作业·假设检验
- 格式:doc
- 大小:170.00 KB
- 文档页数:4
假设检验(hypothesis testing)方法演变:t检验、z检验、F检验、卡方检验,方差分析( ANOV A)➢概述假设检验是分析数据的一种方法。
回答此类问题:“随机发生的事件的概率是多少?”另一方面的问题是:“我们从数据中发现的结果是真的吗?”当问题是有关大的总体而只能得到总体的一个样本时用假设检验。
这种方法被用来回答在质量改进中一系列重要的问题,如“我们在过程中所做的改变对产出创造了有意义的差别吗?”或”顾客对场地A的满意度是不是比其他场地高?”最常用的检验是:z检验、t检验、F检验、卡方(χ2)检验和方差分析。
这些检验和其他的检验都是基于均值、方差、比例及其他统计量所形成的具有常见模式的频率分布。
最有名的分布就是正态分布,它是:检验的基础。
t检验、F检验和卡方(χ2)检验是基于t分布、F分布和卡方分布。
➢适用场合·想知道一组或更多组数据的平均值、比例、方差或其他特征时;·当结论是基于更大总体中所取得的样本时。
例如:·想确定一个过程的均值或方差有否改变;·想确定很多数据集的均值或方差是否不同:·想确定两组不同的数据集的比例是否不同;·想确定真正的比例、均值或方差是否和一个定值相等(或大于或小于)。
➢实施步骤假设检验的步骤由三部分组成:理解要解决的问题并安排检验(以下步骤1~3);数字计算通常由计算机完成(步骤4和步骤5);应用数值结果到实际问题中(步骤6)。
虽然计算机能处理数字,但理解假没检验隐含的观念对第1部分和第3部分至关重要。
如果第一次接触假设检验,那么从看“注意事项”中的术语和定义开始。
这些定义解释了假设检验的慨念,然后再回来看这个步骤。
本书不可能详细地涉及假设检验。
这个步骤是个综述和快速参考。
要得到更多的信息,查阅统计学参考书或请教统计学家。
1确定要从数据中获得的结论。
选择适当的检验方法。
用哪种检验取决于检验的目的和数据的种类。
经济数学基础 第12章 假设检验第12章 假设检验典型例题与综合练习一、典型例题1.U 检验例1某切割机在正常工作时,切割的每段金属棒长度服从正态分布,且其平均长度为10.5cm ,标准差为0.15cm.今从一批产品中随机抽取15段进行测量,其结果为(单位:cm )10.5 10.6 10.1 10.4 10.5 10.3 10.3 10.9 10.2 10.6 10.8 10.5 10.7 10.2 10.7假设方差不变,问该切割机工作是否正常?(α=0.05)这是已知方差2σ,对正态总体的均值μ进行检验的问题,用U 检验法解:,5.10:0=μH 5.10:1≠μH选统计量n x U /0σμ-=计算得x =10.48,已知15.0=σ,n =15,计算检验量516.015/15.05.1048.10=-=U查正态分布数值表求临界值λ,因为05.0=αλ,975.021)(=-=Φαλ,得经济数学基础 第12章 假设检验λ=975.0U =1.96,因为975.0U U <,故0H 相容,即在显著水平05.0=α下可以认为该切割机工作正常.2. T 检验例1 随机抽取某班28名学生的英语考试成绩,得平均分数为80=x 分,样本标准差8=s 分,若全年级的英语成绩服从正态分布,且平均成绩为85分,试问在显著水平05.0=α下,能否认为该班的英语成绩与全年级学生的英语平均成绩没有本质的差别这是单个正态总体),(~2σμN X ,方差2σ未知时关于均值μ的假设检验问题,用T 检验法.解85:0=μH ,85:1≠μH选统计量n s x T /0μ-=已知80=x ,8=s ,n =28,850=μ,计算得ns x T /0μ-=31.328/88580=-=查t 分布表,05.0=α,自由度27,临界值λ=052.2)27(975.0=t .经济数学基础 第12章 假设检验由于>T 052.2)27(975.0=t ,故拒绝H ,即在显著水平05.0=α下不能认为该班的英语成绩为85分.3. x 2检验例 1 检验某电子元件可靠性指标15次,计算得指标平均值为95.0=x ,样本标准差为03.0=s ,该元件的订货合同规定其可靠性指标的标准差为0.05,假设元件可靠性指标服从正态分布.问在10.0=α下,该电子元件可靠性指标的方差是否符合合同标准?取10.0=α.这是单个正态总体),(~2σμN X ,关于方差2σ的假设检验问题,用2χ检验法.解22005.0:=σH ,22105.0:≠σH当H 为真时,统计量222)1(σχs n -=~)1(2-χn拒绝域是>2χ)1(205.0-n χ或<2χ)1(295.0-χn n =15,03.0=s ,05.00=σ,检验值22205.003.0)15(-=χ=5.04因为10.0=α,自由度14,查2χ分布表571.6)14(295.0=χ,知571.61=λ ,)14(295.012χλχ=<,所以拒绝H ,即该电子元件可靠性指标的方差不符合合同标准.经济数学基础 第12章 假设检验由于2χ分布的图形是不对称的,所以左右两个临界值是不同的.比较检验值2χ与临界值21,λλ的大小:只要满足2χ>1λ或2χ<2λ之一,就可以H ;否则接受0H .二、综合练习1.填空题1. 对总体);(~θx f X 的未知参数θ的有关命题进行检验,属于 ________问题.2. 小概率原理是指 .3.设),(~2σμN X ,当2σ已知时,检验00:μμ=H ,用 检验法,选用统计量U = ,当H 成立时,统计量服从 分布.2.单选题1.对正态总体方差的假设检验用的是( ).(A) U 检验法 (B) T 检验法 (C) 2χ检验法 (D) F 检验法2.设nx x x ,,,21Λ是来自正态总体),(2σμN (2σ已知)的样本,按给定的显著性水平α检验00:μμ=H (已知);1:μμ≠H 时,判断是否接受H 与( )有关.经济数学基础 第12章 假设检验(A) 样本值,显著水平α (B) 样本值,样本容量n (C) 样本容量n ,显著水平α (D) 样本值,样本容量n ,显著水平α3.在假设检验中,显著水平α表示( ). (A)P {接受00H H 假}=α (B)P {拒绝00H H 真}=α (C)P {接受0H H 真}=α (D)P {拒绝0H H 假}=α1. C 2.D 3.B3.计算题1.某手表厂生产的圆形女表表壳,在正常条件下,直径服从均值为20mm ,方差为1mm 2的正态分布,某天抽查10只表壳,测得直径为(单位:mm ):19 19.5 19.8 20 20.220.5 18.7 19.6 20 20.1问生产情况是否正常?第二天测了5只,测得直径为(单位:mm ):20.2 21.3 22.4 23.5 24.6 结论是什么?取02.0=α.2.洗衣粉包装机包出的洗衣粉重量是一个随机变量),(2σμN ,机器正常工作时,5000=μ克,有一天开机后,随机地抽取9袋洗衣粉,称得重量为(单位:g ):497 506 528 524 498经济数学基础 第12章 假设检验511 520 515 512问以05.0=α显著水平检验这天机器的工作是否正常.3.已知某化纤厂生产的纤度平日服从正态分布)048.0,405.1(2N ,某日抽取5根化纤,测得其纤度为1.32 1.55 1.36 1.40 1.44问该日生产的化纤纤度总体方差2σ是否正常?取05.0=α.三、本章作业1.由经验知某产品重量)05.0,15(~N X ,现抽取6个样品,测得重量为(单位:kg ):14.7 15.1 14.8 15.0 15.2 14.6设方差不变,问平均重量是否仍为15kg ?取05.0=α.2.某机器在正常工作时,生产的产品平均每个应为50克重,从该机器生产的一批产品中抽取9个,分别称得重量为(单位:g ):经济数学基础 第12章 假设检验52.1 50.5 51.2 49.7 49.550.5 58.7 50.5 48.3 设产品重量服从正态分布,问这批产品质量是否正常?取05.0=α3.正常人的脉搏平均72次/分,某医生测得10例慢性中毒者的脉搏为(单位:次/分)54 67 68 70 6667 70 65 69 78 设中毒者的脉搏服从正态分布,问中毒者和正常人的脉搏有无显著性差异?取05.0=α.1.可以认为平均重量仍为15kg ; 2.这批产品的质量正常; 3.没有显著差异.。
概率论与数理统计实验实验3 参数估计假设检验实验目的实验内容直观了解统计描述的基本内容。
2、假设检验1、参数估计3、实例4、作业一、参数估计参数估计问题的一般提法X1, X2,…, Xn要依据该样本对参数作出估计,或估计的某个已知函数.现从该总体抽样,得样本设有一个统计总体,总体的分布函数向量). 为F(x, ),其中为未知参数( 可以是参数估计点估计区间估计点估计——估计未知参数的值区间估计——根据样本构造出适当的区间,使他以一定的概率包含未知参数或未知参数的已知函数的真?(一)、点估计的求法1、矩估计法基本思想是用样本矩估计总体矩.令设总体分布含有个m未知参数??1 ,…,??m解此方程组得其根为分别估计参数??i ,i=1,...,m,并称其为??i 的矩估计。
2、最大似然估计法(二)、区间估计的求法反复抽取容量为n的样本,都可得到一个区间,这个区间可能包含未知参数的真值,也可能不包含未知参数的真值,包含真值的区间占置信区间的意义1、数学期望的置信区间设样本来自正态母体X(1) 方差?? 2已知, ?? 的置信区间(2) 方差?? 2 未知, ?? 的置信区间2、方差的区间估计未知时, 方差?? 2 的置信区间为(三)参数估计的命令1、正态总体的参数估计设总体服从正态分布,则其点估计和区间估计可同时由以下命令获得:[muhat,sigmahat,muci,sigmaci] = normfit(X,alpha)此命令以alpha 为显著性水平,在数据X下,对参数进行估计。
(alpha缺省时设定为0.05),返回值muhat是X的均值的点估计值,sigmahat是标准差的点估计值, muci是均值的区间估计,sigmaci是标准差的区间估计.例1、给出两列参数?? =10, ??=2正态分布随机数,并以此为样本值,给出?? 和?? 的点估计和区间估计命令:r=normrnd(10,2,100,2);[mu,sigm,muci,sigmci]=normfit(r);[mu1,sigm1,muci1,si gmci1]=normfit(r,0.01);mu=9.8437 9.9803sigm=1.91381.9955muci=9.4639 9.584310.2234 10.3762sigmci=1.68031.75202.2232 2.3181mu1=9.8437 9.9803sigm1=1.91381.9955muci1=9.3410 9.456210.3463 10.5043sigmci1=1.6152 1.68412.3349 2.4346例2、产生正态分布随机数作为样本值,计算区间估计的覆盖率。
假设检验:
1. (卢淑华课后练习)根据某公司的上报,平均每天的营业额为55万元。
经过6天的普查,其营业额为(设营业额满足正态分布):
592000元683000元578000元565000元637000元573000元。
问:原摊贩上报的数字是否可信?(显著性水平=0.05)
解题:(1)原假设H0:u = 55万元
即经普查所得的平均每天的营业额与55万元无显著差异。
备择假设H1 : u 不等于55万元
即经普查所得的平均每天的营业额与55万元存在显著差异。
(2)选择的检验统计量为t统计量
(3)
(4)分析:单样本t检验的t统计量的观测值为2.904,对应的概率p-值(sig.)为0.031。
给定的显著性水平a=0.05, 由于概率p-值小于显著性水平a,因此应该拒绝原假设,认为经普查所得的平均每天的营业额与55万元存在显著差异。
同时55万元没有在相应的95%的置信区间,也证实了上述结论。
2、工作人员宣称水样中钙的均值为每立方米20.7克,现用某方法重复测定该水样11次,分别测得每立方米钙的含量为:20.99 20.41 20.10 20.00 20.91 22.60 20.99 20.41 23.00 22.00 20.00 。
问该方法测得的均值是否偏高?(0.05)
解题:(1)(单样本t检验)
原假设:用此方法测得的均值与20.7克无显著差异。
备择假设
(2)选择的检验统计量为t 统计量
分析:t统计量的观测值为1.064,对应的概率p-值为3.312。
给定的显著性水平为a=0.05,由概率p-值大于0.05,因此接受原假设,认为用此方法测得的均值与20.7克无显著差异。
同时20.7克在相应的95%的置信区间内也证实了这点。
3、长春市政府官员宣称,长春市居民的生活水平已经明显提高,平均居民月收入已经达到1200元。
现以抽样调查方法来验证该官员的说法是否正确,随机抽样15名居民,他们的月收入分别为:1350 1300 1100 1200 1250 1000 1100 1350 1200 1150 1050 1100 1150 1200 1250 ,根据这个调查结果,如何评价该官员的说法?
解题:(单总体t检验)
(1)原假设:居民平均收入与1200无显著差异
(2)选择检验统计量为t统计量
4. 对两种不同的水稻品种A和B分别统计了8个地区的单位面积产量(公斤),得到下面数据:
A品种:86 87 56 93 84 93 75 79
B品种:80 79 58 91 77 82 76 66
要求检验两个水稻品种的单位面积产量之间是否有显著。
解题:(1)原假设H0:u1-u2=0 ,两个水稻品种的单位面积产量之间没有显著差异备择假设H1:u1-u2不等于0,两个水稻品种的单位面积产量之间存在显著差异(2)选择检验统计量为f统计量和t统计量
分析:
两总体方差是否相等的f检验。
这里f统计量的观测值为0.205,对应的概率p值为0.339。
给定的显著性水平为0.05,因此概率p-值大于显著性水平,所以接受原假设,认为两个水稻品种的单位面积产量之间没有显著差异。
同时置信区间跨零也证实了这一点。
5. 某克山病区测得11名急性克山病患者与13名健康人的血磷值如下:
患者:2.60 3.24 3.73 3.73 4.32 4.73 5.18 5.58 5.78 6.40 6.53
健康人:1.67 1.98 1.98 2.33 2.34 2.50 3.60 3.73 4.14 4.17 4.57
4.82
5.78
问该地急性克山病患者与健康人的血磷值是否不同?
解题:(1)原假设H0:u1-u2=0,该地急性克山病患者与健康人的血磷值没有显著差异备择假设H1:u1-u2不等于0,
该地急性克山病患者与健康人的血磷值存在显著差异
(2)选择统计量
(3)
分析:
A 两总体方差是否相等的f统计量。
这里f统计量的观测值为0.038,对于的概率p-值(sig.)为0.019。
给定的显著性水平为0.05,因为概率p-值小于0.05,可以认为两总体的方差有显著差异。
B 两总体均值的检验。
由于两总体的方差有显著差异,因此应该看第二行t检验的结果,t 统计量的观测值为2.54,对于的双尾概率p-值为0.019。
给定的a为0.05,因为p-小于a,说明两者均值存在显著差异,所以应该拒绝原假设,认为两者存在显著差异。
同时置信区间不夸零也从另一角度证实了上述判断。