】本题考查了命题与定理的知识,解题的关键是熟悉平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质,难度一般.10.C解析:C【分析】利用二次根式的乘法法则对A、B进行判断;利用二次根式的化简对C、D进行判断.【详解】A.原式=所以A选项的运算正确;B.原式=所以,B选项的运算正确;C .原式==5,所以C 选项的运算错误;D .原式=2,所以D 选项的运算正确.故选C .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.11.B解析:B【解析】解:当y =﹣2时,y +1=﹣2+1=﹣1,∴y =-2)无意义;当x >0无意义;x >0 共3个.故选B .12.C解析:C【分析】直接利用二次根式的性质与化简以及积的乘方运算法则分别计算即可得出答案.【详解】A |a |,故此选项错误;B .,则a ,b 均为非负数,故此选项错误;C .a 2•b 2=(a •b )2,正确;D mn a(a ≥0),故此选项错误. 故选C .【点睛】本题主要考查了二次根式的性质与化简以及积的乘方运算,正确掌握相关运算法则是解题的关键. 二、填空题13.(1)、;(2);(3)【解析】【分析】(1)观察A1,A2,A3的规律可知将等式的右边乘以分母的有理化分式,即可得到左边的代数式;(2)先根据不等式的性质等式的两边同时加上或減去一个数,等解析:(1)=;(2),,><<;(3) ,,<<<【解析】【分析】(1)观察A 1,A 2,A 3的规律可知将等式的右边乘以分母的有理化分式,即可得到左边的代数式;(2)先根据不等式的性质等式的两边同时加上或減去一个数,等式仍成立,求得>1)的结论解答;(3)利用(2)的结论进行填空.【详解】解:(1)观察A 1,A 2,A 3的规律可知,将等式右边的分式分母有理化,即得等式左边的代数式,所以=,(2>1>>,<<(3)由(1)、(2<,故答案为:=;(2),,><<;(3),,<<< 【点睛】主要考查二次根式的有理化.根据二次根式的乘除法法则进行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.14.+1【分析】先将用完全平方式表示,再根据进行化简即可.【详解】因为,所以,故答案为:.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二+1【分析】先将3+,()()()0000a a a a a a ⎧>⎪===⎨⎪-<⎩进行化简即可.【详解】因为(2231211+=+=+=+,11===故答案为:1.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二次根式利用完全平方公式分解. 15..【分析】利用题目给的求出,再把它们相乘得到,再对原式进行变形凑出的形式进行计算.【详解】∵,∴,∴,∴,∵,∴,∴,∴原式.故答案是:.【点睛】本题考查二次根式的运解析:12. 【分析】,再把它们相乘得到1xx-,再对原式进行变形凑出1xx-的形式进行计算.【详解】3=,∴221239xx=++==,∴17xx+=,∴212725xx=-+=-=,∵01x<<,=,∴1xx=-=-∴原式====.故答案是:12.【点睛】本题考查二次根式的运算和乘法公式的应用,解题的关键是熟练运用乘法公式对式子进行巧妙运算.16.【分析】先根据确定m的取值范围,再根据,推出,最后利用来确定a的取值范围.【详解】解:为整数为故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用解析:5【分析】)30m -≤确定m 的取值范围,再根据m a +=32a ≤≤,最后利用78<<来确定a 的取值范围.【详解】 解:()230m m --≤23m ∴≤≤m a +=a m ∴=32a ∴≤≤7528<<46a ∴<<a 为整数a ∴为5故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用“逼近法”得出围是解此题的关键.17.﹣【解析】解:通过有意义可以知道≤0,≤0,所以=﹣=﹣.故答案为:.点睛:此题主要考查了二次根式的性质应用,正确判断二次根式的整体符号是解题关键.解析:【解析】解:通过a ≤0,,所以故答案为:点睛:此题主要考查了二次根式的性质应用,正确判断二次根式的整体符号是解题关键.18.-【分析】首先判断出x ,y 的符号,再利用二次根式的性质化简求出答案.【详解】解:∵,且有意义,∴,∴.故答案为.【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是 解析:【分析】首先判断出x ,y 的符号,再利用二次根式的性质化简求出答案.【详解】解:∵0xy > ∴00x y <,<,∴x ==.故答案为.【点睛】 此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.即(0)(0)a a a a a ≥⎧==⎨-<⎩=(a ≥0,b >0). 19.4【详解】根据完全平方公式可得:原式=-xy==5-1=4.解析:4根据完全平方公式可得:原式=2()x y -xy=21515151)2222=5-1=4. 20.x >4【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【详解】解:由题意得,x ﹣4>0,解得,x >4,故答案为:x >4.【点睛】本题主要考查的是二次根解析:x >4【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【详解】解:由题意得,x ﹣4>0,解得,x >4,故答案为:x >4.【点睛】本题主要考查的是二次根式有意义的条件、分式有意义的条件,掌握二次根式的被开方数是非负数、分式分母不为0是解题的关键.三、解答题21.无22.无23.无24.无25.无27.无28.无29.无30.无。
月考试卷题号一一三总分得分一、选择题(本大题共10小题,共30.0分)1.如图图形中,既是轴对称图形又是中心对称图形的是()2.正方形具有而菱形不具有的性质是()A.四边相等B.四角相等3.C.对角线互相平分如图,四边形ABCD是正方形,贝U/BCE的大/J、是()A.67.5 °B.22.5D.对角线互相垂直延长AB至ij E,使AE = AC,C. 30°D. 454.如图,点。
是矩形ABCD的对角线AC的中点,于点M,若OM=3, BC=8,则OB的长为(A. 4B. 5C.6A. 一组同旁内角相等的平行四边形是矩形B. 一组邻边相等的菱形是正方形C.有三个角是直角的四边形是矩形D.对角线相等的菱形是正方形6.如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得A, C之间的距离为12cm,点B, D之间的距离为16cm,则线段AB的长为()7. A. 9.6cm B. 10cm如图,正方形ABCD中,点E、F分别在CD、BC边上,AAEF是等边三角形,贝U ZAED=()A.60。
B.65°C.70°D. 75D.12cm如图,以正方形 ABCD 的顶点A 为坐标原点,直线 AB 为x 轴建立直角坐标系,对 角线AC与BD 相交于点E, P 为BC 上一点,点P 坐标为(a, b),则点P 绕点E顺时针旋转90。
得到的对应点P'的坐标是()A. (a-b, a)B. (b, a)C. (a-b, 0)D. (b, 0)如图,在菱形 ABCD 中,/BCD=110: AB 的垂直平分线交对角线 AC 于点F, E 为垂足,连接DF,贝U ZCDF 等于()A. 15B. 25C. 45D. 558. 9.10 .如图,矩形 ABCD 的对角线 AC 与BD 交于点O,过点 O 作BD 的垂线分别交 AD 、BC 于E 、F 两点.若AC=24, ZDAO =30 °,则FC 的长度为( )二、填空题(本大题共 9小题,共27.0分)11 .已知正方形 OABC 在直角坐标系中(如图),若点 坐标为(1,3),则点C 的坐标为.12 .如图,在菱形ABCD 中,AE±BC 于点E,若AB=5, AC=6.则AE 的长为.13 .如图,在正方形 ABCD 中,点F 为CD 上一点, 于点 E,若/CBF=20°,则 ZDEF=度.14 .在矩形 ABCD 中,AB=4, H,取AH 的中点...................... 〒之2 + M ................................. 一 ,一一15 .若关于x 的不等式组| x>2m-l ,有且仅有三个整数解,则 m 的取值范围是A. 1B. 2C.-BC=3,过点A 作/DAC 的角平分线交 BC 的延长线于点BF 与AC 交16.如图,在矩形ABCD 中,AD=4点,/DAC=30°,点P、E 分另I」在AC、AD上,贝U PE+PD的最小值是 .17.如图,菱形ABCD中,E、F分别为BC、CD上的点,且那CF经旋转后能与AABE重合,且ZBAE=25°,则ZFEC的度数是.如图,矩形ABCD中,AD=10, AB=8,点P在边AD 上,且18.BP=BC,点M在线段BP上,点N在线段BC 的延长线上,且PM=CN,连接MN交CP于点F, 过点M作ME 1CP于E,则EF= .19.某厂家以A、B两种原料,利用不同的工艺手法生产出了甲、乙、丙三种袋装产品,其中,甲产品每袋含1千克A原料、1千克B原料;乙产品每袋含2千克A原料、1千克B原料;丙产品每袋含有1千克A原料、3千克B原料.若甲产品每袋售价48元,则利润率为20%.某节庆日,该电商进行促销活动,将甲、乙、丙各一袋合装成礼品盒,每购买一个礼品盒可免费赠送一袋乙产品,这样即可实现利润率为10%,则礼盒售价为 .三、解答题(本大题共7小题,共43.0分)20.计算,解方程和不等式组:(1)-14-4 伊(-2)-2](2)(2x-5) (2x+5) -2x (2x-3)(2x-y=3 (35x-3>l-3xx-1 1 + 2x21.在Rt BBC中,/BAC=90: D是BC的中点,E是AD的中点,过点A作AF /BC 交BE的延长线于点F.(1)证明四边形ADCF是菱形;(2)若AC=4, AB=5,求菱形ADCF的面积.A FB D22.学校计划购买一些电脑和打印机,经市场调查,已知购买1台电脑比购买4台打印机多花费400元,购买2台电脑和3台打印机共需10700元.(1)求购买1台电脑和1台打印机各需多少元?(2)学校根据实际情况,决定购买电脑和打印机共100台,要求购买的总费用不超过173700元,且购买打印机的台数不高于购买电脑台数的3倍.请问有哪几种进货方案?(请写出具体方案)23.如图,已知平行四边形ABCD中,对角线AC, BD交于点O,E是BD延长线上的点,且AACE是等边三角形.(1)求证:四边形ABCD是菱形;/(2)若小ED=2/EAD,求证:四边形ABCD是正方形. 、义24.四边形ABCD是正方形,点E在边CD上(不与端点B, C重合),点F在对角线AC上,且EFmC,连接AE(1)如图1,若AB=2,当AE平分/DAC时,求EC的长;(2)如图2,点G是AE的中点,连接DG, FB,求证:FB=^DG.ax + hy25.对x, y定义一种新运算T,规定:T (x, y)=石不(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T (0, 1)=嘤言「=也(1)已知T (1, -1) =-2, T (4, 2) =1 .①求a, b的值;②若关于m的不等式组案黑?恰好有3个整数解,求实数p的取值范围;(2)若T (x, v) =T (y, x)对任意实数x, y都成立(这里T (x, y)和T (y, x) 均有意义),则a, b应满足怎样的关系式?26.如图,直线y='fx+6与x轴、y轴分别交于A, B两点,将直线11沿着y轴正方向平移一段距离得到直线12交y轴于点M,且11与12之间的距离为3,点C (x, y)是直线11上的一个动点,过点C作AB的垂线CD交y轴于点D.备用图(1)求直线12的解析式;(2)当C运动到什么位置时,AAOD的面积为21掷,求出此时点C的坐标;(3)连接AM,将AABM绕着点M旋转得到9台“',在平面内是否存在一点四边形AMA'N为矩形?若存在,求出点N的坐标:若不存在,请说明理由.N.使八答案和解析1.【答案】D【解析】解:A、是中心对称图形,不是轴对称图形,故此选项错误;B、不是中心对称图形,是轴对称图形,故此选项错误;C、图形不是中心对称图形,也不是轴对称图形,故此选项错误;D、图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.根据中心对称图形的定义以及轴对称图形的定义结合选项图形进行判断.此题主要考查了中心对称图形与轴对称图形的定义,关键是找出图形的对称中心与对称轴.2.【答案】B【解析】解:正方形和菱形都满足:四条边都相等,对角线平分一组对角,对角线垂直且互相平分;菱形的四个角不一定相等,而正方形的四个角一定相等.故选:B.根据正方形的性质以及菱形的性质,即可作出判断.本题主要考查了正方形与菱形的性质,正确对特殊四边形的各种性质的理解记忆是解题的关键.3.【答案】B【解析】【分析】此题考查了正方形的性质与等腰三角形的性质. 此题难度不大,解题的关键是注意数形结合思想的应用,注意特殊图形的性质,由四边形ABCD是正方形,即可求得/BAC=/ACB=45°,又由AE=AC,根据等边对等角与三角形内角和等于180 °,即可求得/ACE的度数,又由/BCE=/ACE-/ACB,即可求得答案.【解答】解:.・四边形ABCD是正方形,•.zBAC=/ACB=45 : .AE=AC,, 一 _ 旧zACE= ZE=----- -- =67.5 ,2•.zBCE=/ACE-/ACB=67.5 -45 =22.5 : 故选B.4.【答案】B【解析】解:•.四边形ABCD是矩形. ABED, AD=BC=8,•.OM /AB. OM /CDAO OM1AC=CD,且AO»AC, OM=3. CD=6,在RtAADC 中,AC=JQ+G>H0•.点O是斜边AC上的中点,. BO=.AC=5故选:B.由平行线分线段成比例可得CD=6,由勾股定理可得AC=10,由直角三角形的性质可得OB的长. 本题考查了矩形的性质,勾股定理,直角三角形的性质,求CD的长度是本题的关键.5.【答案】B【解析】解:A、一组同旁内角相等的平行四边形是矩形,正确;B、一组邻边相等的菱形是正方形,错误;C、有三个角是直角的四边形是矩形,正确;D、对角线相等的菱形是正方形,正确.故选:B.利用正方形的判定、平行四边形的性质,菱形的性质,矩形的判定分别判断后即可确定正确的选项.本题考查了正方形的判定,平行四边形的性质,菱形的性质,矩形的判定,熟练运用这些性质解决问题是本题的关键.6.【答案】B【解析】解:作AR 1BC于R, AS LCD于S,连接AC、BD交于点O. 由题意知:AD/BC, AB/CD,••四边形ABCD是平行四边形,♦.两个矩形等宽,. AR=AS, .AR?BC=AS?CD , .BC=CD,..平行四边形ABCD是菱形,. AC _LBD,」______________ ________ _______ L _ 1 __ _ 1_ _在RtAAOB 中,1.OA=7;AC=6cm, OB=:;BD=8cm, . AB=j6工十评=10 (cm),故选:B.作AR±BC于R, AS±CD于S,根据题意先证出四边形ABCD是平行四边形,再由AR=AS 推出BC=CD得平行四边形ABCD是菱形,再根据根据勾股定理求出AB即可.本题主要考查菱形的判定和性质,证得四边形ABCD是菱形是解题的关键.7.【答案】D【解析】解:•.四边形ABCD是正方形,. AB=AD, /B=/C=/D = /DAB=90 °,. ZAEF是等边三角形,. AE=AF, ZEAF =60 °,1.AD=AB, AF=AE,2•.ZABF^MDE (HL),如一60”zBAF = ZDAE =--=15 , .•.zAED=75°,故选:D.由题意可证 Z^ABF^AADE,可得 /BAF=/DAE=15°,可求 ZAED=75° .本题考查了正方形的性质,全等三角形的性质和判定,等边三角形的性质,熟练运用这 些性质和判定解决问题是本题的关键.8 .【答案】D【解析】 解:如图,连接PE,点P 绕点E 顺时针旋转90°得 到的对应点P'在x 轴上,• .四边形ABCD 是正方形, zABC=90 °,.MEB=90 : AE=BE, /EAP' =ZEBP=45 °,,•点P 坐标为(a, b),. BP=b,• .zPEP /=90°,• .zAEP' =/PEB,上区= /.EBP4E= BE .J LAEP 1=乙BEP ' .3EP' ^^BEP (ASA ),.AP' =BP=b,.•点P'的坐标是(b, 0), 故选:D.如图,连接PE,点P 绕点E 顺时针旋转90。
初二下学期第三次月考数学试卷满分:100分 考试时间:90分钟一、 选择题(1—6题每小题2分,7—12题每小题3分,共30分) 1. 下列方程中是一元二次方程的有( )①9102=x ②0722=-+xy x ③01232=-+t t ④2)1(2-=-x x x ⑤0112=-xx A. 1个B. 2个C. 3个D. 4个2. 将方程0562=-+x x 左边配成完全平方式后所得的方程( )A. 14)3(2=-xB. 5)6(2=+xC. 14)3(2=+xD. 5)3(2=+x3. 下列函数中,自变量x 的取值范围是2≥x 的是( )A. x y -=2B. 11-=x yC. 24x y +=D. 2-=x y4. 要得到423--=x y 的图象,可把直线x y 23-=( ) A. 向左平移4个单位 B. 向右平移4个单位C. 向上平移4个单位D. 向下平移4个单位5. 下列说法错误的是( )A. 矩形的对角线相等B. 有一个角是直角的四边形是矩形C. 矩形对角线互相平分D. 菱形对角线互相垂直且平分6. 已知直线17+-=x y 过点A (-5,y 1)、B (-4,y 2),则y 1与y 2的大小关系为( )A. 21y y >B. 21y y =C. 21y y <D. 不能确定7. 如图,在宽为20m ,长为32m 的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪。
要使草坪的面积为540m 2,求道路的宽。
如果设小路宽为x ,根据题意,所列方程正确的是( )A. 540)32)(20(=--x xB. 100)32)(20(=--x xC. 540)32)(20(=-+x xD. 100)32)(20(=-+x x8. 如果一元二次方程0)1(22=+++m x m x 的两个根互为倒数,则m 的值( ) A. m =0 B. m =-1 C. m =1 D. m =1±9. 某班同学毕业时都将自己的照片向全班其他同学各送一张留念,全班共送1035张照片,如果全班有x 名同学,根据题意,列出方程为( ) A. 1035)1(=+x x B. 1035)1(=-x x C.1035)1(21=+x x D. 1035)1(21=-x x 10. 某同学在解关于x 的方程032=+-c x x 时,误将-3x 看作+3x ,结果解得x 1=1,x 2=-4,则原方程的解为( )A. 4,121-=-=x xB. 4,121==x xC. 4,121=-=x xD. 3,221==x x11. 一名考生步行前往考场,10分钟走了总路程的41,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图所示(假定总路程为1)。
_ 第3题图 _ D _ C _ B _ A 八年级下第三次月考数学试卷一、填空题(每小题2分,共20分)1.若分式112++x x 有意义,则x 的取值范围是 . 2.已知反比例函数y =xk 的图象经过点P (-1,2),则这个函数的图象位于第 象限. 3.如图四边形ABCD 中,AD ∥DC ,∠D=90°,若再添加一个条件,就能说明四边形ABCD 是矩形,你添加的条件是 (写出一种情况即可).4.学校校园内有一块如图所示的三角形空地,计划将这块空地建成一个花园,以美化校园环境,若∠A=90°,则BC= ㎝.5.在平行四边形ABCD 中,对角线AC 、DB 相交于点O ,BC=8,则BD 的长度的取值范 围是 .6.如图所示,在矩形ABCD 中,对角线AC 、BD 相交于一点O ,则图中一共有 个等腰直角三角形.7.若三角形的面积是12㎝2,则它的一边长a (㎝)和这条边上的高h (㎝)之间的函数关系式为 .8.如图所示,在矩形ABCD 中,O 为对角线AC 的中点,连接BO ,若BO=2,则AC=.9.菱形的两条对角线分别是24㎝和10㎝,则菱形的周长是 ㎝.10.已知梯形ABCD 的周长为40㎝,上底CD=6㎝,DE ∥BC 交AB 于E ,则△ADE 的周长为 ㎝.二、单项选择题(每小题3分,共18分)11.若分式142+-x x 的值是0,则x 的值是 ( ) A .—2 B.—1 C.2 D.112.在同一直角坐标系中,函数y =3x 与y = x1的图象大致是 ( )_ 8 c m _ 6 c m _ 第4题图 _ C _ B _ A _ O _ 第6题图 _ D _ C _ B _ A 第8题图 ? _ O _ D _ C _ B _ AC.对角形垂直且相等的四边形是菱形D.有两个角相等且有一组对边平行的四边形是矩形14.如图,你听说过亡羊补牢的故事吗?为了防止羊的再次丢失,小明爸爸要在高0.9米,宽1.2米的栅栏门的对角顶点间加一个加固木板,这条木板长需()A.1米B.1.3米C.1.5米D.2米15.如图,在正方形ABCD中CE⊥MN,∠MCE=35°,那么∠ANM等于()A.45°B.50°C.55°D.60°16.如图,在梯形ABCD中,AD∥BC,E、F分别是对角线BD、AC的中点,AD=22㎝BC=38㎝,则EF等于()㎝ C.10㎝ D.12㎝三、解答题(每小题5分,共20分)17.请先化简13112223+-+----xxxxxxx,再取一个使原式有意义而你又喜欢的数代入求值.18.甲、乙两班参加2011年清明节植树活动,已知乙班每小时比甲班多种2棵树,甲班种60棵树所用的时间与乙班种66棵所用的时间相等,求甲、乙两班每小时各种多少棵树?19.如图,平行四边形ABCD中,过对角线的交点O的直线EF与CD和AB的延长线相交于点F、E.求证:AC与EF互相平分.20.如图所示,在梯形ABCD中,AD∥BC,AB=AD=DC,BD=BC.求∠A的度数.四、解答题(每小题6分,共12分)21.如图,在梯形ABCD中,AD∥BC,E是CD的中点,BE的延长线与AD的延长线相交于点F.第? 14 题图_ O_ F_ E_ D _ C_ B_ 第19题图?_ A_ D_ C_ B_ 第20题图_ A_ M_ E_ 第15题图_ D_ C_ B_ A_ F_ E_ 第16题图_ D_ C_ B_ A(1)求证:△BCE ≌△FDE ;(2)连结BD 、CF ,判断四边形BCFD 的形状并加以证明.22.在菱形ABCD 中,AB=4,E 为BC 中点,AE ⊥BC ,AF ⊥CD 于点F ,CG ∥AE ,CG 交AF 于点H ,交AD 于点G.(1)求菱形ABCD 的面积;(2)求∠CHA 的度数.五、解答题(每小题7分,共14分)23.如图,四边形ABCD 中,AB=3,BC=4,CD=12,AD=13,∠B=90°.(1)判断△ACD 的形状;(2)求四边形ABCD 的面积.24.如图,双曲线xk y =与直线n mx y +=的图象交于A 、B 两点,AC ⊥x 轴于C ,DB ⊥x 轴于D ,已知AC=3,OC=1,OD=3.(1)求反比例函数的解析式;(2)求一次函数的解析式._ F _ E _ D _ C _ B _ 第21题图_ A _D _ C _ B 第22题图 ?_D _ C _ B第23题图 ? _ A六、解答题(每小题8分,共16分)25.如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,MN ∥AB ,且分别与AO 、BO 交于点M 、N ,请问:(1)BM=CN 吗?请说明理由;(2)BM ⊥CN 吗?请说明理由.26.如图所示,在矩形ABCD 中,AB=12㎝,BC=6㎝,现有两动点P 、Q ,点P 沿AB 边从点A 开始向点B 以2㎝/s 的速度移动,点Q 沿DA 边从点D 开始向点A 以1㎝/s 的速度移动.如果P 、Q 同时出发,用t (s )表示移动的时间(0≤t≤6).(1)t 为何值时,△QAP 为等腰直角三角形;(2)求四边形QAPC 的面积七、解答题(每小题10分,共20分)27.四边形ABCD 为平行四边形,AD=a ,BE ∥AC ,DE 交AC 的延长线于点F ,交BE 于点E.(1)求证:DF=FE ;(2)若AC=2FC ,∠ADC=60°,AC ⊥DC.求BE 的长(提示:a a 23432 )_ 第25题图 _ O _N _ M _D _ C _ B _ A _ Q _ P 第26题图 ? _D _ C _ B _ A _ F _ D _C _ B _ A28.如图,正方形OABC 的面积为4,点O 为坐标原点,点B 在函数xk y = (k <0,x <0)的图象上,点p (m ,n )是函数xk y =(k <0,x <0)的图象上异于B 的任意一点,过点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F.(1) 求k 的值; (2) 设矩形OEPF 的面积为1S ,判断1S 与点P 的位置是否有位置关系(不必说明理由);(3) 从矩形OEPF 的面积中减去其与正方形OABC 重合的面积,剩余面积记为2S ,写出2S 与m 的函数关系式,并标明m 的取值范围。
八年级(下)学期3月份月考数学试题含答案一、选择题1.下列各式计算正确的是( )A =B .2=C =D =2.下列计算正确的是( )A B C D 3.下列计算正确的是( )A B C .=3 D4.m 能取的最小整数值是( )A .m = 0B .m = 1C .m = 2D .m = 35.若2019202120192020a =⨯-⨯,b =,c a ,b ,c 的大小关系是( ) A .a b c <<B .a c b <<C .b a c <<D .b c a <<6.下列运算正确的是( )A .32-=﹣6B 12-C =±2D .=7.对于已知三角形的三条边长分别为a ,b ,c ,求其面积的问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦给出求其面积的海伦公式:S =,其中2a b cp ++=,若一个三角形的三边长分别为2,3,4,则其面积( )A B C D8.当x =时,多项式()20193419971994x x --的值为( ).A .1B .1-C .20022D .20012-9.下列运算中错误的是( )A =B =C 2÷=D .2 (3=10.x 的取值范围是( ) A .x ≥1B .x >1C .x ≤1D .x <111.下面有四个命题:①两条直线被第三条直线所截,同位角相等;②0.1的算术平方根是0.01)=5;④如果点P (3-2n ,1)到两坐标轴的距离相等,那么n =1,其中假命题的有( )A .1个B .2个C .3个D .4个12.与根式- )A .B .x -C .D二、填空题13.已知实数,x y 满足(2008x y =,则2232332007x y x y -+--的值为______.14.化简并计算:...+=________.(结果中分母不含根式)15.对于任意实数a ,b ,定义一种运算“◇”如下:a ◇b =a(a -b)+b(a +b),如:3◇2=3×(3-2)+2×(3+2)=13=_____.16.已知1<x <2,171x x +=-_____.17.计算: 20082009⋅-=_________.18.x 的取值范围是______.19.a ,小数部分是b b -=______.20.x 的取值范围是_____.三、解答题21.22-+1 【分析】先根据二次根式的乘除法法则计算乘除法,同时分别化简各加数中的二次根式,最后计算加减法. 【详解】2-+=1)2(3+⨯=121. 【点睛】此题考查二次根式的混合运算,二次根式的化简,正确掌握二次根式的化简法则是解题的关键.22.计算及解方程组: (1-1-) (2)2+(3)解方程组:251032x y x y x y -=⎧⎪+-⎨=⎪⎩【答案】(1)2)7;(3)102x y =⎧⎨=⎩.【分析】(1)首先化简绝对值,然后根据二次根式乘法、加减法法则运算即可; (2)首先根据完全平方公式化简,然后根据二次根式加减法法则运算即可; (3)首先将第二个方程化简,然后利用加减消元法即可求解. 【详解】(11-1+(11=1 (22+)=34-=7-=7-(3)251032x y x y x y-=⎧⎪⎨+-=⎪⎩①②由②得:50x y -= ③ ②-③得: 10x = 把x=10代入①得:y=2∴原方程组的解是:102x y =⎧⎨=⎩【点睛】本题考查了二次根式的混合运算,加减消元法解二元一次方程,熟练掌握二次根式的运算法则是本题的关键.23.先阅读材料,再回答问题:因为)111=1=;因为1=,所以=1== (1=,= ; (2⋅⋅⋅+的值. 【答案】(12)9 【分析】 (1)仿照例子,由1+=的值;由1+=1的值;(2)根据(1)中的规律可将每个二次根式分母有理化,可转化为实数的加减法运算,再寻求规律可得答案. 【详解】 解:(1)因为1-=;因为1=1(2⋅⋅⋅+1=+⋅⋅⋅1=1019=-=. 【点睛】本题考查了分母有理化,分子分母都乘以分母这两个数的差进行分母有理化是解题关键.24.先化简,再求值:24211326x x x x -+⎛⎫-÷⎪++⎝⎭,其中1x =.. 【分析】根据分式的运算法则进行化简,再代入求解. 【详解】原式=221(1)12(3)232(3)3(1)1x x x x x x x x x ---+⎛⎫⎛⎫÷=⋅= ⎪ ⎪+++--⎝⎭⎝⎭.将1x == 【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.25.阅读下面的解答过程,然后作答:m 和n ,使m 2+n 2=a 且,则a 可变为m 2+n 2+2mn ,即变成(m +n )2例如:∵=)2+)2=)2∴请你仿照上例将下列各式化简(12【答案】(1)2-【分析】参照范例中的方法进行解答即可. 【详解】解:(1)∵22241(1+=+=,1=(2)∵2227-=-=,∴==26.小明在解决问题:已知2a2﹣8a+1的值,他是这样分析与解的:∵=2∴a﹣2=∴(a﹣2)2=3,a2﹣4a+4=3∴a2﹣4a=﹣1∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1请你根据小明的分析过程,解决如下问题:(1(2)若,求4a2﹣8a+1的值.【答案】(1)9;(2)5.【解析】试题分析:(1)此式必须在把分母有理化后才能实现化简,即各分式分子分母同乘以一个因式,使得1===.(2)先对a1,若就接着代入求解,计算量偏大.模仿小明做法,可先计算2(1)a-的值,就能较为简单地算出结果;也可对这个二次三项式进行配方,再代入求值.后两种方法都比直接代入计算量小很多.解:(1)原式=1)+++⋯(2)∵1a===,解法一:∵22(1)11)2a-=-=,∴2212a a-+=,即221a a-=∴原式=24(2)14115a a-+=⨯+=解法二∴原式=24(211)1a a-+-+24(1)3a=--211)3=--4235=⨯-=点睛:(1得22=-=-a b ,去掉根号,实现分母有理化.(2)当已知量为根式时,求这类二次三项式的值,直接代入求值,计算量偏大,若能巧妙利用完全平方公式或者配方法,计算要简便得多.27.计算:【答案】【分析】先将括号内的二次根式进行化简并合并,再进行二次根式的乘法运算即可. 【详解】解:=== 【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.28.先化简,再求值:2222212⎛⎫----÷ ⎪-+⎝⎭x y x y x x x xy y,其中x y ==. 【答案】原式x yx-=-,把x y ==代入得,原式1=-. 【详解】试题分析:先将括号里面进行通分,再将能分解因式的分解因式,约分化简即可. 试题解析:2222212⎛⎫----÷ ⎪-+⎝⎭x y x y x x x xy y ()()()222=x y x y x x xx x x y x y -⎛⎫---⋅ ⎪+-⎝⎭=y x x y x x y ---⋅+ x yx-=-把x y ==代入得:原式1==-+考点:分式的化简求值.29.观察下列各式.====…… 根据上述规律回答下列问题. (1)接着完成第⑤个等式: _____;(2)请用含(1)n n ≥的式子写出你发现的规律; (3)证明(2)中的结论.【答案】(1=2(n =+3)见解析 【分析】(1)当n=5=(2(n =+ (3)直接根据二次根式的化简即可证明. 【详解】解:(1=(2(n =+(3=(n ==+【点睛】此题主要考查探索数与式的规律,熟练发现规律是解题关键.30.计算:(1)()22131)()2---+(2【答案】(1)12;(2) 【分析】(1)按照负整数指数幂、0指数幂、乘方的运算法则计算即可; (2)根据二次根式的加减乘除运算法则计算即可. 【详解】(1)解:原式= 9-1+4=12(2)【点睛】本题考查负整数指数幂、0指数幂、乘方以及二次根式的运算法则,熟练掌握二次根式的化简是关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】计算出各个选项中的正确结果,即可得到哪个选项是正确【详解】A错误;∵2+B错误;=,故选项C正确;=,故选项D错误.2故选C.【点睛】本题考查二次根式的混合运算,解题的关键是明确二次根式的混合运算的计算方法.2.A解析:A【解析】分析:根据二次根式的加、减、乘、除的法则计算逐一验证即可.详解: , 此选项正确;≠此选项错误;, 此选项错误;,此选项错误.故选A.点睛:本题考查了二次根式的混合运算,掌握二次根式的运算法则是解题的关键.3.D解析:D【解析】解:A A错误;B==,所以B错误;C.=C错误;D==D正确.故选D.4.B解析:B【分析】根据被开方数大于等于0列式计算即可得解.【详解】310m-≥,解得13 m≥,所以,m能取的最小整数值是1.故选:B.【点睛】本题考查了二次根式的意义和性质,性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.5.A解析:A【分析】利用平方差公式计算a,利用完全平方公式和二次根式的化简求出b,利用二次根式大小的比较办法,比较b、c得结论.【详解】解:a=2019×2021-2019×2020=(2020-1)(2020+1)-(2020-1)×2020=20202-1-20202+2020=2019;∵20222-4×2021=(2021+1)2-4×2021=20212+2×2021+1-4×2021=20212-2×2021+1=(2021-1)2=20202,∴b=2020;>∴c>b>a.故选:A.【点睛】本题考查了完全平方公式、平方差公式、二次根式的化简、二次根式大小的比较等知识点.变形2019×2021-2019×2020解决本题的关键.6.B解析:B【分析】分别根据负整数指数幂的运算、立方根和算术平方根的定义及二次根式的乘法法则逐一计算可得.【详解】A 、3311228-==,此选项计算错误;B 12=-,此选项计算正确;C 2=,此选项计算错误;D 、,此选项计算错误;故选:B .【点睛】本题考查了负整数指数幂、立方根和算术平方根及二次根式的乘法,熟练掌握相关的运算法则是解题的关键.7.A解析:A【分析】根据公式解答即可.【详解】根据题意,若一个三角形的三边长分别为2,3,4,则2+349=222a b c p +++== ∴其面积为S ====故选:A .【点睛】本题考查二次根式的应用、数学常识等知识,难度较难,掌握相关知识是解题关键.8.B解析:B【解析】【分析】由原式得()2211994x -=,得244+11994x x -=,原式变形后再将244+11994x x -=代和可得出答案.【详解】∵12x +=, ()2211994x ∴-=,即24419930x x --=,()()32241997199444199344199311x x x x x x x ∴--=--+---=-.∴原式()201911=-=-.【点睛】本题难度较大,需要对要求的式子进行变形,学会转化. 9.A解析:A【分析】根据合并同类二次根式的法则对A 进行判断;根据二次根式的乘法法则对B 进行判断;根据二次根式的除法法则对C 进行判断;根据二次根式的性质对D 进行判断.【详解】==2÷,故此项正确,不符合要求;D. 2 (3=,故此项正确,不符合要求;故选A .【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.10.A解析:A【分析】根据二次根式有意义的条件:被开方数x -1≥0,解不等式即可.【详解】解:根据题意,得x -1≥0,解得x ≥1.故选A .【点睛】本题考查的知识点为:二次根式的被开方数是非负数.11.D解析:D【分析】利用平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质分别判断后即可确定正确的选项.【详解】解:①两条平行线直线被第三条直线所截,同位角相等,故错误;②0.01的算术平方根是0.1,故错误;)=17322+=,故错误;④如果点P(3-2n,1)到两坐标轴的距离相等,则n=1或n=2,故错误,故选D.【点睛】本题考查了命题与定理的知识,解题的关键是熟悉平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质,难度一般.12.D解析:D【分析】先化简二次根式,再计算二次根式的乘法即可.【详解】由题意可得x是负数,所以-xx-⋅=-故选:D.【点睛】此题考查二次根式的化简,二次根式的乘法计算法则,正确化简二次根式是解题的关键,注意题目中x的符号是负号,这是解题的难点.二、填空题13.1【分析】设a=,b=,得出x,y及a,b的关系,再代入代数式求值.【详解】解:设a=,b=,则x2−a2=y2−b2=2008,∴(x+a)(x−a)=(y+b)(y−b)=2008……解析:1【分析】设x,y及a,b的关系,再代入代数式求值.【详解】解:设x 2−a 2=y 2−b 2=2008, ∴(x+a)(x−a)=(y+b)(y−b)=2008……①∵(x−a)(y−b)=2008……② ∴由①②得:x+a=y−b ,x−a=y+b∴x=y ,a+b=0,∴,∴x 2=y 2=2008,∴3x 2﹣2y 2+3x ﹣3y ﹣2007=3×2008−2×2008+3(x−y)−2007=2008+3×0−2007=1.故答案为1.【点睛】本题主要考查了二次根式的化简求值,解题的关键是求出x ,y 及a ,b 的关系.14.【分析】根据=,将原式进行拆分,然后合并可得出答案.【详解】解:原式==.故答案为.【点睛】此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观【分析】-,将原式进行拆分,然后合并可得出答案. 【详解】解:原式====220400x x x-.【点睛】此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观察.15.5【解析】◇==5.故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a 对应,b 对应,即将a=,b=,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则解析:5【解析】32==5. 故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a ,b ,即将,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则进行计算,注意最终的结果一定要化为最简二次根式.16.-2【详解】∵x+=7,∴x-1+=6,∴(x-1)-2+=4,即 =4,又∵1<x <2,∴=-2,故答案为-2.【点睛】本题主要考查完全平方式的应用以及二次根式的运算,解题的关键是 解析:-2【详解】∵x+11x -=7,∴x-1+11x -=6,∴(x-1)-2+11x -=4,即2=4, 又∵1<x <2,∴, 故答案为-2.【点睛】本题主要考查完全平方式的应用以及二次根式的运算,解题的关键是要根据所求的式子对已知的式子进行变形.17.【解析】原式==18.且【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:,解得且,故答案为:且.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分解析:3x ≤且2x ≠-【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:2030x x +≠⎧⎨-≥⎩, 解得3x ≤且2x ≠-,故答案为:3x ≤且2x ≠-.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分式和二次根式的定义是解题关键.19.【详解】若的整数部分为a ,小数部分为b ,∴a=1,b=,∴a -b==1.故答案为1.解析:【详解】a ,小数部分为b ,∴a =1,b 1,∴-b 1)=1.故答案为1.20.x >4【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【详解】解:由题意得,x﹣4>0,解得,x>4,故答案为:x>4.【点睛】本题主要考查的是二次根解析:x>4【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【详解】解:由题意得,x﹣4>0,解得,x>4,故答案为:x>4.【点睛】本题主要考查的是二次根式有意义的条件、分式有意义的条件,掌握二次根式的被开方数是非负数、分式分母不为0是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。
八年级(下)第三次月考数学试卷一、选择题(每小题3分.共30分)1.下列长度的线段不能构成直角三角形的是()A.8.15.17 B.1.5.2.3 C.6.8.10 D.5.12.132.在△ABC中.AB=.BC=.AC=.则()A.∠A=90°B.∠B=90°C.∠C=90°D.∠A=∠B 3.如图所示.AB=BC=CD=DE=1.AB⊥BC.AC⊥CD.AD⊥DE.则AE=()A.1 B.C.D.24.如图.在▱ABCD中.AB=4.BC=6.∠B=30°.则此平行四边形的面积是()A.6 B.12 C.18 D.245.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形6.已知等腰梯形的两底之差等于腰长.则腰与下底的夹角为()A.15°B.30°C.45°D.60°7.如图.在△ABC中.D、E、F三点将BC分成四等分.XG:BX=1:3.H为AB中点.则△ABC的重心是()A.X B.Y C.Z D.W8.已知如图.在△ABC中.AB=AC=10.BD⊥AC于D.CD=2.则BD的长为()A.4 B.5 C.6 D.89.用配方法解方程:x2﹣2x﹣3=0时.原方程变形为()A.2=4 C.2=310.在下面图形中.每个大正方形网格都是由边长为1的小正方形组成.则图中阴影部分面积最大的是()A.B.C.D.二、填空(每小题4分.共24分)11.已知两条线段的长为3cm和4cm.当第三条线段的长为cm时.这三条线段能组成一个直角三角形.12.在Rt△ABC中.∠C=90°.若a=15.c=25.则b=.13.▱ABCD的周长是30.AC、BD相交于点O.△OAB的周长比△OBC的周长大3.则AB=.14.如图.矩形ABCD中.AB=8.BC=4.点E在边AB上.点F在边CD上.点G、H在对角线AC 上.若四边形EGFH是菱形.则AE的长是.15.梯形中位线长6cm.下底长8cm.则上底的长为cm.16.在一张三角形纸片中.剪去其中一个50°的角.得到如图所示的四边形.则图中∠1+∠2的度数为度.三、解答题(一)(本大题3小题.每小题6分.共18分)17.如图所示.四边形ABCD中.AB=3cm.AD=4cm.BC=13cm.CD=12cm.∠A=90°.求四边形ABCD的面积.18.如图.已知线段a和b.a>b.求作直角三角形ABC.使直角三角形的斜边AB=a.直角边AC=b.(用尺规作图.保留作图痕迹.不要求写作法)19.(6分)(2016丹东模拟)如图.在▱ABCD中.E是CD的中点.AE的延长线与BC的延长线相交于点F.求证:BC=CF.四、解答题(二)(本大题3小题.每小题7分.共21分)20.如图.在矩形ABCD中.对角线AC.BD相交于点O.点E.F分别在边AD.BC上.且DE=CF.连接OE.OF.求证:OE=OF.21.梯形ABCD中.AD∥BC.AB=DC=2.∠DBC=30°.∠BDC=90°.求:梯形ABCD的面积.22.已知:如图.在四边形ABCD中.AB∥CD.E.F为对角线AC上两点.且AE=CF.DF∥BE.求证:四边形ABCD为平行四边形.五、解答题(三)(本大题3小题.每小题9分.共27分)23.如图.在△ABC中.∠ACB=90°.∠B=30°.CD.CE分别是AB边上的中线和高.(1)求证:AE=ED;(2)若AC=2.求△CDE的周长.24.已知:如图.在▱ABCD中.O为对角线BD的中点.过点O的直线EF分别交AD.BC于E.F 两点.连结BE.DF.(1)求证:△DOE≌△BOF;(2)当∠DOE等于多少度时.四边形BFDE为菱形?请说明理由.25.已知:如图.在正方形ABCD中.G是CD上一点.延长BC到E.使CE=CG.连接BG并延长交DE于F.(1)求证:△BCG≌△DCE;(2)将△DCE绕点D顺时针旋转90°得到△DAE′.判断四边形E′BGD是什么特殊四边形.并说明理由.2017-2018学年广东省东莞市中堂星晨学校八年级(下)第三次月考数学试卷参考答案与试题解析一、选择题(每小题3分.共30分)1.下列长度的线段不能构成直角三角形的是()A.8.15.17 B.1.5.2.3 C.6.8.10 D.5.12.13【分析】由勾股定理的逆定理.只要验证两小边的平方和是否等于最长边的平方.即可解答.【解答】解:A、82+152=172.能构成直角三角形.不符合题意;B、1.52+22≠32.不能构成直角三角形.符合题意;C、62+82=102.能构成直角三角形.不符合题意;D、52+122=132.能构成直角三角形.不符合题意;故选:B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形.已知三角形三边的长.只要利用勾股定理的逆定理加以判断即可.2.在△ABC中.AB=.BC=.AC=.则()A.∠A=90°B.∠B=90°C.∠C=90°D.∠A=∠B【分析】根据题目提供的三角形的三边长.计算它们的平方.满足a2+b2=c2.哪一个是斜边.其所对的角就是直角.【解答】解:∵AB2=()2=2.BC2=()2=5.AC2=()2=3.∴AB2+AC2=BC2.∴BC边是斜边.∴∠A=90°.故选A.【点评】本题考查了利用勾股定理的逆定理判定直角三角形.本题没有让学生直接判定直角三角形.而是创新的求哪一个角是直角.是一道不错的好题.3.如图所示.AB=BC=CD=DE=1.AB⊥BC.AC⊥CD.AD⊥DE.则AE=()A.1 B.C.D.2【分析】根据勾股定理进行逐一计算即可.【解答】解:∵AB=BC=CD=DE=1.AB⊥BC.AC⊥CD.AD⊥DE.∴AC===;AD===;AE===2.故选D.【点评】本题考查了利用勾股定理解直角三角形的能力.即:直角三角形两直角边的平方和等于斜边的平方.4.如图.在▱ABCD中.AB=4.BC=6.∠B=30°.则此平行四边形的面积是()A.6 B.12 C.18 D.24【分析】过点A作AE⊥BC于E.根据含30度角的直角三角形的性质:在直角三角形中.30°角所对的直角边等于斜边的一半可求出AE的长.利用平行四边形的面积根据即可求出其面积.【解答】解:过点A作AE⊥BC于E.∵直角△ABE中.∠B=30°.∴AE=AB=×4=2∴平行四边形ABCD面积=BCAE=6×2=12.故选:B.【点评】本题考查了平行四边形的性质以及平行四边形的面积公式的运用和30度角的直角三角形的性质:在直角三角形中.30°角所对的直角边等于斜边的一半.5.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形【分析】根据矩形的判定对A、B进行判断;根据菱形的判定方法对C、D进行判断.【解答】解:A、四个角相等的四边形是矩形.为真命题.故A选项不符合题意;B、对角线相等的平行四边形是矩形.为真命题.故B选项不符合题意;C、对角线垂直的平行四边形是菱形.为假命题.故C选项符合题意;D、对角线垂直的平行四边形是菱形.为真命题.故D选项不符合题意.故选:C.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题.错误的命题称为假命题;经过推理论证的真命题称为定理.6.已知等腰梯形的两底之差等于腰长.则腰与下底的夹角为()A.15°B.30°C.45°D.60°【分析】过点D作DE∥BC.可知△ADE是等边三角形.从而得到∠C=60°.【解答】解:如图.过点D作DE∥BC.交AB于点E.∴DE=CB=AD.∵AD=AE.∴△ADE是等边三角形.所以∠A=60°.故选:D.【点评】此题考查等腰梯形的性质及梯形中常见的辅助线的作法.7.如图.在△ABC中.D、E、F三点将BC分成四等分.XG:BX=1:3.H为AB中点.则△ABC的重心是()A.X B.Y C.Z D.W【分析】根据重心的定义得出AE是△ABC边BC的中线.CH是△ABC边BA的中线.即可得出答案.【解答】解:∵D、E、F三点将BC分成四等分.∴BE=CE.∴AE是△ABC边BC的中线.∵H为AB中点.∴CH是△ABC边BA的中线.∴交点即是重心.故选:C.【点评】此题主要考查了重心的定义.掌握三角形的重心的定义找出AE是△ABC边BC的中线.CH是△ABC边BA的中线是解决问题的关键.8.已知如图.在△ABC中.AB=AC=10.BD⊥AC于D.CD=2.则BD的长为()A.4 B.5 C.6 D.8【分析】根据AB=AC=10.CD=2得出AD的长.再由BD⊥AC可知△ABD是直角三角形.根据勾股定理求出BD的长即可.【解答】解:∵AB=AC=10.CD=2.∴AD=10﹣2=8.∵BD⊥AC.∴BD===6.故选C.【点评】本题考查的是勾股定理.熟知在任何一个直角三角形中.两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.9.用配方法解方程:x2﹣2x﹣3=0时.原方程变形为()A.2=4 C.2=3【分析】将原方程的常数项﹣3变号后移项到方程右边.然后方程两边都加上1.方程左边利用完全平方公式变形后.即可得到结果.【解答】解:x2﹣2x﹣3=0.移项得:x2﹣2x=3.两边加上1得:x2﹣2x+1=4.变形得:(x﹣1)2=4.则原方程利用配方法变形为(x﹣1)2=4.故选B.【点评】此题考查了利用配方法解一元二次方程.利用此方法的步骤为:1、将二次项系数化为“1”;2、将常数项移项到方程右边;3、方程两边都加上一次项系数一半的平方.方程左边利用完全平方公式变形.方程右边为非负常数;4、开方转化为两个一元一次方程来求解.10.在下面图形中.每个大正方形网格都是由边长为1的小正方形组成.则图中阴影部分面积最大的是()A.B.C.D.【分析】根据正方形的性质把不规则图形的面积可以看成是规则图形的面积的和或差.从而可得到图中阴影部分面积最大的图形.【解答】解:不规则图形的面积可以看成是规则图形的面积的和或差.根据正方形的性质计算得.图中阴影部分面积最大的是第四选项.故选D.【点评】此题主要考查学生对正方形的性质的理解及运用.二、填空(每小题4分.共24分)11.已知两条线段的长为3cm和4cm.当第三条线段的长为5或cm时.这三条线段能组成一个直角三角形.【分析】本题从边的方面考查三角形形成的条件.涉及分类讨论的思考方法.即:由于“两边长分别为3和5.要使这个三角形是直角三角形.”指代不明.因此.要讨论第三边是直角边和斜边的情形.【解答】解:当第三边是直角边时.根据勾股定理.第三边的长==5.三角形的边长分别为3.4.5能构成三角形;当第三边是斜边时.根据勾股定理.第三边的长==.三角形的边长分别为3..亦能构成三角形;综合以上两种情况.第三边的长应为5或.故答案为5或.【点评】本题考查了勾股定理的逆定理.解题时注意三角形形成的条件:任意两边之和>第三边.任意两边之差<第三边.当题目指代不明时.一定要分情况讨论.把符合条件的保留下来.不符合的舍去.12.在Rt△ABC中.∠C=90°.若a=15.c=25.则b=20.【分析】依据勾股定理求解即可.【解答】解:∵Rt△ABC中.∠C=90°.∴b==20.故答案为:20.【点评】本题主要考查的是勾股定理的应用.掌握勾股定理是解题的关键.13.▱ABCD的周长是30.AC、BD相交于点O.△OAB的周长比△OBC的周长大3.则AB= 9.【分析】如图:由四边形ABCD是平行四边形.可得AB=CD.BC=AD.OA=OC.OB=OD;又由△OAB的周长比△OBC的周长大3.可得AB﹣BC=3.又因为▱ABCD的周长是30.所以AB+BC=10;解方程组即可求得.【解答】解:∵四边形ABCD是平行四边形.∴AB=CD.BC=AD.OA=OC.OB=OD;又∵△OAB的周长比△OBC的周长大3.∴AB+OA+OB﹣(BC+OB+OC)=3∴AB﹣BC=3.又∵▱ABCD的周长是30.∴AB+BC=15.∴AB=9.故答案为9.【点评】此题考查了平行四边形的性质:平行四边形的对边相等.对角线互相平分.解题时要注意利用方程思想与数形结合思想求解.14.如图.矩形ABCD中.AB=8.BC=4.点E在边AB上.点F在边CD上.点G、H在对角线AC 上.若四边形EGFH是菱形.则AE的长是5.【分析】首先连接EF交AC于O.由矩形ABCD中.四边形EGFH是菱形.易证得△CFO≌△AOE(AAS).即可得OA=OC.然后由勾股定理求得AC的长.继而求得OA的长.又由△AOE ∽△ABC.利用相似三角形的对应边成比例.即可求得答案.【解答】解:连接EF交AC于O.∵四边形EGFH是菱形.∴EF⊥AC.OE=OF.∵四边形ABCD是矩形.∴∠B=∠D=90°.AB∥CD.∴∠ACD=∠CAB.在△CFO与△AOE中..∴△CFO≌△AOE(AAS).∴AO=CO.∵AC==4.∴AO=AC=2.∵∠CAB=∠CAB.∠AOE=∠B=90°.∴△AOE∽△ABC.∴.∴.∴AE=5.故答案为5.【点评】此题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质.注意准确作出辅助线是解此题的关键.15.梯形中位线长6cm.下底长8cm.则上底的长为4cm.【分析】根据“梯形中位线的长等于上底与下底和的一半”可求得其上底.【解答】解:由已知得.下底=2×6﹣8=4(cm).故答案为:4.【点评】此题主要考查了梯形中位线定理的数量关系:梯形中位线的长等于上底与下底和的一半.16.在一张三角形纸片中.剪去其中一个50°的角.得到如图所示的四边形.则图中∠1+∠2的度数为230度.【分析】三角形纸片中.剪去其中一个50°的角后变成四边形.则根据多边形的内角和等于360度即可求得∠1+∠2的度数.【解答】解:根据三角形的内角和定理得:四边形除去∠1.∠2后的两角的度数为180°﹣50°=130°.则根据四边形的内角和定理得:∠1+∠2=360°﹣130°=230°.【点评】主要考查了四边形的内角和是360度的实际运用与三角形内角和180度之间的关系.三、解答题(一)(本大题3小题.每小题6分.共18分)17.如图所示.四边形ABCD中.AB=3cm.AD=4cm.BC=13cm.CD=12cm.∠A=90°.求四边形ABCD的面积.【分析】连接BD.根据已知分别求得△ABD的面积与△BDC的面积.即可求四边形ABCD的面积.【解答】解:连接BD.∵AB=3cm.AD=4cm.∠A=90°∴BD=5cm.S△ABD=×3×4=6cm2又∵BD=5cm.BC=13cm.CD=12cm∴BD2+CD2=BC2∴∠BDC=90°∴S△BDC=×5×12=30cm2∴S四边形ABCD=S△ABD+S△BDC=6+30=36cm2.【点评】此题主要考查勾股定理和逆定理的应用.还涉及了三角形的面积计算.连接BD.是关键的一步.18.如图.已知线段a和b.a>b.求作直角三角形ABC.使直角三角形的斜边AB=a.直角边AC=b.(用尺规作图.保留作图痕迹.不要求写作法)【分析】先作线段AC=b.再过点C作AC的垂线.接着以点A为圆心.a为半径画弧交此垂线于B.则△ABC为所求.【解答】解:如图.△ABC为所求作的直角三角形.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图.一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质.结合几何图形的基本性质把复杂作图拆解成基本作图.逐步操作.也19.(6分)(2016丹东模拟)如图.在▱ABCD中.E是CD的中点.AE的延长线与BC的延长线相交于点F.求证:BC=CF.【分析】先证明△ADE≌△FCE.得出AD=CF.再根据平行四边形的性质可知AD=BC.继而即可得出结论.【解答】解:∵四边形ABCD为平行四边形.∵AD∥BC.∴∠ADE=∠FCE.∵E是CD的中点.∴DE=CE.在△ADE和△FCE中.∵.∴△ADE≌△FCE.∴AD=CF.又∵AD=BC.∴BC=CF.【点评】本题考查平行四边形的性质及全等三角形的判定与性质.解题关键是找出△ADE与△FCE全等的条件.难度一般.四、解答题(二)(本大题3小题.每小题7分.共21分)20.如图.在矩形ABCD中.对角线AC.BD相交于点O.点E.F分别在边AD.BC上.且DE=CF.连接OE.OF.求证:OE=OF.【分析】欲证明OE=OF.只需证得△ODE≌△OCF即可.【解答】证明:如图.∵四边形ABCD是矩形.∴∠ADC=∠BCD=90°.AC=BD.OD=BD.OC=AC.∴OD=OC.∴∠ODC=∠OCD.∴∠ADC﹣∠ODC=∠BCD﹣∠OCD.即∠EDO=∠FCO.在△ODE与△OCF中..∴△ODE≌△OCF(SAS).∴OE=OF.【点评】本题考查了全等三角形的判定与性质.矩形的性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时.关键是选择恰当的判定条件.21.梯形ABCD中.AD∥BC.AB=DC=2.∠DBC=30°.∠BDC=90°.求:梯形ABCD的面积.【分析】作DE⊥BCTVE.则∠DEB=90°.由含30°角的直角三角形的性质得出DE=BD.BC=2DC=4.求出BD=DC=6.DE=3.由等腰梯形的性质得出∠ABD=∠ADB.得出AD=AB=2.即可求出梯形ABCD的面积.【解答】解:如图所示:作DE⊥BCTVE.则∠DEB=90°.∵∠DBC=30°.∠BDC=90°.∴∠C=60°.DE=BD.BC=2DC=4.BD=DC=6.∴DE=3.∵AD∥BC.AB=DC.∴∠ABC=∠C=60°.∠ADB=∠BDC=30°.∴∠ABD=30°=∠ADB.∴AD=AB=2.∴梯形ABCD的面积=(AD+BC)×DE=(2+4)×3=9.【点评】本题考查了等腰梯形的性质、含30°角的直角三角形的性质、梯形面积的计算;熟练掌握等腰梯形的性质.由含30°角的直角三角形的性质求出BC和DE是解决问题的关键.22.已知:如图.在四边形ABCD中.AB∥CD.E.F为对角线AC上两点.且AE=CF.DF∥BE.求证:四边形ABCD为平行四边形.【分析】首先证明△AEB≌△CFD可得AB=CD.再由条件AB∥CD可利用一组对边平行且相等的四边形是平行四边形证明四边形ABCD为平行四边形.【解答】证明:∵AB∥CD.∴∠DCA=∠BAC.∵DF∥BE.∴∠DFA=∠BEC.∴∠AEB=∠DFC.在△AEB和△CFD中.∴△AEB≌△CFD(ASA).∴AB=CD.∵AB∥CD.∴四边形ABCD为平行四边形.【点评】此题主要考查了平行四边形的判定.关键是掌握一组对边平行且相等的四边形是平行四边形.五、解答题(三)(本大题3小题.每小题9分.共27分)23.如图.在△ABC中.∠ACB=90°.∠B=30°.CD.CE分别是AB边上的中线和高.(1)求证:AE=ED;(2)若AC=2.求△CDE的周长.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半.得CD=AD.根据直角三角形的两个锐角互余.得∠A=60°.从而判定△ACD是等边三角形.再根据等腰三角形的三线合一的性质即可证明;(2)结合(1)中的结论.求得CD=2.DE=1.只需根据勾股定理求得CE的长即可.【解答】(1)证明:∵∠ACB=90°.CD是AB边上的中线.∴CD=AD=DB.∵∠B=30°.∴∠A=60°.∴△ACD是等边三角形.∵CE是斜边AB上的高.∴AE=ED.(2)解:由(1)得AC=CD=AD=2ED.又AC=2.∴CD=2.ED=1.∴.∴△CDE的周长=.【点评】此题综合运用了直角三角形的性质、等边三角形的判定和性质以及勾股定理.直角三角形斜边上的中线等于斜边的一半;直角三角形的两个锐角互余.有一个角是60°的等腰三角形是等边三角形.24.已知:如图.在▱ABCD中.O为对角线BD的中点.过点O的直线EF分别交AD.BC于E.F 两点.连结BE.DF.(1)求证:△DOE≌△BOF;(2)当∠DOE等于多少度时.四边形BFDE为菱形?请说明理由.【分析】(1)利用平行四边形的性质以及全等三角形的判定方法得出△DOE≌△BOF(ASA);(2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形.进而利用垂直平分线的性质得出BE=ED.即可得出答案.【解答】(1)证明:∵在▱ABCD中.O为对角线BD的中点.∴BO=DO.∠EDB=∠FBO.在△EOD和△FOB中.∴△DOE≌△BOF(ASA);(2)解:当∠DOE=90°时.四边形BFDE为菱形.理由:∵△DOE≌△BOF.∴OE=OF.又∵OB=OD∴四边形EBFD是平行四边形.∵∠EOD=90°.∴EF⊥BD.∴四边形BFDE为菱形.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质和菱形的判定等知识.得出BE=DE是解题关键.25.已知:如图.在正方形ABCD中.G是CD上一点.延长BC到E.使CE=CG.连接BG并延长交DE于F.(1)求证:△BCG≌△DCE;(2)将△DCE绕点D顺时针旋转90°得到△DAE′.判断四边形E′BGD是什么特殊四边形.并说明理由.(1)由正方形ABCD.得BC=CD.∠BCD=∠DCE=90°.又CG=CE.所以△BCG≌△DCE 【分析】(SAS).(2)由(1)得BG=DE.又由旋转的性质知AE′=CE=CG.所以BE′=DG.从而证得四边形E′BGD 为平行四边形.【解答】(1)证明:∵四边形ABCD是正方形.∴BC=CD.∠BCD=90°.∵∠BCD+∠DCE=180°.∴∠BCD=∠DCE=90°.又∵CG=CE.∴△BCG≌△DCE.(2)解:四边形E′BGD是平行四边形.理由如下:∵△DCE绕D顺时针旋转90°得到△DAE′.∴CE=AE′.∵CE=CG.∴CG=AE′.∵四边形ABCD是正方形.∴BE′∥DG.AB=CD.∴AB﹣AE′=CD﹣CG.即BE′=DG.∴四边形E′BGD是平行四边形.【点评】本题考查了正方形的性质、全等三角形的判定与性质及平行四边形的判定等知识的综合应用.以及考生观察、分析图形的能力.f;lf2-9;。
人教版八年级下册数学第三次月考试卷一、单选题1.下列各式中,运算正确的是()A =﹣2B C 4D .22.下列四组线段中,能组成直角三角形的是()A .a=1,b=2,c=3B .a=4,b=2,c=3C .a=4,b=2,c=5D .a=4,b=5,c=33.函数y=2x ﹣5的图象经过()A .第一、三、四象限B .第一、二、四象限C .第二、三、四象限D .第一、二、三象限4.要得到函数y =2x +3的图象,只需将函数y =2x 的图象()A .向左平移3个单位B .向右平移3个单位C .向下平移3个单位D .向上平移3个单位5.如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,已知∠AOD=120°,AB=2,则AC 的长为()A .2B .4C .6D .86.已知()()12223,,2,P y P y -是一次函数1y x =--的图象上的两个点,则12,y y 的大小关系是A .12y y =B .12y y <C .12>y y D .不能确定7.如图,已知:函数y =3x +b 和y =ax ﹣3的图象交于点P (﹣2,﹣5),则根据图象可得不等式3x +b >ax ﹣3的解集是()A .x >﹣5B .x >﹣2C .x >﹣3D .x <﹣285﹣x ,则x 的取值范围是()A .为任意实数B .0≤x≤5C .x≥5D .x≤59.在△ABC 中,AB=15,AC=13,高AD=12,则BC 等于()A .14B .4C .14或4D .9或510.设max 表示两个数中的最大值,例如:max{0,2}2=,max{12,8}12=,则关于x 的函数max{3,21}y x x =+可表示为()A .3y x =B .21y x =+C .3(1)21(1)x x y x x <⎧=⎨+≥⎩D .21(1)3(1)x x y x x +<⎧=⎨≥⎩二、填空题11x 的取值范围是______.12.计算.13.如图,A ,B 两点被池塘隔开,在A ,B 外选一点C ,连接AC 和BC ,并分别找出AC 和BC 的中点M ,N ,如果测得MM=20m ,那么A ,B 两点间的距离是_____.14.如图,在▱ABCD 中,BE ⊥AB 交对角线AC 于点E ,若∠1=20°,则∠2的度数为__.15.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD 中,3AB =,2AC =,则BD 的长为_______________.16.一次函数y 1=kx +b 与y 2=x +a 的图象如图,则下列结论:①k <0;②a >0;③关于x 的方程kx ﹣x =a ﹣b 的解是x =3;④当x >3时,y 1<y 2中.则正确的序号有_____.三、解答题17.计算(1271245;(212753533.18.如图所示的一块地,已知4m AD =,3m CD =,AD DC ⊥,13m AB =,12m BC =,求这块地的面积.19.画出y =2x ﹣4的图象,确定x 取何值时,(1)y >0;(2)y <﹣4.20.如图,一次函数y =ax +b 的图象与正比例函数y =kx 的图象交于点M .(1)求正比例函数和一次函数的解析式;(2)求△MOP的面积.21.如图,矩形ABCD的对角线AC、BD交于点O,且DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED的面积.22.小明购买A,B两种商品,每次购买同一种商品的单价相同,具体信息如下表:次数购买数量(件)购买总费用(元) A B第一次2155第二次1365根据以上信息解答下列问题:(1)求A,B两种商品的单价;(2)若第三次购买这两种商品共12件,且A种商品的数量不少于B种商品数量的2倍,请设计出最省钱的购买方案,并说明理由.23.如图1,点E在正方形AOCD的边AD上,点H在边AO上,AH=DE.(1)求证:DH⊥CE;(2)如图2,EF ⊥CE ,FH ⊥AO ,垂足为点H ,T 为FC 的中点.①求证:FH =AH ;②FO =5,TO =E 的坐标.24.如图(1),在平面直角坐标系中,直线y x m =-+交y 轴于点A ,交x 轴于点B ,点C 坐标为,02m ⎛⎫⎪⎝⎭,作点C 关于直线AB 的对称点F ,连接BF 和OF ,OF 交AC 于点E ,交AB于点M .(1)求证:OF AC ⊥.(2)如图(2),连接CF 交AB 于点H ,求证:32AH CF =.(3)如图(3),若2m =,G 为x 轴负半轴上一动点,连接MG ,过点M 作GM 的垂线交FB 的延长线于点D ,GB-BD 的值是否为定值?若是,求其值;若不是,求其取值范围.参考答案1.C 【分析】根据二次根式的性质对A 进行判断;根据二次根式的加减法法则对B 、D 进行判断;根据二次根式的乘法法则对C 进行判断.【详解】解:A =2,故原题计算错误;B=,故原题计算错误;C 4,故原题计算正确;D 、2和故选:C .【点睛】此题主要考查了二次根式的运算及性质,熟练掌握二次根式的性质及加减法运算法则是解题关键.2.D 【详解】试题分析:A .∵2221253+=≠,∴不能构成直角三角形,故本选项错误;B .∵22223134+=≠,∴不能构成直角三角形,故本选项错误;C .∵22224205+=≠,∴不能构成直角三角形,故本选项错误;D .∵22234255+==,∴能构成直角三角形,故本选项正确.故选D .考点:勾股定理的逆定理.3.A 【分析】先根据一次函数的性质判断出此函数图象所经过的象限,再进行解答即可.【详解】∵一次函数y=2x-5中,k=2>0,∴此函数图象经过一、三象限,∵b=-5<0,∴此函数图象与y 轴负半轴相交,∴此一次函数的图象经过一、三、四象限,不经过第二象限.【点睛】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k>0时,函数图象经过一、三象限,当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.4.D【分析】平移后相当于x不变y增加了3个单位,由此可得出答案.【详解】解:由题意得x值不变y增加3个单位应向上平移3个单位.故选D.【点睛】本题考查一次函数图象的几何变换,注意平移k值不变的性质.5.B【分析】已知四边形ABCD是矩形,∠AOD=120°,AB=2,根据矩形的性质可证得△AOB是等边三角形,则OA=OB=AB=2,AC=2OA=4.【详解】∵四边形ABCD是矩形∴AC=BD,OA=OC,OB=OD∴OA=OB∵∠AOD=120°∴∠AOB=60°∴△AOB是等边三角形∴OA=OB=AB=2∴AC=2OA=4故选:B【点睛】本题考查了矩形的基本性质,等边三角形的判定和性质.6.C根据()()12223,,2,P y P y -是一次函数y=-x-1的图象上的两个点,由-3<2,结合一次函数y=-x-1在定义域内是单调递减函数,判断出12,y y 的大小关系即可.【详解】∵()()12223,,2,P y P y -是一次函数y=−x−1的图象上的两个点,且−3<2,∴12>y y .故选C 【点睛】此题考查一次函数图象上点的坐标特征,解题关键在于结合一次函数y=-x-1在定义域内是单调递减函数7.B 【分析】根据一次函数的图象和两函数的交点坐标即可得出答案.【详解】解:∵函数y =3x +b 和y =ax ﹣3的图象交于点P (﹣2,﹣5),则根据图象可得不等式3x +b >ax ﹣3的解集是x >﹣2,故选B .【点睛】本题主要考查了根据两直线的交点坐标解不等式,解题的关键在于能够熟练掌握相关知识进行求解.8.D 【分析】根据二次根式的性质得出5-x≥0,求出即可.【详解】|5|5x x ==-=-,∴5-x≥0,解得:x≤5,故选D .本题考查了二次根式的性质的应用,注意:当a≥0,当a≤0.9.C【分析】分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=CD-B D.【详解】解:(1)如图,锐角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2-AD2=152-122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得CD2=AC2-AD2=132-122=25,∴CD=5,∴BC的长为BD+DC=9+5=14;(2)钝角△ABC中,AB=15,AC=13,BC边上高AD=12在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2-AD2=152-122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得:CD2=AC2-AD2=132-122=25,∴CD=5,∴BC的长为DC-BD=9-5=4.故BC长为14或4.【点睛】本题考查了勾股定理,把三角形斜边转化到直角三角形中用勾股定理解答.掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.10.D 【分析】由于3x 与21x +的大小不能确定,故应分两种情况进行讨论.【详解】当321x x ≥+,即1x ≥时,{}3,213y max x x x =+=;当321x x <+,即1x <时,{}3,2121y max x x x =+=+.故选D .【点睛】本题考查的是一次函数的性质,解答此题时要注意进行分类讨论.11.x≥-2【详解】分析:根据二次根式有意义的条件:被开方数为非负数,列不等式求解即可.详解:∵x+2≥0∴x≥-2.故答案为x≥-2.点睛:此题主要考查了二次根式有意义的条件,明确被开方数为非负数是解题关键.12.【详解】分析:先把各根式化简,然后进行合并即可得到结果.详解:原式=点睛:本题主要考查二次根式的加减,比较简单.13.40m .【分析】根据三角形中位线定理:三角形的中位线平行第三边,且等于第三边的一半,那么第三边应等于中位线长的2倍.【详解】解:∵M,N分别是AC,BC的中点,∴MN是△ABC的中位线,∴MN=12AB,∴AB=2MN=2×20=40(m).【点睛】本题考查三角形中位线定理.14.110°.【详解】根据平行四边形的性质可得AB∥CD,根据平行线的性质可得∠1=∠CAB=20°,因BE⊥AB,可得∠EBA=90°,所以∠2=∠EBA+∠CAB=90°+20°=110°.15.【分析】首先由对边分别平行可判断四边形ABCD为平行四边形,连接AC和BD,过A点分别作DC和BC的垂线,垂足分别为F和E,通过证明△ADF≌△ABC来证明四边形ABCD为菱形,从而得到AC与BD相互垂直平分,再利用勾股定理求得BD长度.【详解】解:连接AC和BD,其交点为O,过A点分别作DC和BC的垂线,垂足分别为F和E,∵AB∥CD,AD∥BC,∴四边形ABCD为平行四边形,∴∠ADF=∠ABE,∵两纸条宽度相同,∴AF=AE,∵90ADF ABE AFD AEB AF AE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△ADF ≌△ABE ,∴AD=AB ,∴四边形ABCD 为菱形,∴AC 与BD 相互垂直平分,∴BD==故本题答案为:【点睛】本题考察了菱形的相关性质,综合运用了三角形全等和勾股定理,注意辅助线的构造一定要从相关条件以及可运用的证明工具入手,不要盲目作辅助线.16.①③④【分析】根据y 1=kx +b 和y 2=x +a 的图象可知:k <0,a <0,所以当x >3时,相应的x 的值,y 1图象均低于y 2的图象.【详解】解:根据图示及数据可知:①k <0正确;②a <0,原来的说法错误;③方程kx +b =x +a 的解是x =3,正确;④当x >3时,y 1<y 2正确.故答案为:①③④.【点睛】本题主要考查了一次函数的图象性质,准确分析是解题的关键.17.(1;(2)1【分析】(1)根据二次根式的加减法可以解答本题;(2)根据二次根式的乘法、平方差公式可以解答本题.【详解】解:(1=+;(2()53-=3﹣2=1.【点睛】本题主要考查二次根式的运算,熟练掌握二次根式的运算法则是解题的关键.18.224m【分析】根据勾股定理求得AC的长,再根据勾股定理的逆定理判定ABC∆为直角三角形,从而不难求得这块地的面积.【详解】解:连接AC.4mAD=,3mCD=,AD DC⊥5mAC∴=22212513+=ACB∴∆为直角三角形21151230m22ACBS AC BC∆∴=⨯⨯=⨯⨯=,211436m22ACDS AD CD∆=⋅=⨯⨯=,∴这块地的面积230624m ACB ACD S S ∆∆=-=-=.【点睛】本题考查了学生对勾股定理及其逆定理的理解及运用能力,解题的关键是掌握勾股定理的知识.19.图见解析;(1)2x >;(2)0x <【分析】求出函数图象与两坐标轴的交点,利用两点法作出图象即可;(1)根据函数图象在x 轴上方的部分,y >0,直接写出即可;(2)根据函数图象在y 轴左方的部分,y <﹣4,直接写出即可.【详解】解:当x =0时,y =﹣4;当y =0时,2x ﹣4=0,解得x =2,∴函数图象与两坐标轴的交点为(0,﹣4)(2,0).图象如下:(1)当x >2时,y >0;(2)当x <0时y <﹣4.【点睛】本题主要考查了一次函数的图象性质,准确计算是解题的关键.20.(1),22y x y x ==-;(2)1【分析】(1)将(1,0),(0,﹣2)代入y =ax +b 解出一次函数的解析式,然后将x =2代入求得M 的纵坐标,再代入正比例函数y =kx 解出即可;(2)利用三角形的面积公式计算即可.【详解】解:(1)一次函数y=ax+b的图象经过点(1,0),(0,﹣2),∴2a bb+=⎧⎨=-⎩,解得22ab=⎧⎨=-⎩,故一次函数的解析式为:y=2x﹣2,将x=2代入y=2x﹣2得,y=2,∴M(2,2),将M(2,2)代入y=kx,解得:k=1,所以正比例函数解析式为:y=x;(2)由(1)可知:OP=1,M(2,2)∴△MOP的面积为112=1 2⨯⨯.【点睛】本题主要考查求一次函数解析式,关键是根据待定系数法求解函数表达式,然后根据点的坐标得到线段的长,进而求解面积.21.(1)证明见解析;(2)【分析】(1)由平行四边形的判定得出四边形OCED是平行四边形,根据矩形的性质求出OC=OD,根据菱形的判定得出即可.(2)解直角三角形求出BC=2.OE,交CD于点F,根据菱形的性质得出F为CD中点,求出OF=12BC=1,求出OE=2OF=2,求出菱形的面积即可.【详解】()1证明:CE//OD,DE//OC,∴四边形OCED是平行四边形,矩形ABCD,AC BD∴=,1OC AC2=,1OD BD2=,OC OD∴=,∴四边形OCED是菱形;()2在矩形ABCD中,ABC90∠=,BAC30∠= ,AC4=,BC 2∴=,AB DC ∴==连接OE ,交CD 于点F ,四边形OCED 为菱形,F ∴为CD 中点,O 为BD 中点,1OF BC 12∴==,OE 2OF 2∴==,OCED 11S OE CD 222∴=⨯⨯=⨯⨯=菱形【点睛】本题主要考查了矩形的性质和菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:菱形的面积等于对角线积的一半.22.(1)A 种商品的单价为20元,B 种商品的单价为15元;(2)当a=8时所花钱数最少,即购买A 商品8件,B 商品4件.【分析】(1)列二元一次方程组,用代入法或加减法解方程即可;(2)将题目转化为一元一次不等式,利用一元一次不等式解即可.【详解】解:(1)设A 种商品的单价为x 元,B 种商品的单价为y 元,根据题意可得:255365x y x y +=⎧⎨+=⎩,解得:2015x y =⎧⎨=⎩,答:A 种商品的单价为20元,B 种商品的单价为15元;(2)设第三次购买商品A 种a 件,则购买B 种商品()12a -件,根据题意可得:()212a a - ,得:812a,()2015125180m a a a =+-=+ ∴当8a =时所花钱数最少,即购买A 商品8件,B 商品4件.【点睛】本题考查了二元一次方程组的解法以及不等式的相关知识,解题的关键是掌握消元思想与解二元一次方程组的方法步骤.23.(1)见解析;(2)①见解析;②()4,7E .【分析】(1)证明△HAD ≌△EDC (SAS ),可得∠ADH =∠DCE ,从而得结论;(2)①如图2,作辅助线,构建三角形全等,证明△GFE ≌△DEC (AAS ),得EG =DC =AD ,根据等式的性质可得FH =AG =DE =AH ;②作辅助线,构建直角三角形,设AG =x ,AE =y ,则ED =FG =OM =x ,则GD =MC =2x +y ,得△OTN 是等腰直角三角形,则ON =TN =2,由此可得x 和y 的值,可得结论.【详解】证明:(1)∵四边形ABCD 是正方形,∴AD =CD ,∠DAH =∠EDC =90°,∵AH =DE ,∴△HAD ≌△EDC (SAS ),∴∠ADH =∠DCE ,∵∠ADH +∠HDC =∠DCE +∠HDC =90°,∴∴∠DFC =90°,∴CE ⊥DH ;(2)①如图2,过F 作FG ⊥AD ,交DA 的延长线于G ,∵FH⊥AO,∴∠G=∠GAH=∠AHF=90°,∴四边形AGFH是矩形,∴FG=AH=DE,∵∠G=∠D=90°,∠GEF=∠DCE,∴△GFE≌△DEC(AAS),∴EG=DC=AD,∴EG﹣AE=AD﹣AE,∴AG=DE=FH=AH;②如图3所示,延长GF交x轴于M,过T作TN⊥OC于N,∴FM⊥MC,∴TN∥FM,∵T是FC的中点,∴N是MC的中点,∴TN=12 FM,设AG=x,AE=y,则ED=FG=OM=x,∴GD=MC=2x+y,∵N是MC的中点,∴MN =12MC =x +12y =OM +ON ,∴ON =12y ,∵TN =12FM =12y ,∴ON =TN ,∵∠ONT =90°,OT =,∴ON =TN =2,∴FM =2TN =4,Rt △FMO 中,OF =5,∴OM =3,∴GM =FM +GF =4+3=7,∴E (4,7).【点睛】本题主要考查正方形的性质、全等三角形的性质与判定及等腰三角形的性质,关键是根据正方形的性质得到三角形的全等,然后根据题意得到线段的长进而转换为点的坐标.24.(1)见解析;(2)见解析;(3)是,43【分析】(1)先求出A ,B 的坐标,再通过对称得到FB=BC 且垂直x 轴,从而证Rt △OAC ≌Rt △FOB ,得到OF ⊥AC .(2)利用勾股定理和等腰直角三角形的性质分别求出BA ,BF ,BH 即可.(3)过M 点作MN ⊥x 轴于N 点,MH ⊥DF 于H 点,证明直角△MEN ≌直角△MDH .【详解】(1)证明 由y x m =-+得(0,),A m (,0)B m ,,OA OB ∴=45OAB OBA ︒∠=∠=.C F ,关于AB 对称,,BC BF ∴=45OBA ABF ︒∠=∠=,90FBO ︒∴∠=.又,0,2m C ⎛⎫⎪⎝⎭ OC BC BF ∴==.Rt Rt ,OAC BOF ∴≅ FOB OAC ∴∠=∠.90,OAC ACO ︒∠+∠= 90FOB ACO ︒∴∠+∠=,90OEC ︒∴∠=,即OF AC ⊥.(2)证明: 在Rt BCF 中,2mBC BF ==,,CF ∴=BH =,在Rt OAB 中,,OA OB m ==AB ∴=,,44AH m m ∴=32AH CF ∴=.(3)解:GB-BD 的值是定值,定值等于43.2,m = ∴直线AB 的解析式为2y x =-+,点F 的坐标为(2,1),直线OF 的解析式为12y x =.解方程组212y x y x =-+⎧⎪⎨=⎪⎩得4323x y ⎧=⎪⎪⎨⎪=⎪⎩,42,33M ⎛⎫∴ ⎪⎝⎭.过点M 作MN x ⊥轴于点N ,MH DF ⊥于点H,如图90,FBO ︒∠= 45,OBA ︒∠=21∴四边形MNBH 是正方形,2,3MN BH MH ∴===,MN BH ∥NMD MDH ∴∠=∠.又,GM MD ⊥ 18090MGN MNG GMN GMN ︒︒∴∠=-∠-∠=-∠,90NMD GMD GMN GMN ︒∠=∠-∠=-∠,MGN NMD MDH ∴∠=∠=∠.在MGN 和MDH 中,MGN MDH MNG MHD MN MH ∠=∠⎧⎪∠=∠⎨⎪=⎩,,MGN MDH ∴≅ GN DH ∴=.GB BD GN BN BD ∴-=+-DH BH BD =+-423BH ==.综上所述,GB-BD 的值为定值43.【点睛】本题主要考查了一次函数的性质,能求与X 轴Y 轴的交点坐标;解题关键是学会构建三角形全等,掌握全等三角形的性质;合理使用勾股定理进行计算.。
2023-2024学年湖南省长沙市开福区立信中学八年级(下)第三次月考数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列方程中,是一元二次方程的是()A. B. C. D.2.以下计算正确的是()A. B. C. D.3.如图,在中,,D为BC边的中点,下列结论不一定正确的是()A.B.C.AD平分D.4.已知线段CD是由线段AB平移得到的,点的对应点为,则点的对应点D的坐标为()A. B. C. D.5.关于一次函数,下列结论正确的是()A.图象经过一、二、三象限B.y随x的增大而增大C.当时,D.图象过点6.方程的根的情况是()A.只有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根7.平行四边形、矩形、菱形、正方形共有的性质是()A.对角线互相平分B.对角线相等C.对角线互相垂直D.对角线互相垂直平分8.对于抛物线,下列结论正确的是()A.开口向上B.对称轴为直线C.顶点坐标为D.当时,y随x的增大而增大9.某校初二年级开展了一班一特色活动,2001班以“地”为特色在学校的试验园地进行种植蔬菜活动.试验园的形状是长15米、宽8米的矩形,为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为110平方米,则小道的宽为多少米?若设小道的宽为x米,则根据题意,列方程为()A. B.C. D.10.在同一直角坐标系中,函数和函数是常数,且的图象可能是()A. B.C. D.二、填空题:本题共6小题,每小题3分,共18分。
11.分解因式:______.12.已知关于x的一元二次方程的一个根为,则______.13.抛物线向下平移3个单位,就得到抛物线______.14.一次函数上有两个点A,B,且,,则m,n的大小关系为m__________填“>”或者“<”15.如图,在中,,AD是BC边上的高,E、F分别是AB、AC边的中点,若,,则的周长为______.16.已知二次函数,则当时,y的最大值与最小值的差为______.三、解答题:本题共7小题,共52分。
八年级数学下册3月考试题及答案一、选择题(共8小题,每小题3分,共24分)。
1.使代数式有意义的x 的取值范围是( ) A .x ≥0 B .x ≠ C .x 取一切实数 D .x ≥0且x ≠2.下列各式成立的是( )2)2(.2=-A 5)5(.2-=-B x x C =2.6)6(.2±=-D3.下列二次根式中,最简二次根式是( )A 8B 192a .23a4下列各式计算正确的是( )A .63-23=4B .53+52=105C .42÷22=22D .43×22=865. 一直角三角形两边分别为5和12,则第三边为( )A 、13B 、119C 、13或119D 、76.已知2-11的整数部分是a ,小数部分是b ,则b a -11的值是( )A.5B.-5C.3D.-37.小刚准备测量河水的深度,他把一根竹竿插到岸边1.2m 远的河底,竹竿高出水面0.4m ,把竹竿的顶端拉向岸边,竿顶和岸边的水平刚好相齐,河水的深度为( )A.1.65mB.1.5mC.1.55mD.1.6m8.中国数学史上最先完成勾股定理证明的数学家是公元3世纪三国时期的赵爽,他为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由“弦图”变化得到,它是由八个全等的直角三角形拼接而成.将图中正方形MNKT ,正方形EFGH ,正方形ABCD 的面积分别记为S 1,S 2,S 3,若S 1+S 2+S 3=18,则正方形EFGH 的面积为( )A. 92B .5 C . 6 D .9二、填空题(本大题共8个小题,每小题3分,共24分)9. 已知032=++-b a ,那么2015)(b a ++1的值为____________。
10、当x=37+时,代数式x ²-6x-2的值是________。
11.已知a=2+5,b=2-5,则a ²-b ²=________。
2022-2023学年八年级数学下学期第三次月考卷(满分120分)一、选择题.(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分)1.要反映我市某一周内每天最高气温的变化趋势,宜采用()A.条形统计图B.扇形统计图C.折线统计图D.频数分布直方图2.第二列第一行用数对()2,1表示,数对()3,6和()6,4表示的位置是()A.同一行B.同一列C.同行同列D.不同行不同列3.函数y =中自变量x 的取值范围是()A.2x =- B.2x ≠- C.2x >- D.2x <-4.对于函数22y x =-,下列结论正确的是()A.它的图象必经过点()1,2-B.当1x >时,0y <C.y 的值随x 值的增大而增大 D.它的图象经过第一、二、三象限5.在一次数学测试中,将某班40名学生的成绩分为5组,第一组到第四组的频率之和为0.8,则第5组的频数是()A.7B.8C.9D.106.平面直角坐标系中的点()1,2A -与点()1,2B 关于()A.x 轴对称B.y 轴对称C.原点对称D.第一、三象限角平分线对称7.下列曲线中不能表示y 是x 的函数的是()8.若函数()12y k x b =++-是正比例函数,则()A.1k ≠-,2b =-B.1k ≠,2b =-C.1k =,2b =- D.1k ≠-,2b =9.某市八年级共有8500名学生参加考试,为了了解考试情况,从中抽取1000名学生成绩进行统计分析,在这个问题中,有下列说法:①1000名考生是总体的一个样本;②28500名考生的成绩是总体;③样本容量是1000;④每名考生是个体;⑤本次调查属于抽样调查.其中正确的说法有()A.1个B.2个C.3个D.4个10.在平面直角坐标系内,点()5,3P m m -+在第二象限,则m 的取值范围是()A.35m -<< B.53m -<<C.35m << D.53m -<<-11.A 、B 两地相距20km ,甲乙两人沿同一条路线从A 地到B 地.如图1反映的是二人行进路程y (km )与行进时间t (h )之间的关系,则下列说法正确的是()A.乙用了4个小时到达目的地B.乙比甲先出发1小时C.甲在出发4小时后被乙追上D.甲始终是匀速行进,乙的行进不是匀速的12.如图2,已知函数y kx b =+图象如图所示,则不等式0kx b +>的解集为()A.4x > B.4x < C.5x > D.5x <13.某小区居民利用“爱健康APP ”开展“健康走出来”活动,为了解居民的行走步数情况,文文同学调查了部分居民某天行走的步数(单位:千步),并将样本数据整理绘制成如下不完整的频数分布直方图和扇形统计图.①文文此次一共调查了200位小区居民;②行走步数为4~8千步的人数为50人;③行走步数为8~16千步的人数超过调查总人数的一半;④若该小区有3000名居民,则行走步数为0~4千步的人数约为380人.根据统计图提供的信息,上述推断合理的是()A.①②③B.①②④C.①③④D.②③④14.将等腰直角三角形AOB 按如图4所示放置在平面直角坐标系xOy 中,然后绕原点O 逆时针旋转到A OB ''△的位置,若2AB =,则点A '的坐标为()A.()2,2 B.C.()2,2- D.(15.一次函数1y kx b =+与2y x a =+的图象如图5所示,则下列结论:①0k <;②0a <,0b <;③3x =时,12y y =;④不等式kx b x a +>+的解集是3x <,其中错误的结论个数是()A.0B.1C.2D.316.如图6,在平面直角坐标系上有点()1,0A ,点A 第一次向左跳动至()11,1A -,第二次向右跳动至()22,1A ,第三次向左跳动至()32,2A -,第四次向右跳动至()43,2A …依照此规律跳动下去,2024A 的坐标为()A.()1013,1012 B.()1012,1011 C.()2023,2024 D.()2024,2023二、填空题.(本大题共3个小题,每小题3分,共9分.其中18小题第一空2分,第二空1分;19小题每空1分)17.若点P 在第四象限,且点P 到x 轴的距离是3,到y 轴的距离是5,则点P 的坐标是_________.18.等腰三角形的周长是20cm ,腰长y (cm )与底边长x (cm )的函数表达式为_______;自变量x 的取值范围是_________.19.如图7,在平面直角坐标系中矩形ABCD 的顶点D 与坐标原点O 重合,动点P 从点O 出发,以每秒2个单位的速度沿O A B C ---的路线向终点C 运动,连接OP 、CP ,设点P 运动的时间为t 秒,CPO △的面积为S ,S 与t 之间函数关系如图8所示,则(1)m =___________;(2)B 点坐标为___________;(3)当t =__________时,CPO △的面积正好为矩形ABCD 的面积的14三、解答题.(本大题有7个小题,共69分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分9分)已知,如图9,方格纸中每个小方格都是边长为1的正方形,现有A ,B ,C 三点,其中点A 坐标为()4,1-.点B 坐标为()1,1.(1)请根据点A ,B 的坐标在方格纸中建立平面直角坐标系,顺次连接点A 、B 、C 、A ,则ABC △的形状为__________;(2)若点C 关于直线AB 的对称点为点D .则点D 的坐标为________;(3)在y 轴上找一点M ,使ABM △的面积等于四边形ACBD 的面积,点M 的坐标为________.21.(本小题满分9分)已知函数()213y m x m =+-+(1)若函数图象经过原点,求m 的值;(2)若函数的图象平行于直线31y x =--,求m 的值;(3)若点()13,P y -、()21,Q y -在函数()213y m x m =+-+的图像上,且12y y <,求m 的取值范围.22.(本小题满分9分)手机支付已成为消费者的主要支付形式.数学兴趣小组将手机支付的使用情况分为“经常使用”“偶尔使用”和“不使用”三种类型,借助大数据功能,汇总出该校八(1)班和八(2)班全体家长的使用情况,并绘制成如图所示的两辐不完整的统计图:(1)此次调查的家长总人数为__________人;(2)扇形统计图中代表“不使用”类型的扇形圆心角的度数是_______,并补全条形统计图;(3)若该校八年级学生家长共有1500人,根据此次调查结果估计该校八年级中“经常使用”类型的家长约有多少人?23.(本小题满分10分)甲、乙二人同时出发从学校去图书馆,甲步行,乙骑自行车.其中乙在行进中自行车发生故障,耽误了一段时间,修好后继续赶往图书馆.图11中的线段OD和折线OABC表示二人的路程s(米)与时间t(分钟)的关系,请你根据图11中给出的信息,解决下列问题.(1)线段OD表示____(填“甲”或“乙”)的路程与时间的关系.(2)乙在自行车发生故障前的速度为________米/分钟,甲的速度为________米/分钟.(3)乙在自行车修好后,以750米/分的速度继续赶往图书馆,结果还是比甲晚到了1分钟,请你算算乙中间停下修车用了多少分钟?24.(本小题满分10分)学校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元.①写出W(元)与m(件)之间的函数关系式并写出自变量m的取值范围;②求出所需费用最少的购买方案.25.(本小题满分10分)某校为了了解八年级学生对安全知识的掌握情况,加强学生的安全防范和自我保护意识,对该校1000名八年级学生开展安全知识竞赛活动.用简单随机抽样的方法,随机抽取若干名学生统计答题成绩,分别绘制成如下频数分布表和频数分布直方图:八年级学生安全知识竞赛成绩频数分布表成绩频数频率x≤<30.02 5060x≤<12a6070x≤<450.3 7080x≤<b0.4 8090x≤≤30c90100八年级学生安全知识竞赛成绩频数分布直方图(1)表格中,a =_______,b =__________,c =_________;(2)请把频数分布直方图补充完整;(画图后标注相应的数据)(3)规定成绩80分以上(含80分)的同学成为“安全明星”,则该校八年级学生成为“安全明星”的约有多少人?26.(本小题满分12分)一次函数y kx b =+的两组x 、y 的对应值如图13,在平面直角坐标系中画出了它的图象为直线/(如图14-1),王英为观察k 、b 对图象的影响,将上面函数中的k 与b 交换位置后得到另一个一次函数,设其图象为直线l '.(1)求直线l 的解析式;(2)直接写出直线l '的表达式为___________,并在图14-1中画出直线l ';(3)若(),0P m )是x 轴上的一个动点,过点P 作y 轴的平行线,分别交直线l 、l '于点M 、N .当3MN =时,求m 的值;(4)若()0,Q n 是y 轴上的一个动点,过点Q 作x 轴的平行线,分别与直线l 、l '及y 轴有三个不同的交点,且其中两点关于第三点对称,直接写出n 的值___________.八年级数学(冀教版)参考答案1-5CDCCB6-10BCDCA 11-16DBADBA16.解析:∵()22,1A ,()43,2A ,()64,3A ……可以发现,当n 为偶数时,n A 的坐标为22,122n n ++⎛⎫- ⎪⎝⎭,2024A 坐标为()1013,1012.故选A 。
(全卷满分150分,考试时间120分钟)一、选择题(本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项符合题目要求.)1.如果代数式1x -有意义,那么x 的取值范围是( ▲ ) A .0x ≥ B .1x ≠ C .0x > D .0x ≥且1x ≠ 2.下列图案中,不是中心对称图形的是( ▲ )3.下列四个点中,在反比例函数6y x=-的图象上的是( ▲ ) A .(3,2-) B .(3,2) C .(2,3) D .(2-,3-) 4.下面有四种说法:①为了解一种灯泡的使用寿命,宜采用普查的方法;②“在同一年出生的367名学生中,至少有两人的生日是同一天”是必然事件;③“打开电视机,正在播放少儿节目”是随机事件;④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件.其中,正确的说法是( ▲ )A .①②③B .①②④C .①③④D .②③④ 5.计算222xx x ---的结果是( ▲ ) A .0 B .1 C .1- D .x6.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为1S 、2S ,则12S S +的值为( ▲ )A .16B .17C .18D .197.已知点A (1,1y )、B (2,2y )、C (3-,3y )都在反比例函数xy 6=的图象上,则的大小关系是( ▲ )A .B .321y y y <<C .312y y y <<D .123y y y << 8.如图,矩形ABCD 的面积为220cm ,对角线交于点O ;以AB 、AO 为邻边做平行四边形1AOC B ,对角线交于点1O ;以AB 、1AO 为邻边做平行四边形12AO C B ;…;依此类推,则平行四边形45AO C B 的面积为( ▲ ) A .25cm 4B .25cm 8C .25cm 16D .25cm 32二、填空题(本大题共10个小题,每小题3分,共30分.) 9.若2,3a b =则aa b=+ ▲ . 102x =-,那么x 的取值范围是 ▲ .11.若反比例函数ky x=的图像经过点A (1,2),则k = ▲ . 12.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘.经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中有标记的鱼有5条,则鱼塘中估计有 ▲ 条鱼.13.如图,将矩形ABCD 绕点A 顺时针旋转到矩形A B C D ''''的位置,旋转角为α(090α<<).若1110∠=,则α= ▲ .213y y y <<14.已知菱形ABCD 的两条对角线分别为6和8,M 、N 分别是边BC 、CD 的中点,P 是对角线BD 上一点,则PM PN +的最小值为 ▲ .15.对于非零的两个实数a 、b ,规定a ⊙ab b 11-=.若1⊙1)1(=+x ,则x 的值为 ▲ . 16.如图,直线1y k x b =+与双曲线2k y x=交于A 、B 两点,其横坐标分别为1和5,则不等式21k k x b x<-的解集是 ▲ . 17.已知关于的方程123++x nx =2的解是负数,则的取值范围为 ▲ .18.已知反比例函数6y x=在第一象限的图象如图所示,点A 在其图象上,点B 为x 轴正半轴上一点,连接AO 、AB ,且AO AB =,则AOB S =△ ▲ .三、解答题(本大题共9个小题,共96分,解答时应写出文字说明、证明过程或演算步骤.) 19.计算(每题5分,共10分) (1)221b a a b a b ⎛⎫÷- ⎪+-⎝⎭ (2⎛÷ ⎝20.解方程(每题5分,共10分) (1)x x x x -++=--212253 (2)22416222-+=--+x x x x x - 21.(本题满分8分)先化简2111122a a a a ⎛⎫-÷⎪-+-⎝⎭,然后从11-中选取一个你认为合适的数作为a 的值代入求值.22.(本题满分8分)2013年3月28日是全国中小学生安全教育日,某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图,解答x n下列问题:(1)这次抽取了 名学生的竞赛成绩进行统计,其中:m = ,n = ; (2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?23.(本题满分8分)如图,在ABC △中,AD 是BC 边上的中线,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF . (1)求证:AF DC =;(2)若AB AC ⊥,试判断四边形ADCF 的形状,并证明你的结论.24.(本题满分8分)为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4800元.已知甲、乙两车单独运完此堆垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元. (1)求甲、乙两车单独运完此堆垃圾各需运多少趟? (2)若单独租用一台车,租用哪台车合算?B CD EF25.(本题满分8分)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为o18C的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(o C)随时间x(小时)变化的函数图象,其中BC段是双曲线kyx=的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度o18C的时间有多少小时?(2)求k的值;(3)当16x=时,大棚内的温度约为多少度?x(时) y(℃)1812OA BC28.(本题满分12分)已知,矩形ABCD 中,4AB cm =,8BC cm =,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图1,连接AF 、CE .求证四边形AFCE 为菱形,并求AF 的长;(2)如图2,动点P 、Q 分别从A 、C 两点同时出发,沿AFB ∆和CDE ∆各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中,①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值.②若点P 、Q 的运动路程分别为a 、b (单位:cm ,0ab ≠),已知A 、C 、P 、Q 四点为顶点的四边形是平行四边形,求a 与b 满足的数量关系式.ABC DEF图1O图2备用图八年级数学试题(参考答案)一、选择题(本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项符合题目要求二、填空题(本大题共10个小题,每小题3分,共30分.) 9.5210. 2x ≤ 11.2 12. 1200 13. 20 14. 5 15. 21-16. 51x -<<-或0x > 17. 2<n 且 18. 6三、解答题(本大题有10题,共96分,解答时应写出文字说明、证明过程或演算步骤) 19.(1)原式()()b a ba b a b b+=⋅+-………………………4分1a b=-………………………5分(2)原式=………………………4分 29x =-5分20.(1)=0x ……………………………………………4分检验:=0x 是原方程的解……………………………5分(2)52x =-…………………………………………4分 检验:52x =-是原方程的解…………………………5分21.原式4a=。
人教版数学八年级下册第三次月考试卷一、单选题1.以a、b、c三边长能构成直角三角形的是()A.a=1,b=2,c=3B.a=32,b=42,c=52C.a=2,b=3,c=5D.a=5,b=6,c=72.下列各式不是二次根式的是()A BC.D3.下列各等式成立的是()A.=B.=C.=D.=4()C.D.A.B.5.在平行四边形ABCD中,∠C、∠D的度数之比为3∶1,则∠A等于()A.45°B.135°C.50°D.130°6.如图,在菱形ABCD中,M、N分别在AB、CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=32°,则∠OBC的度数为()A.32°B.48°C.58°D.68°7.如图,在Rt△ABC中,∠ACB=90°,BC=12,AC=5,分别以点A、B为圆心,大于线段AB长度的一半为半径作弧,相交于点E、F,过点E、F作直线EF,交AB于点D,连接CD,则△ACD的周长为()A.18B.17C.13D.258.如图,池塘边有两点A、B,点C是与BA方向成直角的AC方向上一点,测得CB=60 m,AC=20m,则A、B两点间的距离是()A.200m B.m C.m D.50m9.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF,下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④∠GAE=45°.则正确结论的个数有()A.1B.2C.3D.410.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h和放水时间t之间的关系的是()A.B.C.D.二、填空题11.函数21yx=-中,自变量________的取值范围是________.12.如果一盒圆珠笔有12支,售价18元,用y(元)表示圆珠笔的售价,x表示圆珠笔的支数,那么y与x之间的关系应为___.13.已知直角三角形的两条边长分别是6和10,那么这个三角形的第三条边的长为___. 14.如图,在Rt△ABC中,∠B=90°,AC的垂直平分线DE分别交AB,AC于D,E两点,若AB=4,BC=3,则CD的长为________.15.如图,在△ABC中,∠C=2∠B,D是BC上的一点,且AD⊥AB,点E是BD的中点,连接AE.若BD=13,则AC=___.16.如图,E是矩形ABCD的对角线的交点,点F在边AE上,且DF=DC,若∠ADF=25°,则∠BEC=________.17.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=10,AC=6,则DF 的长为__.18.如图,正方形ABCD的对角线AC、BD相交于点O,点E、F分别在边AB、BC上,∶S正方形ABCD=___.且∠EOF=90°,则S四边形OEBF三、解答题19.计算:(1)3248312123(÷+-;(2)2+-+-;20.如图,把一块等腰直角三角形零件(△ABC ,其中∠ACB =90°),放置在一凹槽内,三个顶点A ,B ,C 分别落在凹槽内壁上,已知∠ADE =∠BED =90°,测得AD =5cm ,BE =7cm ,求该三角形零件的面积.21.已知:a=5-2,求代数式(9+45)a 2-(5+2)a+7的值.22.已知平行四边形ABCD 中,CE 平分∠BCD 且交AD 于点E ,AF ∥CE ,且交BC 于点F .(1)求证:△ABF ≌△CDE ;(2)如图,若∠1=65°,求∠B 的大小.23.如图,四边形ABCD 是菱形,对角线AC 与BD 相交于O ,∠ACB=30°,BD =12.(1)求及∠BAD ,∠ABC 的度数;(2)求AB 、AC 的长.24.如图,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.(1)猜想线段GF与GC有何数量关系?并证明你的结论;(2)若AB=3,AD=4,求线段GC的长.25.小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50分才乘上缆车,缆车的平均速度为180米/分,设小亮出发x分后行走的路程为y米.图中的折线表示小亮在整个行走过程中y随x的变化关系.(1)小亮行走的总路程是_________米,他途中休息了___________分;(2)分别求出小亮在休息前和休息后所走的路程段上的步行速度;(3)当小颖到达缆车终点时,小亮离缆车终点的路程是多少?26.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.参考答案1.C【解析】根据勾股定理的逆定理对各个选项逐一代入计算,看是否符合a 2+b 2=c 2即可.【详解】A 选项:∵12+22≠32,∴不符合a 2+b 2=c 2.∴不能构成直角三角形;B 选项:∵322+422≠522,∴不能构成直角三角形C 选项:22+32=52,符合a 2+b 2=c 2,∴能构成直角三角形.D 选项:52+62≠72,不符合a 2+b 2=c 2,∴不能构成直角三角形.故选:C.【点睛】考查学生对勾股定理的逆定理理解和掌握,比较简单,属于基础题,但要注意选项B 给出的数据,受思维定势的影响容易错选B .2.D【解析】意义,故选D .考点:二次根式的定义3.D【解析】二次根式相乘,当二次根式前面有系数时,可类比单项式与单项式相乘的法则,即=,d≥0),所以(54)=⨯=,故D 正确.4.B【解析】【分析】判断最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】,故选B.【点睛】本题考查二次根式的定义,最简两个条件:被开方数不含分母;被开方数不含能开得尽的因式或因数.5.B【解析】【分析】直接利用平行四边形的对角相等以及邻角互补即可得出答案.【详解】如图,∵在▱ABCD中,∠C、∠D的度数之比为3:1,∴∠A:∠B=3:1,则3∠B+∠B=180°,解得:∠B=45°.∴∠A=135°故选B.【点睛】此题主要考查了平行四边形的性质,正确掌握平行四边形的内角的性质是解题关键.6.C【解析】【分析】根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO ⊥AC ,继而可求得∠OBC 的度数.【详解】∵四边形ABCD 为菱形,∴AB ∥CD ,AB=BC ,∴∠MAO=∠NCO ,∠AMO=∠CNO ,在△AMO 和△CNO 中,MAO NCO AM CN AMO CNO ∠∠⎧⎪⎨⎪∠∠⎩===,∴△AMO ≌△CNO (ASA ),∴AO=CO ,∵AB=BC ,∴BO ⊥AC ,∴∠BOC=90°,∵∠DAC=32°,∴∠BCA=∠DAC=32°,∴∠OBC=90°-32°=58°.故选C .【点睛】考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.7.A【解析】【分析】利用勾股定理可得AB 的长,然后根据题意可得EF 是AB 的垂直平分线,进而可得AD 的长和CD 的长,进而可得答案.【详解】∵∠ACB=90°,BC=12,AC=5,∴AB==13,根据题意可得EF 是AB 的垂直平分线,∴D是AB的中点,∴AD=12AB=6.5,CD=12AB=6.5,∴△ACD的周长为:13+5=18.故选A.【点睛】考查了勾股定理和线段垂直平分线的性质,关键是掌握勾股定理和线段垂直平分线的作法.8.B【解析】【分析】在直角三角形中已知直角边和斜边的长,利用勾股定理求得另外一条直角边的长即可.【详解】∵CB=60m,AC=20m,AC⊥AB,∴AB=,故选C.【点睛】考查的是勾股定理的应用,解题的关键是正确的从实际问题中发现直角三角形并对应好直角边和斜边.9.D【解析】【分析】根据正方形的性质得出AB=AD=DC=6,∠B=D=90°,求出DE=2,AF=AB,根据HL推出Rt△ABG≌Rt△AFG,推出BG=FG,∠AGB=∠AGF,设BG=x,则CG=BC-BG=6-x,GE=GF+EF=BG+DE=x+2,在Rt△ECG中,由勾股定理得出(6-x)2+42=(x+2)2,求出x=3,得出BG=GF=CG,求出∠AGB=∠FCG,推出AG∥CF,根据全等得出∠DAE=∠FAE,∠BAG=∠FAG.【详解】解:∵四边形ABCD是正方形,∴AB=AD=DC=6,∠B=D=90°,∵CD=3DE ,∴DE=2,∵△ADE 沿AE 折叠得到△AFE ,∴DE=EF=2,AD=AF ,∠D=∠AFE=∠AFG=90°,∴AF=AB ,∵在Rt △ABG 和Rt △AFG 中AG AG AB AF ==⎧⎨⎩,∴Rt △ABG ≌Rt △AFG (HL ).∴①正确;∵Rt △ABG ≌Rt △AFG ,∴BG=FG ,∠AGB=∠AGF .设BG=x ,则CG=BC-BG=6-x ,GE=GF+EF=BG+DE=x+2.在Rt △ECG 中,由勾股定理得:CG 2+CE 2=EG 2.∵CG=6-x ,CE=4,EG=x+2,∴(6-x )2+42=(x+2)2,解得:x=3.∴BG=GF=CG=3.∴②正确;∵CG=GF ,∴∠CFG=∠FCG .∵∠BGF=∠CFG+∠FCG ,∠BGF=∠AGB+∠AGF ,∴∠CFG+∠FCG=∠AGB+∠AGF .∵∠AGB=∠AGF ,∠CFG=∠FCG ,∴∠AGB=∠FCG .∴AG ∥CF .∴③正确;∵△ADE 沿AE 折叠得到△AFE ,∴△DAE ≌△FAE .∴∠DAE=∠FAE .∵△ABG ≌△AFG ,∴∠BAG=∠FAG .∵∠BAD=90°,∴∠EAG=∠EAF+∠GAF=12×90°=45°.∴④正确.故选D .【点睛】本题考查了正方形性质,折叠性质,全等三角形的性质和判定,等腰三角形的性质和判定,平行线的判定等知识点的运用,依据翻折的性质找出其中对应相等的线段和对应相等的角是解题的关键.10.A【解析】试题分析:由图知蓄水池上宽下窄,深度h 和放水时间t 的比不一样,前者慢后者快,即前者的斜率小,后者斜率大,分析各选项知只有A 正确.B 斜率一样,C 前者斜率大,后者小,D 也是前者斜率大,后者小,因此B 、C 、D 排除.故选A .考点:1.一次函数的应用;2.一次函数的图象.11.2x ≥-且1x ≠【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于O,可以求出x 的范围.【详解】解:根据题意得:20{10x x +≥-≠计算得出:x≥-2且x≠1.故答案是:x≥-2且x≠1.【点睛】本题考查了二次根式被开方数大于等于0及分式中分母不能为0等知识.12.=32.【解析】【分析】首先求出每支平均售价,即可得出y与x之间的关系.【详解】∵每盒圆珠笔有12支,售价18元,∴每只平均售价为:1812=1.5(元),∴y与x之间的关系是:y=32x.故答案是:y=32x.【点睛】考查了列函数关系式,求出圆珠笔的平均售价是解题关键.13.8或【解析】【分析】分两种情况:当3和5都是直角边时;当5是斜边长时;分别利用勾股定理计算出第三边长即可.【详解】当6和10当5=8.故答案是:8或【点睛】考查的是勾股定理,直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.14.25 8【解析】【分析】先根据线段垂直平分线的性质得出CD=AD,故AB=BD+AD=BD+CD,设CD=x,则BD=4-x,在Rt△BCD中根据勾股定理求出x的值即可.【详解】∵DE是AC的垂直平分线,∴CD=AD,∴AB=BD+AD=BD+CD,设CD=x,则BD=4-x,在Rt△BCD中,CD2=BC2+BD2,即x2=32+(4-x)2,解得x=25 8.故答案为25 8.【点睛】本题考查勾股定理,线段垂直平分线的性质. 15.6.5【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半可得AE=BE=ED=12DB=6.5,再证明AE=AC即可.【详解】∵AD⊥AB,点E是BD的中点,∴AE=BE=ED=12DB=6.5,∴∠B=∠BAE,∴∠AED=2∠B,∵∠C=2∠B,∴∠AEC=∠C,∴AC=AE=6.5.故答案为6.5.【点睛】考查了直角三角形的性质,以及等腰三角形的判定,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.16.115°【解析】【分析】由∠ADF求出∠CDF,再由等腰三角形的性质得出∠DFC,从而求出∠BCE,最后用等腰三角形的性质即可.【详解】解:∵四边形ABCD是矩形,∴∠ADC=∠BCD=90°,BE=CE.∵∠ADF=25°,∴∠CDF=∠ADC﹣∠ADF=90°﹣25°=65°.∵DF=DC,∴∠DFC=∠DCA=(180°-∠CDF)÷2=(180°-65°)÷2=1152,∴∠BCE=∠BCD﹣∠DCA=90°﹣1152=652.∵BE=CE,∴∠BEC=180°﹣2∠BCE=180°﹣65°=115°.故答案为115°.【点睛】本题是矩形的性质,主要考查了矩形的性质,等腰三角形的性质和判定,解答本题的关键是求出∠DFC.是一道中考常考的简单题.17.2【解析】【详解】试题分析:如图,延长CF交AB于点G,∵在△AFG和△AFC中,∠GAF=∠CAF,AF=AF,∠AFG=∠AFC,∴△AFG ≌△AFC (ASA ).∴AC=AG ,GF=CF .又∵点D 是BC 中点,∴DF 是△CBG 的中位线.∴DF=12BG=12(AB ﹣AG )=12(AB ﹣AC )=2.18.1:4【解析】【分析】可以先求证△AEO ≌△BFO ,得出AE=BF ,则BE=CF ,那么求四边形OEBF 的面积=△ABO 的面积.于是得到结论.【详解】∵四边形ABCD 是正方形∴OA=OB ,∠EAO=∠FBO=45°又∵∠AOE+∠EOB=90°,∠BOF+∠EOB=90°∴∠AOE=∠BOF ,在△AOE 与△BOF 中,AOE BOF OA OB OAE OBF ∠∠⎧⎪⎨⎪∠∠⎩===,∴△AEO ≌△BFO ,∴AE=BF ,∴BE=CF ,∴S 四边形OEBF =S △AOB ,∴S 四边形OEBF :S 正方形ABCD =14.故答案是:14.【点睛】考查正方形的性质,全等三角形的判定和性质,熟练掌握正方形的性质是解题的关键.19.(1)314(2)【解析】【分析】(1)先计算括号里,再计算除法;(2)先运用平方差公式和完全平方公式进行计算,再相加减即可.【详解】(1)3248312123(÷+-=+÷÷=314;(2)2+-+-=2222-+-=20-3+27+8-.【点睛】考查了二次根式的混合运算,解题关键是熟记并运用了平方差公式和完全平方公式.20.该零件的面积为37cm 2.【解析】【分析】首先证明△ADC ≌△CEB ,根据全等三角形的性质可得DC=BE=7cm ,再利用勾股定理计算出AC 长,然后利用三角形的面积公式计算出该零件的面积即可.【详解】解:∵△ABC 是等腰直角三角形,∴AC=BC ,∠ACB=90°,∴∠ACD+∠BCE=90°,∵∠ADC=90°,∴∠ACD+∠DAC=90°,∴∠DAC=∠BCE ,在△ADC和△CEB中,D E DAC ECBAC BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADC≌△CEB(AAS),∴DC=BE=7cm,∴(cm),∴cm,∴该零件的面积为:12=37(cm2).故答案为37cm2.【点睛】本题考查全等三角形的应用,等腰直角三角形以及勾股定理的应用,关键是掌握全等三角形的判定方法.21.7【解析】【分析】直接代入,利用完全平方公式以及平方差公式计算即可.【详解】将a=5-2代入原式=(9+45)(5−2)2+(2−5)(2+5)+7=(9+45)(9−45)+(2−5)(2+5)+7=92−(45)2+4−5+7=81-80-1+7=7【点睛】考查二次根式的化简求值、乘法公式等知识,解题的关键是熟练应用乘法公式,掌握二次根式的混合运算法则.22.(1)证明见解析;(2)50°.【解析】试题分析:(1)由平行四边形的性质得出AB=CD,AD∥BC,∠B=∠D,得出∠1=∠DCE,证出∠AFB=∠1,由AAS证明△ABF≌△CDE即可;(2)由(1)得∠1=∠DCE=65°,由平行四边形的性质和三角形内角和定理即可得出结果.试题解析:(1)∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∠B=∠D,∴∠1=∠DCE,∵AF∥CE,∴∠AFB=∠ECB,∵CE平分∠BCD,∴∠DCE=∠ECB,∴∠AFB=∠1,在△ABF和△CDE中,,∴△ABF≌△CDE(AAS);(2)由(1)得:∠1=∠ECB,∠DCE=∠ECB,∴∠1=∠DCE=65°,∴∠B=∠D=180°﹣2×65°=50°.考点:(1)平行四边形的性质;(2)全等三角形的判定与性质.23.(1)60°,120°(2)12,123【解析】【分析】(1)由四边形ABCD是菱形,对角线AC与BD相交于O,由∠ACB=30°,易证得△ABD和△BDC是等边三角形,即可求得∠BAD和∠ABC的度数;(2)然后由勾股定理求得OA的长,继而求得AC的长.【详解】(1)∵四边形ABCD是菱形,BD=12,∴AC⊥BD,AC=2OA,AD=AB=BC=CD,BO=12BD=6,又∵∠ACB=30°,∴∠DBC=60o,∴△BCD和△ABD是等边三角形,∴∠BAD=60°,∠ABC=120°;(2)在直角三角形AOB中,OB=6,∴AB=2OB=12,OA=63,∴AC=2OA=123.【点睛】考查了菱形的性质、等边三角形的判定与性质以及勾股定理.注意证得△ABD和△BCD是等边三角形是关键.24.(1)GF GC =(2)【解析】试题分析:(1)根据翻折的性质得出,BE EF B EFA =∠=∠,利用三角形全等的判定得ECG EFG ≌,即可得出答案;(2)设GC 为x ,表示AG 、DG ,然后在Rt △ADG 中,利用勾股定理计算即可得解试题解析:(1)GF GC=连接GE ,证明:GFE GCE ≌,得GF GC =,GF GC=设GC =x ,则3AG =+x ,3DG =-x ,故有,解得考点:全等三角形的判定和性质;矩形的性质;勾股定理;翻折变换.25.(1)3600,20;(2)65(米/分),55(米/分);(3)1100(米).【解析】【分析】(1)根据图象可知小亮走的总路程和中途休息的时间;(2)根据图象可知休息前走了30分钟,1950米,休息后走了30分钟,3600-1950米,由此根据速度公式进行求解即可;(3)先求出缆车到达终点所需时间,从而求出小亮行走的时间,最后根据题意求出当小颖到达缆车终点时,小亮离缆车终点的路程.【详解】(1)根据图象可知:小亮行驶的总路程为3600m ,中途休息时间为:50﹣30=20min ,故答案为;3600,20;(2)观察图象可知小亮休息前走了30分钟,1950米,所以小亮休息前的速度为:19506530=(米/分),小亮休息后的速度为:36001950558050-=-(米/分),答:小亮休息前的速度为65米/分,休息后的速度为55米/分;(3)缆车到山顶的线路长为3600÷2=1800米,缆车到达终点所需时间为1800÷180=10分钟,小颖到达缆车终点时,小亮行走的时间为10+50=60分钟,80-60=20(分),∴小颖到达终点时,小亮离缆车终点的路程为:20⨯55=1100(米),答:当小颖到达缆车终点时,小亮离缆车终点的路程是1100米.【点睛】本题考查了函数的图象,弄清题意,读懂图象,根据图象提供的信息进行解答是关键. 26.(1)证明见解析(2)90°(3)AP=CE【解析】【分析】(1)、根据正方形得出AB=BC,∠ABP=∠CBP=45°,结合PB=PB得出△ABP≌△CBP,从而得出结论;(2)、根据全等得出∠BAP=∠BCP,∠DAP=∠DCP,根据PA=PE得出∠DAP=∠E,即∠DCP=∠E,易得答案;(3)、首先证明△ABP和△CBP全等,然后得出PA=PC,∠BAP=∠BCP,然后得出∠DCP=∠E,从而得出∠CPF=∠EDF=60°,然后得出△EPC是等边三角形,从而得出AP=CE.【详解】(1)、在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,又∵PB=PB∴△ABP≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)、由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)、AP=CE理由是:在菱形ABCD中,AB=BC,∠ABP=∠CBP,在△ABP和△CBP中,又∵PB=PB∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠DCP,∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC∴∠DAP=∠E,∴∠DCP=∠E∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE考点:三角形全等的证明。
人教版数学八年级下册第三次月考试题评卷人得分一、单选题1.若二次根式x 应满足()A .x ≥3B .x ≥﹣3C .x >3D .x >﹣32.下列各组数中,是直角三角形的三条边长的是()A .1,3,B .7,24,25C .2,3D .3,4,63.下列各曲线表示的y 与x 的关系中,y 不是x 的函数的是()A .B .C .D .4.平行四边形的一边长为6cm ,周长为28cm ,则这条边的邻边长是()A .22cmB .16cmC .11cmD .8cm5.下列各式中正确的是()A 4=±B 2=-C .2=-D =6.已知四边形ABCD 是平行四边形,下列结论中不正确的是()A .当AB =BC 时,它是菱形B .当AC ⊥BD 时,它是菱形C .当∠ABC =90°时,它是矩形D .当AC =BD 时,它是正方形7.将直线y=2x 向上平移一个单位长度后得到的直线是()A .y=2(x+1)B .y=2(x-1)C .y=2x+1D .y=2x-18.如图,在平行四边形ABCD 中,点E 从A 点出发,沿着AB →BC →CD 的方向匀速运动到D 点停止.在这个运动过程中,下列图象可以大致表示△AED 的面积S 随E 点运动时间t 的变化而变化的是()A .B .C .D .9.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠= ,CFD 40∠= ,则E ∠为()A .102B .112C .122D .9210.如图,在Rt △ABC 中,∠C =90°,以原点A 为圆心,适当的长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点E ,作射线AE 交BC 于点D ,若BD =5,AB =15,△ABD 的面积30,则AC +CD 的值是()A .16B .14C .12D .5+4评卷人得分二、填空题11_____=_____.12.已知函数2(1)m y m x =-是正比例函数,则m =________.13.工人师傅在测量一个门框是否是矩形时,只需要用到一个直角尺,则他用到的判定方法是____________.14.Rt △ABC 中,∠B =90°,AB =9,BC =12,则斜边上的高为________.15.矩形的两条对角线的夹角为60 ,较短的边长为12cm ,则对角线长为________cm .16.如图,在正方形ABCD 中,E 是AB 上一点,BE=2,AE=3BE ,P 是AC 上一动点,则PB+PE 的最小值是.评卷人得分三、解答题17.计算(10(1)π-(2)23)-18.在Rt △ABC 中,∠C =90°,∠A =45°,AC =2.求斜边AB 的长.19.已知一次函数y =kx+3的图象经过点(1,4),(3,1y ),(5,2y )。
八年级(下)学期3月份月考数学试卷含答案一、选择题1.5﹣x ,则x 的取值范围是( ) A .为任意实数 B .0≤x≤5C .x≥5D .x≤5 2.下列计算,正确的是( )A .=B .=C .0=D .10=3.a 的值可能是( ) A .2-B .2C .32D .84.下列各式计算正确的是( )A =B .2=C =D =5.下列计算正确的是( )AB CD6.下列根式中,最简二次根式是( )A B C D 7.下列等式正确的是( )A 7=-B 3=C .5D .=8.下列各式中,正确的是( )A 2=±B =C 3=-D 2=9.下列二次根式是最简二次根式的是( )AB C D10.下列计算正确的是( )A .+=B .()322326a ba b -=-C .222()a b a b -=-D .2422a ab a a b a -+⋅=-++11.下列二次根式中是最简二次根式的是( )A B CD12.x y x x y >=->+中,二次根式有( ) A .2个B .3个C .4个D .5个二、填空题13.使函数212y x x=+有意义的自变量x 的取值范围为_____________14.732x y -=-,则2x ﹣18y 2=_____.15.若a ,b ,c 是实数,且10a b c ++=,则2b c +=________.16.实数a 、b 10-b 4-b-2=+,则22a b +的最大值为_________.17.若a 、b 、c 均为实数,且a 、b 、c 均不为0=___________18.已知a ,b 是正整数,若有序数对(a ,b )使得的值也是整数,则称(a ,b )是的一个“理想数对”,如(1,4)使得=3,所以(1,4)是的一个“理想数对”.请写出其他所有的“理想数对”: __________. 19.已知整数x ,y 满足y =,则y =__________.20.若实数a =,则代数式244a a -+的值为___. 三、解答题21.阅读下面问题: 阅读理解:==1;==2==-.应用计算:(1(21(n 为正整数)的值.归纳拓展:(398++【答案】应用计算:(12 归纳拓展:(3)9. 【分析】由阅读部分分析发现式子的分子、分母都乘以分母的有理化因式,为此(1分母利用平方差公式计算即可,(2(3)根据分母的特点各项分子分母乘以各分母的有理化因式,分母用公式计算化去分母,分子合并同类项二次根式即可. 【详解】(1(2(3+98+,(+98+,++99-, =10-1, =9. 【点睛】本题考查二次根式化简求值问题,关键找到各分母的有理化因式,用平方差公式化去分母.22.若x ,y 为实数,且y 12.求x y y x ++2-xy y x +-2的值.【分析】根据二次根式的性质,被开方数大于等于0可知:1﹣4x ≥0且4x ﹣1≥0,解得x =14,此时y =12.即可代入求解.【详解】解:要使y 有意义,必须140410x x -≥⎧⎨-≤⎩,即1414x x ⎧≤⎪⎪⎨⎪≥⎪⎩∴ x =14.当x =14时,y =12. 又∵x y y x ++2-x yy x +-2=-| ∵x =14,y =12,∴ x y <y x.∴+当x =14,y =12时,原式=.【点睛】(a ≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.23.观察下列各式子,并回答下面问题.(1)试写出第n 个式子(用含n 的表达式表示),这个式子一定是二次根式吗?为什么? (2)你估计第16个式子的值在哪两个相邻整数之间?试说明理由.【答案】(1,该式子一定是二次根式,理由见解析;(215和16之间.理由见解析. 【分析】(1)依据规律可写出第n 个式子,然后判断被开方数的正负情况,从而可做出判断; (2)将16n =代入,得出第16,再判断即可. 【详解】解:(1该式子一定是二次根式,因为n 为正整数,2(1)0n n n n -=-≥,所以该式子一定是二次根式(215=16=,∴1516<<.15和16之间. 【点睛】本题考查的知识点是二次根式的定义以及估计无理数的大小,掌握用“逼近法”估算无理数的大小的方法是解此题的关键.24.计算:10099+【答案】910【解析】 【分析】先对代数式的每一部分分母有理化,然后再进行运算 【详解】10099++10099+++=9912233499100-+-+-++-=1100- =1110- =910【点睛】本题看似计算繁杂,但只要找到分母有理化这个突破口,就会化难为易。
八年级下学期数学第三次月考试题卷满分:150分考试用时:120分钟范围:第十六章《二次根式》~第十九章《一次函数》班级姓名得分一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置作答,每小题3分,共30分.1.下列各式中,一定是二次根式的是()A. √aB. √−2C. √53D. √a2+12.下列各组数中,可作为三边长构成直角三角形的是()A. 4,5,6B. 1,1,√2C. 6,8,11D. 5,12,233.在▱ABCD中,AD=3cm,AB=2cm,则▱ABCD的周长是().A. 10cmB. 6cmC. 5cmD. 4cm4.如图是A市某一天的气温随时间变化的情况,则这天的日温差(最高气温与最低气温的差)是()A. 4℃B. 8℃C. 12℃D. 16℃5.若y=x+2−b是正比例函数,则b的值是()A. 0B. −2C. 2D. −0.56.若三角形的各边长分别是8,10和16,则以各边中点为顶点的三角形的周长为()A. 34B. 30C. 29D. 177.12x√4x+6x√x9−4x√x的值一定是()A. 正数B. 非正数C. 非负数D. 负数8.小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O,在数轴上找到表示数2的点A,然后过点A作AB⊥OA,使AB=3(如图).以O 为圆心,OB长为半径作弧,交数轴正半轴于点P,则点P所表示的数为()A. √5B. √11C. √13D. 49.如图矩形ABCD中,AB=3,BC=3√3,点P是BC边上的动点,现将△PCD沿直线PD折叠,使点C落在点C1处,则点B到点C1的最短距离为()A. 5B. 4C. 3D. 210.关于正比例函数y=−2x,下列结论正确的是()A. 函数图象经过点(−2,1)B. y随x的增大而减小C. 函数图象经过第一、三象限D. 无论x取何值,总有y<0二、填空题(本大题共5小题,共20.0分)11.在平面直角坐标系中,已知一次函数y=x−1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1______y2(填“>”,“<”或“=”)12.已知长方形的长为(2√5+3√2)cm,宽为(2√5−3√2)cm,则长方形的面积为_________cm2.13.课本中有这样一句话:“利用勾股定理可以作出√3,√5,…线段(如图所示).”即:OA=1,过A作AA1⊥OA且AA1=1,根据勾股定理,得OA1=√2;再过A1作A1A2⊥OA1且A1A2=1,得OA2=√3;…以此类推,得OA2017=______ .14.如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(−2,0),点D在y轴上,则点C的坐标是______.15.如图,在平面直角坐标系中,点M是直线y=−x上的动点,过点M作MN⊥x轴,交直线y=x于点N,当MN≤8时,设点M的横坐标为m,则m的取值范围为______.三、解答题(本大题共10小题,共100.0分)16.(10分)已知△ABC的三边长a、b、c均为整数,且a和b满足√a−2+b2−6b+9=0,试求△ABC中边c的长.17.(10分)如图是一副秋千架,左图是从正面看,当秋千绳子自然下垂时,踏板离地面0.5m(踏板厚度忽略不计),右图是从侧面看,当秋千踏板荡起至点B位置时,点B离地面垂直高度BC为1m,离秋千支柱AD的水平距离BE为1.5m(不考虑支柱的直径).求秋千支柱AD的高.18.(10分)已知线段AB,直线l垂直平分AB且交AB于点O,以O为圆心,AO长为半径作弧,交直线l于C,D两点,分别连接AC,AD,BC,BD.(1)根据题意,补全图形;(2)求证:四边形ACBD为正方形.19.(10分)某生态体验园推出了甲、乙两种消费卡,设入园次数为x时所需费用为y元,选择这两种卡消费时,y与x的函数关系如图所示,解答下列问题:(1)分别求出选择这两种卡消费时,y关于x的函数表达式;(2)请根据入园次数确定选择哪种卡消费比较合算.20.(8分)如图,一次函数y=kx+b(k≠0)的图象经过A,B两点.(1)求这个一次函数的解析式;(2)结合函数图象,直接写出关于x的不等式kx+b<4的解集.21.(8分)已知,如图,AC,BD是矩形ABCD的两条对角线,AE=CG=BF=DH.求证:四边形EFGH是矩形.22.(10分)阅读下面的解题过程,判断其是否正确.若不正确,请写出正确的解答.过程.已知m为实数,化简:−√−m3−m√−1m√−m=(−m−1)√−m.解:原式=−m√−m−m⋅1m23.(10分)在一张纸上画两个全等的直角三角形,并把它们拼成如图形状,请用两种方法表示这个梯形的面积.利用你的表示方法,能得到勾股定理吗?24.(12分)如图,在菱形ABCD中,点E,F在对角线AC上,且AE=CF.(1)求证:△ABE≌△ADE;(2)求证:四边形BFDE是菱形;(3)若AC=4√2,BD=8,AE=√2,请求出四边形BFDE的面积.25.(12分)新冠疫情牵动着全中国人的心,武汉在封城后需要大量的物资供应,与武汉相距800千米的西安人积极地向武汉送去援助,疫情暴发后,甲、乙两车同时从西安出发驶向武汉,甲车到达武汉后立即返回.下图是它们离西安的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车行驶过程中y与x之间的函数表达式,并写出自变量x的取值范围;(2)当它们行驶了9小时时,两车相遇,求乙车的速度.答案1.D2.B3.A4.C5.C6.D7.B8.C9.C10.B11.<12.213.√201814.(−5,4)15.−4≤m≤416.解:√a−2+b2−6b+9=0可以变形为:√a−2+(b−3)2=0,∵√a−2≥0,(b−3)2≥0∴a=2,b=3,∴3−2<c<3+2∴c可以是2或3或4,17.解:设AD=xm,则由题意可得AB=(x−0.5)m,AE=(x−1)m,在Rt△ABE中,AE2+BE2=AB2,即(x−1)2+1.52=(x−0.5)2,解得x=3.即秋千支柱AD的高为3m.答:秋千支柱AD高为3m.18.解:(1)如图所示:(2)证明:∵直线l垂直平分AB,∴AC=BC,BD=AD,∠AOC=∠AOD=90°,在△AOC 和△AOD 中{CO =DO ∠AOD =∠AOD AO =AO,∴△AOC≌△AOD(SAS),∴AC =BC =BD =AD ,∴四边形ACBD 是菱形,又∵OA =OB =OC =OD ,∴∠CAD =45°+45°=90°,∴菱形ACBD 为正方形.19.解:(1)设y 甲=k 1x ,根据题意得5k 1=100,解得k 1=20, ∴y 甲=20x ;设y 乙=k 2x +100,根据题意得:20k 2+100=300,解得k 2=10,∴y 乙=10x +100;(2)①y 甲<y 乙,即20x <10x +100,解得x <10,当入园次数小于10次时,选择甲消费卡比较合算;②y 甲=y 乙,即20x =10x +100,解得x =10,当入园次数等于10次时,选择两种消费卡费用一样;③y 甲>y 乙,即20x >10x +100,解得x >10,当入园次数大于10次时,选择乙消费卡比较合算.20.解:(1)将点A(3,4),B(0,−2)的坐标分别代入y =kx +b 中,得 {3k +b =4b =−2, 解得{k =2b =−2, 故一次函数的解析式y =2x −2;(2)观察图象可知:关于x 的不等式kx +b <4的解集为x <3. 21.证明:∵四边形ABCD 是矩形,∴AC =BD ,AO =BO =CO =DO .∵AE =BF =CG =DH ,∴OE =OF =OG =OH .∴四边形EFGH是平行四边形(对角线互相平分的四边形是平行四边形).∵OE+OG=FO+OH,即EG=FH,∴四边形EFGH是矩形(对角线相等的平行四边形是矩形).22.解:不正确;正确解答:由题意得:−m3≥0,−1m⩾0,∴m<0,∴原式=−√m2×(−m)−m√−mm2,=−|m|√−m−m×|1m|√−m,=m√−m+√−m,=(m+1)√−m.23.解:∵梯形的面积为12(a+b)(a+b)=12ab+12ab+12c2,∴a2+2ab+b2=ab+ab+c2,∴a2+b2=c2.24.(1)证明:∵四边形ABCD是菱形,∴AB=AD,∠BAE=∠DAE,在△ABE和△ADE中,{AB=AD∠BAE=∠DAE AE=AE,∴△ABE≌△ADE(SAS);(2)证明:设BD与AC相交于O,∵四边形ABCD是菱形,∴AC⊥BD,OA=OC,OB=OD,∴EF⊥AD,∴AE=CF,∴OE=OF,∴四边形BFDE是菱形;(3)解:∵AC=4√2,AE=√2,AE=CF,∴EF =AC −2AE =4√2−2√2=2√2, 由(2)知:四边形BFDE 是菱形, ∴四边形BFDE 的面积=12EF ×BD =12×2√2×8=8√2. 25.解:(1) ①当0≤x ≤8时,设y =k 1x(k 1≠0), 把点(8,800)代入,得k 1=100, 所以y =100x ; ②当8≤x ≤18时,设y =kx +b(k ≠0), ∵图象过(8,800),(18,0)两点, ∴{8k +b =80018k +b =0,解得{k =−80b =1440 ∴y =−80x +1440,即y ={100x(0⩽x ⩽8)−80x +1440(8<x ⩽18)(2)当x =9时,y =−80×9+1440=720, ∴v 乙=720÷9=80(千米/时). 答:乙车的速度为80千米/时.。
八年级下学期第三次月考数学试卷附带答案一.单选题。
(每小题4分,共40分)1.如图,在平行四边形ABCD中,∠A=55°,则∠B的度数是()A.55°B.45°C.125°D.145°(第1题图)(第2题图)(第4题图)2.如图,四边形ABCD为平行四边形,点E在线段BC的延长线上,∠DCE=120°,则∠A=()A.40°B.50°C.130°D.都不对3.下列不能判断一个四边形是平行四边形的是()A.一组对边平行且相等的四边形B.两组对边分别相等的四边形C.对角线互相平分的四边形D.一组对边相等,另一组对边平行的四边形4.如图,四边形ABCD中,AB=CD,添加下列一个条件能使四边形ABCD成为平行四边形的是()A.AB∥CDB.AD∥BCC.AB=BCD.AB=AC5.若正多边形的一个外角是60°,则这个正多边形的边数是()A.4B.5C.6D.76.若一个正方形的边长为4,则它的面积是()A.8B.12C.16D.207.如图,小明剪了两条宽均为√3的纸条,交叉叠放在一起,且它们的夹角为60°,则它们重叠部分的面积为()√3 D.2√3A.√2B.1C.23(第7题图)(第10题图)8.下列命题中,真命题的是()A.对角线相等的四边形是矩形B.对角线垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形9.顺次连接四边形的各边中点得到的四边形是矩形,原来四边形的对角线一定满足的条件是()A.互相平分B.相等C.互相垂直D.互相垂直平分10.如图,在平行四边形ABCD中,分别以点B和D为圆心,大于1BD的长为半径画弧,两弧2交于点M和N,直线MN分别交AD,BC于点E和F,连接BE,DF,若∠BAD=120°,AE=1,AB=2,则线段BF的长是()A.√7+1B.√3+√2C.3D.√7二.填空题。
(每小题4分,共24分)11.已知菱形的周长为20cm,两个邻角的比为2:1,则较短的对角线长为cm。
12.一个n边形从一个顶点出发引出的对角线可将其分割成5个三角形,则n的值为.13.若一个正方形的对角线的长为6cm,则这个正方形的面积是cm2.14.一个多边形的内角和比它的外角和的3倍少180°,则这个多边形的边数是.15.已知四边形ABCD是矩形,E是矩形ABCD的边上的点,且EA=EC,若AB=6,AC=2√10,则DE的长是.16.如图,点A和B坐标分别为A(2,0),B(0,2),点C为坐标平面内一点,BC=1,点M 为线段AC的中点,连接OM,则OM的最大值为.(填序号)三.解答题。
17.(10分)如图,在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF,求证:BE=DF.18(10分)如图,在菱形ABCD中,E、F分别在边BC、CD上,且CE=CF,求证:AE=AF.19.(10分)如图,在矩形ABCD中,O是对角线AC,BD的交点,AE⊥BD于点E,DF⊥AC 于点F,求证:AE=DF.20.(10分)如图,矩形ABCD和矩形AECF有公共顶点A和C,AE,BC相交于点G,AD,CF 相交于点H,求证:△ABG≌△CDH.21.(10分)如图,在平行四边形ABCD中,点E,F在对角线BD上,BA⊥AF,DC⊥CE.求证:DF=BE.22.(12分)如图,在正方形ABCD中,点E,F分别在边AB,BC上,并且DE=DF,求证:BE=BF.23.(12分)如图,是一张矩形纸片ABCD(AD>AB)O是对角线AC的中点,过点O的直线EF⊥AC交AD于点E,交BC于点F.(1)求证:四边形AFCE是菱形.(2)若AE=13cm,△ABF的周长为30cm,求△ABF的面积?.24.(12分)如图,△ABC是等腰直角三角形,∠ACB=90°,AC=BC=6,D在线段BC上,E 是线段AD的一点,连接CE,将线段CE以C为旋转中心顺时针旋转90°得到线段CF,连接BF.(1)如图1,猜想AE和BF的数量关系和位置关系,并说明理由.(2)当A,E,F三点共线时,如图2,若BF=2,求AF的长.(3)如图3,若∠BAD=15°,连接DF,当E运动到使得∠ACE=30°时,求△DEF的面积.答案解析一.单选题。
(每小题4分,共40分)1.如图,在平行四边形ABCD中,∠A=55°,则∠B的度数是( C )A.55°B.45°C.125°D.145°(第1题图)(第2题图)(第4题图)2.如图,四边形ABCD为平行四边形,点E在线段BC的延长线上,∠DCE=120°,则∠A=( B )A.40°B.50°C.130°D.都不对3.下列不能判断一个四边形是平行四边形的是( D )A.一组对边平行且相等的四边形B.两组对边分别相等的四边形C.对角线互相平分的四边形D.一组对边相等,另一组对边平行的四边形4.如图,四边形ABCD中,AB=CD,添加下列一个条件能使四边形ABCD成为平行四边形的是( A )A.AB∥CDB.AD∥BCC.AB=BCD.AB=AC5.若正多边形的一个外角是60°,则这个正多边形的边数是( C )A.4B.5C.6D.76.若一个正方形的边长为4,则它的面积是( C )A.8B.12C.16D.207.如图,小明剪了两条宽均为√3的纸条,交叉叠放在一起,且它们的夹角为60°,则它们重叠部分的面积为( D )A.√2B.1C.23√3 D.2√3(第7题图)(第10题图)8.下列命题中,真命题的是( C )A.对角线相等的四边形是矩形B.对角线垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形 9.顺次连接四边形的各边中点得到的四边形是矩形,原来四边形的对角线一定满足的条件是( C )A.互相平分B.相等C.互相垂直D.互相垂直平分10.如图,在平行四边形ABCD 中,分别以点B 和D 为圆心,大于12BD 的长为半径画弧,两弧交于点M 和N ,直线MN 分别交AD ,BC 于点E 和F ,连接BE ,DF ,若∠BAD=120°,AE=1,AB=2,则线段BF 的长是( D )A.√7+1B.√3+√2C.3D.√7 二.填空题。
(每小题4分,共24分)11.已知菱形的周长为20cm ,两个邻角的比为2:1,则较短的对角线长为 5 cm 。
12.一个n 边形从一个顶点出发引出的对角线可将其分割成5个三角形,则n 的值为 7 . 13.若一个正方形的对角线的长为6cm ,则这个正方形的面积是 18 cm 2. 14.一个多边形的内角和比它的外角和的3倍少180°,则这个多边形的边数是 7 . 15.已知四边形ABCD 是矩形,E 是矩形ABCD 的边上的点,且EA=EC ,若AB=6,AC=2√10,则DE 的长是 83或2√343.16.如图,点A 和B 坐标分别为A (2,0),B (0,2),点C 为坐标平面内一点,BC=1,点M 为线段AC 的中点,连接OM ,则OM 的最大值为 12+√2 .(填序号)三.解答题。
17.(10分)如图,在平行四边形ABCD 中,E 、F 是对角线AC 上的两点,且AE=CF ,求证:BE=DF.∵四边形ABCD是平行四边形∴AB∥CD,AB=CD∴∠BAE=∠DCF在△ABE和△CDF中{AB=CD∠BAE=∠DCF AE=CF∴△ABE≌△CDF∴BE=DF18(10分)如图,在菱形ABCD中,E、F分别在边BC、CD上,且CE=CF,求证:AE=AF.∵四边形ABCD菱形∴AB=AD=BC=CD,∠B=∠D∵CE=CF∴BE=DF在△ABE和△ADF中{AB=AD ∠B=∠D BE=DF∴△ABE≌△ADF∴AE=AF19.(10分)如图,在矩形ABCD中,O是对角线AC,BD的交点,AE⊥BD于点E,DF⊥AC 于点F,求证:AE=DF.∵四边形ABCD 是矩形,O 是对角线AC ,BD 的交点 ∴OA=OC=OB=OD∵AE ⊥BD 于点E ,DF ⊥AC 于点F ∴∠AEO=∠DFO=90° 在△AOE 和△DOF 中 {∠AEO =∠DFO ∠AOE =∠DOF AO =DO∴△AOE ≌△DOF ∴AE=DF20.(10分)如图,矩形ABCD 和矩形AECF 有公共顶点A 和C ,AE ,BC 相交于点G ,AD ,CF 相交于点H ,求证:△ABG ≌△CDH.∵四边形ABCD 和四边形AECF 都是矩形 ∴AH ∥GC ,AG ∥CH∴四边形AGCH 是平行四边形 ∴∠GAH=∠GCH∵四边形ABCD 和四边形AECF 都是矩形 ∴∠B=∠D=90° ∴∠BAG=∠DCH在△ABG 和△CDH 中 {∠BAG =∠DCH AB =CD∠B =∠D ∴△ABG ≌△CDH21.(10分)如图,在平行四边形ABCD中,点E,F在对角线BD上,BA⊥AF,DC⊥CE.求证:DF=BE.证明:∵四边形ABCD是平行四边形∴AB∥CD,AB=CD∴∠ABD=∠CDB∵AF⊥BA,DC⊥CE∴∠BAF=∠DCE=90°∴△ABF≌△CDE∴BF=DE∴BF-EF=DE-EF∴BE=DF.22.(12分)如图,在正方形ABCD中,点E,F分别在边AB,BC上,并且DE=DF,求证:BE=BF.∵四边形ABCD是正方形∴AD=DC ∠A=∠C=90°在Rt△ADE和Rt△DCF中{AD=DCDE=DF∴Rt△ADE≌Rt△DCF∴AE=CF∵AB=BC∴BE=BF23.(12分)如图,是一张矩形纸片ABCD(AD>AB)O是对角线AC的中点,过点O的直线EF⊥AC交AD于点E,交BC于点F.(1)求证:四边形AFCE 是菱形.(2)若AE=13cm ,△ABF 的周长为30cm ,求△ABF 的面积?.(1)∵O 是对角线AC 的中点∴AO=CO∵矩形ABCD 的边AD ∥BC∴∠ACB=∠CAD∵EF ⊥AC∴∠AOE=∠COF=90°在△AOE 和△COF 中{∠ACB =∠CADOA =OC∠AOE =∠COF∴△AOE ≌△COF∴AE=CF 又∵AE ∥CF∴四边形AFCE 是平行四边形∵EF ⊥AC∴四边形AFCE 是菱形(2)∵AE=13cm ,四边形AFCE 是菱形∴AF=AE=13cm∵△ABF 的周长为30cm∴AB+BF=17cm设AB=x cm ,则BF=(17-x )cm在Rt △ABF 中∴x 2+(17-x )2=132∴x=2或5∴△ABF 的面积为12×5÷2=3024.(12分)如图,△ABC 是等腰直角三角形,∠ACB=90°,AC=BC=6,D 在线段BC 上,E 是线段AD 的一点,连接CE ,将线段CE 以C 为旋转中心顺时针旋转90°得到线段CF ,连接BF.(1)如图1,猜想AE 和BF 的数量关系和位置关系,并说明理由.(2)当A ,E ,F 三点共线时,如图2,若BF=2,求AF 的长.(3)如图3,若∠BAD=15°,连接DF ,当E 运动到使得∠ACE=30°时,求△DEF 的面积.(1)∵如图,延长AD交BF于点M ∴△ABC是等腰直角三角形∴CA=CB ∠ACB=90°∵将线段CE旋转知∴∠ECF=90°,CE=CF∴∠ACE=∠BCF∴△ACE≌△BCF∴AE=BF ∠CAE=∠CBF∴∠AMB=90°∴AE⊥BF(2)2√17(3)3√3-3。