2.1平面向量的实际背景及基本概念
- 格式:doc
- 大小:179.00 KB
- 文档页数:5
平面向量的实际背景及基本概念教学设计(一)创设情境,归纳共性结合ppt,展示二个情境。
(1)一只老鼠和一只猫相距6米,老鼠以每秒4米的速度逃窜,猫以每秒7米的速度追,猫会追上老鼠吗?(2)如何由A点确定B点位置?(3)展示教材中力的示意图【设计意图】(1)以上二个实例,分别给同学们展示了速度、位移、力三个物理量,让学生充分感受“既有大小又有方向的量”是客观存在的。
(2)通过二个例子,让学生抽象出数学模型,进而给出向量的概念。
(3)上述生活中的二个例子可以激活学生已有的相关经验,进一步加深对既有大小又有方向的量的理解。
(二)抓住本质,抽象定义刚才同学们提到的速度、位移、力等既有大小又有方向的量在生活中大量存在,类似于以前我们从一支笔、一本书、一张桌子抽象出了只有大小的数量1,数学中对以上既有大小又有方向的量进行抽象,就形成了一种新的量——向量。
教师随即强调:从向量的概念可以看出,它不同于我们之前学习研究的“数”。
数只有大小,没有方向。
而向量既有大小又有方向。
【设计意图】反复强调方向的重要性,向量的方向虽然不难理解,但容易被忽略。
(三)合作探究,形象表示师:通过以前的学习,我们知道数量可以用数轴上的点来表示,认识向量之后,你打算怎样表示向量呢?给予学生充足的时间思考。
【设计意图】(1)当我们认识一个新事物后,自然会想到如何来表示它。
在过渡语言中,渗透研究新事物的基本套路。
(2)表示向量时,既要考虑大小,又要兼顾方向,这是一个难点,给予学生充足的时间,旨在期望学生自行突破。
教学预案:(1)若学生通过充分的独立思考后,仍然没有解决之道,教师可以鼓励同桌之间相互讨论。
(2)若充分讨论之后,仍然没有办法,此时教师给予适时引导:物理学中,我们是如何形象地表示力(位移)的大小和方向的?(3)在任何一个环节中,只要存在部分学生有了思路,便鼓励其到黑板上展示。
(4)展示结果时,学生如果不能一步到位,教师要适时引导,表示向量时,在合乎情理(既要考虑大小,又要兼顾方向)的前提下,如何让其表达更为简洁?发动全班学生的力量解决问题。
平面向量的实际背景及基本概念教学设计(一)创设情境,归纳共性结合ppt,展示二个情境。
(1)一只老鼠和一只猫相距6米,老鼠以每秒4米的速度逃窜,猫以每秒7米的速度追,猫会追上老鼠吗?(2)如何由A点确定B点位置?(3)展示教材中力的示意图【设计意图】(1)以上二个实例,分别给同学们展示了速度、位移、力三个物理量,让学生充分感受“既有大小又有方向的量”是客观存在的。
(2)通过二个例子,让学生抽象出数学模型,进而给出向量的概念。
(3)上述生活中的二个例子可以激活学生已有的相关经验,进一步加深对既有大小又有方向的量的理解。
(二)抓住本质,抽象定义刚才同学们提到的速度、位移、力等既有大小又有方向的量在生活中大量存在,类似于以前我们从一支笔、一本书、一张桌子抽象出了只有大小的数量1,数学中对以上既有大小又有方向的量进行抽象,就形成了一种新的量——向量。
教师随即强调:从向量的概念可以看出,它不同于我们之前学习研究的“数”。
数只有大小,没有方向。
而向量既有大小又有方向。
【设计意图】反复强调方向的重要性,向量的方向虽然不难理解,但容易被忽略。
(三)合作探究,形象表示师:通过以前的学习,我们知道数量可以用数轴上的点来表示,认识向量之后,你打算怎样表示向量呢?给予学生充足的时间思考。
【设计意图】(1)当我们认识一个新事物后,自然会想到如何来表示它。
在过渡语言中,渗透研究新事物的基本套路。
(2)表示向量时,既要考虑大小,又要兼顾方向,这是一个难点,给予学生充足的时间,旨在期望学生自行突破。
教学预案:(1)若学生通过充分的独立思考后,仍然没有解决之道,教师可以鼓励同桌之间相互讨论。
(2)若充分讨论之后,仍然没有办法,此时教师给予适时引导:物理学中,我们是如何形象地表示力(位移)的大小和方向的?(3)在任何一个环节中,只要存在部分学生有了思路,便鼓励其到黑板上展示。
(4)展示结果时,学生如果不能一步到位,教师要适时引导,表示向量时,在合乎情理(既要考虑大小,又要兼顾方向)的前提下,如何让其表达更为简洁?发动全班学生的力量解决问题。
2.1平面向量的实际背景及基本概念一、学习目标:1、了解向量的实际背景,理解平面向量的概念和向量的几何表示;2、掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;3、会区分平行向量、相等向量和共线向量.二、教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.教学难点:平行向量、相等向量和共线向量的区别和联系.三、自学设计1、向量的概念:我们把既有______,又有_______的量叫向量。
数量与向量有何区别?2、向量用带箭头的________表示。
线段的长短表示向量的______,箭头的方向表示向量的_____3、有向线段AB 与BA 是相同的吗?它们的起点、终点分别是什么?有向线段的三要素是什么?4、向量AB 的大小就是向量AB 的长度或模,记作__________;长度为零的向量叫做_________,记作____零向量的方向是___________;长度为1的向量叫做_______________;单位向量大于零向量吗?5、向量的符号表示是怎样的?6、什么是平行向量?若向量,a b 是平行向量,记作___________。
以下各图中,是平行向量的有哪些?7、若向量a 是任一向量平行,则零向量与向量a 平行吗?8、____________且____________的向量叫相等向量。
两个向量相等,它们的起点、终点一定相同吗?9、两个向量是共线向量,那么它们是平行向量吗?四、达标练习(A )1、指出下列哪些量是向量:__________________________①重力;②速度;③高度;④位移;⑤路程;⑥面积;⑦体积;⑧温度;⑨功;⑩质量。
2、某人东行100 米,右转弯南行米,则这时他位移的方向是( ).A. 东偏南60°B. 南偏东60°C. 东偏南30°D. 南偏东30°3、下列说法正确的是( )A 、 向量 AB // CD ,则这两个向量所指的方向相同; B 、长度相等的向量叫相等向量;C 、零向量的长度为 0,而方向是任意的;D 、共线向量是在同一直线上的向量.4、下列命题正确的是( ).A. 若||0a = ,则0a =B. 若||||a b = 则a b =C. 若||||a b = ,则,a b 是平行向量D. 若,a b 是平行向量,则a b =5、下列说法错误的是( ).A. 零向量的长度为零B. 零向量与任意向量都是共线向量C. 零向量没有方向D. 零向量的方向是任意的(B )6、在正△A BC 中,P 、Q 、R 是分别是 AB 、BC 、CA 的中点,则与向量PQ 相等的向量是( ).A. PR ,QRB. AR,RCC. RA ,CRD. PA ,QR7、下列说法中:(1)共线的单位向量必相等;(2)单位向量都共线; (3)与一非零向量共线的单位向量有且只有一个.其中正确的说法个数为( ).A. 0B. 1C. 2D. 38、长度等于 1 个单位的向量叫单位向量,把平面上所有的单位向量平移到相同的起点,那么它们的终点所构成的图形是( ).A. 一条线段B. 一段圆弧C. 两个孤立点D. 一个半径为1 的圆9、已知A ,B ,C 是圆O 上不同是三点中,则向量OB,OC, AO 是( ).A. 有相同起点的向量B. 单位向量C. 模相等的向量D. 相等的向量五、课后拓展延伸1.下列命题正确的是( )A. 若//a b 且//b c ,则//a cB.若0AB DC =≠ ,则四边形ABCD 一定是平行四边形C.向量,a b 不共线,则,a b都是非零向量 D.有相同起点的两个非零向量不平行2、下列说法中:①向量AB 与CD 是共线向量,则A 、B 、C 、D 四点必在一直线上;②单位向量都相等;③若四边形ABCD 是平行四边形中,则AB CD = ;④共线的向量,若起点不同,则终点一定不同.⑤若||||a b > 且,a b 同向,则a b > ;⑥向量//a b ,则向量,a b 的方向相同或相反;⑦向量AB ,CD 是共线向量,则 A 、B 、C 、D 四点必共线;⑧起点不同,但方向相同且模相等的几个向量是相等的向量. 正确的是_______________3、质点是这样运动的:①向正东方向运动s 米,②向西偏北60° 方向运动s 米,③向西偏东南60° 方向运动s 米,接下来重复上述运动,则质点第 10 次运动后质点位移的长度与方向分别为( ).A. 长度为10s 米,方向正东B. 长度为10s 米,方向北偏东60°C. 长度为s 米,方向正东D. 长度为s 米,方向北偏东60°4、在平行四边形ABCD 中,E 为AB 中点,F 为CD 中点,下列各组向量:①,AF CE ;②,AB CD ;③,AE AB ;④,AC BD 中,为共线向量的是_____________5、如图,O 为正方形ABCD 对角线的交点,四边形OAED ,OCFB 都是正方形。
高中数学学习材料(灿若寒星精心整理制作)2.1 平面向量的实际背景及基本概念同步检测一、选择题1. 下列说法中错误的是( )A. 零向量是没有方向的B. 零向量的长度为0C. 零向量与任一向量平D. 零向量的方向是任意的答案:A解析:解答:本题主要考查零向量的概念,对于选项A,零向量的方向是任意的,故错误;零向量的方向是任意的;零向量与任一向量平行;故A是错误的.分析:由题根据零向量的概念进行分析即可.2. 下列各量中不是向量的是( )A.浮力B.风速C.位移D.密度答案:D解析:解答:密度只有大小没有方向.分析:由题根据所给物理量结合向量的定义进行分析即可.3. 如图,点O是正六边形ABCDEF的中心,则以图中点A、B、C、D、E、F、O中的任一点为始点,与始点不同的另一点为终点的所有向量中,除向量OA外,与向量OA共线的向量共有( )A.6B.7C.8D.9解析:解答:本题主要考查向量的表示 与向量OA 共线的向量有,,,,,,,,AO OD DO AD DA EF FE BC CB 共9个,故选D.分析:由题结合所给图形,根据共线向量的定义进行观察即可.4. 设12,e e 是两个单位向量,则下列结论中正确的是( )A. 12e e =B.12e e >C.12e e =-D.12e e =答案:D解析:解答:由题根据单位向量长度为1,方向不定,不难得到所有单位向量的模相等,故选D.分析:本题主要考查了单位向量的定义,根据定义集合选项不难解决问题.5. 下列命题正确的是( )A.a 与b,b 与c共线,则a 与c 也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量a 与b 不共线,则a 与b 都是非零向量D.有相同起点的两个非零向量不平行答案:C解析:解答:题主要考查向量的概念,由于零向量与任一向量都共线,所以A 不正确;由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B 不正确;向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确;对于C ,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若a 与b不都是非零向量,即a 与b至少有一个是零向量,而由零向量与任一向量都共线,可有a 与b共线,不符合已知条件,所以有a 与b都是非零向量,所以应选C.分析:有关平行向量与共线向量、相等向量与相反向量的定义属于平时练习和考试的常考知识点,一定要认真理解,准确运用,难度不大.6. 某人先向正东方向走了x km ,然后他向右转90°,向新的方向走了3 km ,结果他离出发点恰好为33km ,那么x 的值为( ) A.3 B.32 C.3 D.23或3解析:解答:本题主要考查向量的概念,依题意,由勾股定理可得()222333,32x x+=∴=,故选B.分析:本题主要考查了向量的基本概念的物理背景,难度不大,主要是根据所学余弦定理计算路程,然后得到位移即可.7. 下列命题中正确的是( )A.若两个向量相等,则它们的起点和终点分别重合.B.模相等的两个平行向量是相等向量.C.若a和b都是单位向量,则a b=.D.两个相等向量的模相等.答案:D解析:解答:本题主要考查向量的概念,根据向量相等的定义易知两个相等向量的模相等,故选D;对于选项A,若两个向量相等,则它们的起点和终点不一定相等的;选项B:模相等的两个平行向量是相等向量是错误的,可以是方向相反的向量;C. 若a⃗和b⃗⃗都是单位向量,则模是相等的,但是两个向量不一定相等;D. 两个相等向量的模相等是正确的.分析:本题主要考查了相等向量,解决问题的根据是根据相等向量的定义就发现解决即可.8. 与AB反向的单位向量是( )A ABABB. ABC.ABAB- D.BA答案:C解析:解答:本题主要考查单位向量的概念,与AB反向的单位向量AB AB -.分析:本题主要考查了单位向量与相反向量,解决问题的关键是首先计算出所求向量的单位向量,然后根据方向相反得到结果.9. 如图,D、E、F分别是△ABC边AB,BC,CA上的中点,有下列4个结论:①,DA FE AF DE == ;②||DF CB ;③CF DE =;④FD BE =.其中正确的为( ) A. ①②④ B. ①②③ C. ②③ D. ①④答案:B解析:解答:由题根据所给图形满足条件结合对应向量的关系不难得到,DA FE AF DE == ,||DF CB ,CF DE = , -FD BE = ,所以①②③正确,故选B. 分析:本题主要考查了向量的模、相等向量、平行向量,解决问题的根据是结合所给图形对应的向量满足的几何关系结合向量的有关对应进行分析解决.10. 如图所示,等腰梯形ABCD 中,对角线AC 与BD 交于点P,点E,F 分别在两腰AD,BC 上,EF 过点P,且EF ∥AB,则下列等式成立的是( )A.AD BC =B.AC BD =C.PE PF =D.EP PF =答案:D解析:解答:根据相等向量的定义,分析可得:A 中,AD 与BC 的方向不同,故AD BC =错误;B 中,AC 与BD 的方向不同,故AC BD =错误;C 中,PE 与PF 的方向相反,故PE PF = 错误;D 中, EP 与PF 的方向相同,且长度都等于线段EF 长度的一半,故EP PF = 正确分析:本题主要考查了相等向量与相反向量,解决问题的关键是根据所给图形对应向量满足的条件结合相等向量与相反向量的定义进行发现解决即可.11. 下列命题中正确的个数是( )①向量AB 与CD 是共线向量,则A 、B 、C 、D 必在同一直线上;②向量a 与向量b 平行,则,a b 方向相同或相反;③若下列向量AB 、CD 满足AB CD > ,且AB 与CD 同向,则AB CD > ; ④若a b = ,则,a b 的长度相等且方向相同或相反;⑤由于零向量方向不确定,故不能与任何向量平行.A.0B.1C.2D.3答案:A解析:解答:本题主要考查向量的概念①错误,把共线向量与平面几何中的共线“混淆”; ②错误,忽视了如果其中有一个是零向量,则其方向不确定; ③错误,把向量与实数混为一谈,事实上向量不能比较大小; ④错误,由a b =,只能说明,a b 的长度相等,确定不了方向;⑤错误,不清楚零向量的概念.规定零向量与任一向量平行.故选A.分析:本题主要考查了零向量、单位向量、平行向量与共线向量、相等向量与相反向量,解决问题的关键是根据所给向量满足条件结合定义进行分析解决.12. 下列说法正确的个数是( )①若向量a,b 共线,向量b,c 共线,则a 与c 也共线;②任意两个相等的非零向量的起点与终点是一平行四边形的四个顶点;③向量a 与b 不共线,则a 与b 都是非零向量;④若a=b,b=c,则a=c.A.1B.2C.3D.4答案:B解析:解答:由于零向量与任意向量都共线,故当b 为零向量时,a,c 不一定共线,所以①不正确;两个相等的非零向量可以在同一直线上,故②不正确;向量a 与b 不共线,则a 与b 都是非零向量,否则不妨设a 为零向量,则a 与b 共线,与a 与b 不共线矛盾,故③正确;a=b,则a,b 的长度相等且方向相同;b=c,则b,c 的长度相等且方向相同,所以a,c 的长度相等且方向相同,故a=c,④正确.分析:本题主要考查了平行向量与共线向量、相等向量与相反向量,解决问题的关键是根据所给向量满足条件结合向量有关的定义进行发现解决即可.13. 已知O点固定,且OA=2,则符合题意的A点构成的图形是( )A.一个点B.一条直线C.一个圆D.不能确定答案:C解析:解答:∵OA= 2,∴终点A到起点O的距离为2,又O点固定,∴A点的轨迹是以O为圆心,2为半径的圆,故选C.分析:本题主要考查了向量的模、向量的几何表示,解决问题的关键是根据向量的模结合向量的模的几何意义进行分析即可.14. 若a为任一非零向量,b的模为1,下列各式:①|a|>|b|;②a∥b;③|a|>0;④|b|=±1.其中正确的是( )A.①④B.③C.①②③D.②③答案:B解析:解答:①中,|a|的大小不能确定,故①错误;②中,两个非零向量是否平行取决于两个向量的方向,故②错误;④中,向量的模是一个非负实数,故④错误;③正确.选B分析:本题主要考查了向量的模,解决问题的关键是根据向量不能比较大小,向量的模可以比较大小,向量是有方向和长度的量.15. 有下列四个命题:①时间、速度、加速度都是向量;②向量的模是一个正实数;③所有单位圆上以圆心为起点以终点为在圆上向量都相等;④共线向量一定在同一直线上,其中真命题的个数是( )A.0B.1C.2D.3答案:A解析:解答:本题主要考查向量的概念,时间不是向量;向量的模是非实数;单位向量的模相等但方向不一定相同;共线向量可以在一条直线上,也可用分别在互相平行的直线上.故选A.分析:本题主要考查了向量的物理背景与概念、向量的模、向量的几何表示、平行向量与共线向量,解决问题的关键是根据向量的有关定义进行分析即可.二、填空题16. 有下面命题;①平行向量的方向一定相同;②共线向量一定是相等向量;③相等向量一定是共线向量,不相等向量一定不共线;④起点不同,但方向相同且模相等的几个向量是相等向量;⑤相等向量、若起点不同,则终点一定不同;⑥不相等的向量一定不平行;_____.其中正确命题的序号是答案:⑤④解析:解答:主要考查向量的概念①错,两向量方向相同或相反都是共线向量;②③⑥均错,共线向量也叫平行向量,对向量的长度没有要求,共线向量不一定是相等,相等向量一定共线,不相等向量可以是共线向量,如两个向量的共线,但是可以不相等的向量.分析:本题主要考查了平行向量与共线向量、相等向量与相反向量,解决问题的关键是根据定义进行分析即可.17. 某A地位于B地正西方向5 km处,C地位于A地正北方向5 km处,则C地相对于B 地的位移是________.答案:西北方向52km解析:解答:由题根据A,B,C三地的位置关系结合勾股定理不难得到52BC=,结合方位角不难得到C地相对于B地的位移是西北方向52km.分析:本题主要考查了向量的物理背景与概念,解决问题的关键是根据实际情况进行计算,然后写出对应位移即可.18. 把平面上所有单位向量都移动到共同的起点,那么这些向量的终点所构成的图形是.答案:以单位长度为半径的圆解析:解答:由题根据所给问题所有向量组成了以单位长度为半径的圆.分析:本题主要考查了单位向量、向量的几何表示,解决问题的关键是根据所给向量满足条件结合向量的几何意义进行分析即可.19. 在四边形ABCD中, DC AB=,则这个四边形的形状是.答案:平行四边形解析:解答:由DC AB=,可得DC与AB平行且相等,所以四边形ABCD是平行四边形分析:本题主要考查了相等向量,解决问题的关键是根据相等向量定义结合向量的几何意义进行分析即可.20. 如图所示,O 是正三角形ABC 的中心;四边形AOCD 和AOBE 均为平行四边形,则与向量AD 相等的向量有 ;与向量OA 共线的向量有 ;与向量OA 的模相等的向量有 .(填图中所画出的向量)答案:OC |,DC EB |,,,,OB OC DC EB AD解析:解答:∵O 是正三角形ABC 的中心,∴OA=OB=OC,∴结合相等向量及共线向量定义可知:与AD 相等的向量有OC ;与OA 共线的向量有,DC EB ;与OA 的模相等的向量有,,,,OB OC DC EB AD .分析:本题主要考查了向量的模、相等向量与相反向量、平行向量与共线向量,解决问题的关键是根据所给向量满足的几何关系结合图形及向量的有关定义进行发现解决即可.三、解答题 21. 用向量表示小船的下列位移(用1∶500 000的比例尺)(1)由A 地向东北方向航行15 km 到达B 地;答案:解:B 地在A 地的东北方向,即 B 地在A 地北偏东45°方向,线段AB 的长度画为3 cm 即可.如图所示.(2)由A 地向西偏北60°方向航行20 km 到达C 地,再由C 地向正南方向航行25 km 到达D 地.答案:解:由于C 地在A 地的西偏北60°方向,则线段AC 与表示正北方向的线的夹角为30°,且线段AC 的长度画为4 cm;D 地在C 地的正南方向,则画竖直向下的线段,长度为5 cm 即可,连接AD,即为所求位移.如图所示.解析:分析:本题主要考查了向量的物理背景与概念,解决问题的关键是根据有关方位角的知识进行发现计算即可.22. 如图所示的方格纸由若干个边长为1的小正方形并在一起组成,方格纸中有两个定点A,B,AC点C为小正方形的顶点,且5(1)画出所有的向量AC;答案:解:画出所有的向量AC如图所示.(2)求| BC |的最大值与最小值.答案:解:由(1)所画的图知,①当点C 位于点C 1或C 2时,|BC |取得最小值22125+= ;②当点C 位于点C 5和C 6时,|BC ⃗⃗⃗⃗⃗⃗|取得最大值224541+= . ∴|BC |的最大值为41,最小值为5 .解析:分析:本题主要考查了向量的模、向量的几何表示,解决问题的关键是根据所给向量满足的几何关系进行作图计算即可. 23. 已知O 是正方形ABCD 对角线的交点,在以O,A,B,C,D 这5点中任意一点为起点,另一点为终点的所有向量中,写出:(1)与BC 相等的向量;答案:解:画出图形,如图所示.易知BC ∥AD,BC=AD,所以与BC 相等的向量为AD(2)与OB 长度相等的向量;答案:解:由(1)图像得:O 是正方形ABCD 对角线的交点知OB=OD=OA=OC,所以与OB 长度相等的向量为,,,,,,BO OC CO OA AO OD DO .(3)与DA 共线的向量.答案:解:由(1)图像得:与DA 共线的向量为,,AD BC CB .解析:分析:本题主要考查了平共线向量、相等向量的有关概念,解决问题的关键是根据所给向量满足的条件进行正确作图,然后观察所求向量即可.24. 如图所示,O 是正六边形ABCDEF 的中心,且,,OA OB OC ===a b c .O F ED C BA(1)与a 的模相等的向量有多少?答案:解:与a 的模相等的向量有23个 (2)与a 的长度相等,方向相反的向量有哪些?答案:解:与a 的长度相等,方向相反的向量有,,,OD BC AO FE(3)与a 共线的向量有哪些?答案:解:与a 共线的向量有,,,,,,,,EF BC OD FE CB DO AO DA AD(4)请一一列出与,,a b c 相等的向量.答案:解:与a 相等的向量有:,,EF DO CB ;与a 相等的向量有:,,DO EO FA ;与c 向量相等的向量有:,,FO ED AB .解析:分析:本题主要考查了共线向量、相等向量,解决问题的关键是根据所给图形,结合有关向量的定义进行观察分析即可. 25. 在平行四边形ABCD 中,E,F 分别是AD ,BC 的中点,如图所示 EFD CBA(1)写出与向量FC 共线的向量; 答案:解:共线向量满足的条件与向量FC 共线的向量有:,,.CF AE EA(2)求证:BE FD .答案:证明:在平行四边形ABCD中,AD∥BC,AD=BC,又分别是AD,BC的中点,所以ED∥BF且ED=BF,所以四边形BFDE是平行四边形,故BE FD解析:分析:本题主要考查了共线向量、相等向量,解决问题的关键是根据所给几何图形满足的条件结合有关向量的知识进行观察,计算,证明即可.。
平面向量的实际背景及基本概念北京市第二中学范方兵一.教学内容分析本节课是《普通高中课程标准实验教科书•数学4》(人教A版)第二章第一节的第一课时(2.1)《平面向量的实际背景及基本概念》.本节内容属于概念性知识.向量是集数与形于一身的数学概念,有着丰富的实际背景和广泛应用,是沟通几何、代数、三角等内容的桥梁.在现实生活中随处可见的力、位移、速度等既有大小,又有方向的量是其物理背景,有向线段是其几何背景,向量就是从这些实际对象中抽象出来的数学概念,经过研究,建立起完整的知识体系之后,向量又作为数学工具,广泛地应用于解决数学、物理学科或实际生活中的问题.因此,它在整个高中数学的地位是很重要的.本节课是《平面向量》的起始课,通过本节课的学习,让学生体会到向量具有大小和方向两个基本特征,研究向量我们可以从大小和方向两个角度入手.另外,实数学习的经验可以启发我们对向量的学习,引进一个量,就要研究它的运算,研究相应的运算律,因此,《平面向量》这一章,后续将要研究的内容就比较明朗了,这体现了本节课内容,对这一章的教学具有“统领全局”的作用.另外,对于本节课的教学,重要的是让学生去体会研究数学新对象的方法和基本思路,而不是向量的形式化定义及几个相关概念.因此,本节课内容的学习,它的理论意义远远大于它在解题中的作用.因此,我认为本节课的教学重点是向量的概念,向量的几何表示,相等向量的概念.二. 学生学情分析学生在物理中已经学习了力、位移、速度等矢量的概念,认识到一些既有大小,又有方向的量,也能认识到生活中一些只有大小,没有方向的量,这些学习内容及生活经验为本节课奠定了一定的基础.学生在之前也学习了实数的概念及实数的运算,也学习了直线平行等知识,这都为本节课的学习作了一定的准备.北京二中是北京市示范高中,我所任教的班级学生基础比较扎实,思维有一定的灵活性.但对于向量的学习,其研究内容和研究方法都是陌生的,学生的严谨性和深刻性仍需培养.本节课的教学难点是:研究向量的基本方法.三.教学目标设置根据本节课的内容特点以及学生的认知水平,确定本节课的教学目标是:1. 通过力和力的分析等实例,了解向量的实际背景,理解向量相等的含义,理解向量的几何表示.2. 在向量概念的形成过程中,提高抽象与概括能力,在向量的表示、特殊向量、向量的特殊关系的探讨过程中,体会向量具有数和形两个特征.3. 由具有物理意义的量抽象出向量的概念,积累从具体到抽象的活动经验;在向量的概念、向量的表示、特殊向量、向量的特殊关系的探讨过程中,自觉形成从大小和方向两个角度来进行思考的习惯,培养理性思维.四.教学策略分析为了更好的突出教学重点,突破教学难点,完成教学目标,我采用引导启发的教学方式,通过“创设情境,引入课题——问题引领,逐步探究——阅读课本,巩固练习——归纳小结,延伸课堂”这些环节循序渐进地将问题逐步引向深入,从而完成本节课的目标.为了让学生体会引入向量的必要性,我提出一个生活中有关物理的问题,让学生直观感知,引导学生思考,并和学生一起完成一个试验,进行操作确认,最后利用TI图形计算器来进行理论分析,在这个过程中让学生体会到,我们不仅要关心力的大小,还要关心力的方向,从而为引入向量的概念作准备.在向量的表示、零向量和单位向量、相等向量、共线向量等概念的形成过程中,不急于得到结论,而是让学生充分利用向量的物理背景和几何背景,通过作出力的图示,在正六边形中画出一些具体的向量,在丰富的实例中进行概括.并且教师利用投影,图形计算器,自制教具等进行教学,让演示更直观,让探究更便捷,从而帮助学生进行理解.五.教学过程设计(一)创设情境,引入课题【问题1】晾衣服的绳可不可以拉成一条直线?如果可以,那我们就可以晾更多的衣服了.师生活动:教师提出问题,并引导学生思考.设计意图:教师提出一个生活中的实际问题,学生进行直观感知、猜想、思考,激发学生学习兴趣,为下一步引出试验作铺垫.【课堂活动】师生分别握住一根绳子的一端,中间系一个重物.开始的时候,将绳的两端接近,将重物抬起,慢慢将绳的两端离远一点,将重物抬起,感受一下绳作用在手上的力的变化.师生活动:教师和学生一同演示试验,学生认真观察试验现象并进行思考,教师组织学生交流.设计意图:1.通过试验操作,进一步让学生思考现象背后的原理,让学生经历由直观感知到操作确认的过程;2.让学生初步体会到在这个试验过程当中,起决定作用的不仅只有力的大小,还有力的方向,为向量概念的引出作准备;3.通过试验,让学生对现象背后的原理产生浓厚的兴趣,为进一步利用图形计算器进行探究作铺垫.【课堂活动】学生利用图形计算器对试验中涉及到的力的分析进行探究.师生活动:教师将课件发到学生的图形计算器上,学生利用课件进行探究,教师演示同学们的操作过程,并组织学生交流.设计意图:1.利用图形计算器进行探究,让学生完整经历由生活经验到试验操作确认,再到严谨的理论分析,提高学生分析问题解决问题的能力;2.利用动态演示,让学生能直观观察到力的合成情况,从而提高课堂效率,并进一步从理论上认识到在对实际问题的分析中,不仅要关注力的大小,还要关注力的方向.【问题2】大家能否再举出一些既有大小,又有方向的量?生活中有没有只有大小,没有方向的量?请你举例.师生活动:教师提出问题,学生回答老师提出的问题,由其他同学补充.设计意图:通过设问激活学生已有的相关经验、知识,从丰富的实例中让学生感知概念的本质特征,发现并意识到概念的非本质特征,引导学生提炼、概括向量的本质属性,形成对向量的初步认识,为进一步抽象概括做准备.1.向量的概念回顾学习数的概念,我们从一枝笔,一棵树,一本书中抽象出只有大小的数量“1”,类似地,我们可以从力、位移、速度等这些既有大小又有方向的量进行抽象,形成一种新的研究对象——向量.数学中,我们把这种既有大小,又有方向的量叫做向量.而把那些只有大小,没有方向的量叫做数量.(二)问题引领,逐步探究2.向量的表示【问题3】你认为怎样表示一个向量比较合理?【课堂活动】如图是一个放置在水平桌面上的物体,其受到的重力是10N,请作出物体受力的图示.师生活动:教师提出问题,并设计一个课堂活动,学生进行作图练习,教师组织大家讨论,并进行交流,学生之间进行相互补充,在此基础上得出向量的几何表示和字母表示.设计意图:1.让学生通过作图,回顾物理中是如何表示力的,进而让学生进一步体会到向量的实际背景,自觉接受向量的几何表示;2.字母表示是比较抽象的,通过回忆初中平面几何的学习中是如何表示一条线段、一条直线的,实数的学习中是如何表示一个实数的,让学生在已有的基础之上受到启发,得到向量的字母表示,并理解字母表示的抽象性;3.通过对向量的几何表示和字母表示的探讨,让学生体会从大小和方向两个角度来思考向量的问题,体会到几何表示突出向量“形”的特征,而字母表示有利于我们进行表达,为后续学习作准备.3. 特殊向量【问题4】现在我们建立起了一个向量的集合,这个集合中有没有特殊元素?师生活动:教师组织学生进行思考,并进行讨论、交流,学生思维受阻时引导学生从大小的角度类比实数进行思考,从而得到:长度为0的向量叫做零向量,记作0.长度为1个单位长度的向量叫做单位向量.设计意图:根据先行组织者理论,引导学生充分挖掘原有知识与新知识的关联,为新知识的学习提供借鉴,从学生所熟知的实数的知识出发,得出零向量和单位向量的概念.在后续学习中,也可以类比实数的运算和运算律,来学习向量的运算和运算律,这样更能吸引学生不断求知的欲望,提高学生学习的兴趣.OFEDC B A4.向量的特殊关系【问题5】向量和向量之间有没有一些特殊关系呢? 【课堂活动】请同学们在图中画出一些向量(也可以自选图形),并通过你画出的向量来探索它们之间的关系.师生活动:教师提出问题,引发学生思考,让学生进行作图练习,画出一些向量,并通过画出的向量来进行探讨.组织学生进行交流、讨论,学生代表发言后由其他同学补充,逐步完善,在此过程中得出向量之间的特殊关系.学情预设:学习障碍1:学生画出了一些向量,但是不知道如何去考察它们之间的特殊关系.引导方案:引导学生认识到向量是具有大小和方向的研究对象,我们可以从大小和方向这两个角度入手,最后请学生对研究方法加以总结.学习障碍2:学生提出向量加法、减法等运算,认为这就是向量的关系.引导方案:类比实数的学习,向量加法、减法等属于运算的范畴,而不是两个向量的关系,我们可以类比实数之间的关系来探讨向量的关系.学习障碍3:学生提出两个向量垂直,两个向量夹角为60︒等等. 引导方案:两个向量垂直,两个向量夹角为60︒等等,由于涉及到向量的夹角的定义,我们放到后续去研究,可以预见,对于向量,还有很多内容等着我们去探讨,引导学生关注本节课的教学内容.学习障碍4:难以接受共线向量的概念.引导方案:在得出相等向量的概念后,教师指出“值得注意的是,由相等向量我们可以知道,对于一个向量,只要不改变它的大小和方向,就可以任意平行移动”,从而为理解共线向量的概念奠定基础.在学生得出平行向量的概念后,教师利用自制教具来展示我们可以将一组平行向量通过平移(不改变大小和方向)到一条直线上,来让学生直观感知平行向量其实就是共线向量.最后,教师指出,共线向量和平行向量是研究向量的基础, 由此可以将一组平行向量平移(不改变大小和方向)到一条直线上,这给问题的研究带来方便.设计意图:1.通过设置开放性的问题,让学生通过作图、交流、讨论,让学生参与概念的定义过程,让概念成为学生观察、交流、概括之后的自然产物;2.在画出有关向量并且用字母去进行表示的过程中,体会数形结合的数学思想,进一步巩固向量的几何表示和字母表示,自觉应用这两种方法来对向量进行表示;3.在知识的形成过程中进一步体会从大小和方向两个角度去研究向量,形成研究向量的基本方法,培养理性思维.【问题6】向量与物理中的矢量有什么区别和联系?向量平行、共线与线段的平行、共线有什么区别和联系?设计意图:和本节课开始的内容首尾呼应,让学生明确向量概念与其物理背景、几何背景的区别和联系,进一步体会向量是从实际背景中抽象出来的一个新的研究对象,抓住向量的本质特征.(三)阅读课本,巩固练习【课堂活动】阅读教材73页到76页,看看我们的讨论有没有遗漏的地方,并思考下面的例题.例如图,在方格纸上的平行四边形ABCD和折线MPQRST中,点O 是平行四边形ABCD对角线的交点,,,OA a OB b AB c,分别写出图中与===a b c相等的向量.(图附后),,师生活动:教师指导学生阅读教材,在阅读的基础上让学生提出疑问,教师组织学生思考例题,在此过程中关注学生能否在方格纸中正确识别出向量的大小与方向, 引导学生从大小和方向两个角度去思考.设计意图:通过指导学生阅读教材,让学生重视教材,培养学生的阅读能力和自学能力,通过对例题的讨论,巩固向量的概念、向量的表示以及相等向量等概念.进一步体会从大小和方向两个角度去思考向量问题.(四)归纳小结,延伸课堂【归纳小结】教师与学生一起回顾本节课所学知识,并请学生回答以下问题:(1)这节课你学到了哪些知识?(2)通过本节课的学习,对于研究数学新对象,你有什么体会?(3)你觉得后续我们还将学习什么内容?设计意图:通过设置三个问题,回顾本节课所学知识,并且用结构图来进行展示,使得知识间的逻辑关系更清晰.通过本节课的学习,学生体会研究数学新对象的基本思路.并且作为章起始课,向学生交代本章大致学习内容和学习方法,构建研究蓝图.【布置作业】1.(必做作业)教材P77A组习题2.(选做作业)平面向量既有大小,又有方向,集数与形于一身.我们也知道,平面直角坐标系中,坐标与点是一一对应的,实质上也是沟通了数与形之间的关系,那么,平面向量有没有坐标表示呢?如果有,你觉得应该怎么定义?请课后进行研究.设计意图:布置课后作业,必做作业旨在落实本节课教学内容,教师鼓励学生课后根据自己的兴趣拓展相关知识,继续对问题进行研究. (五)目标检测设计判断下列结论是否正确.(1) 若,a b都是单位向量,则=a b;(2) 若=a b,则,a b是共线向量;(3) 平行向量方向一定相同.设计意图:检测学生对向量的概念、相等向量的概念、共线向量的概念的理解.。
个旧三中高一年级数学教案
课题:2.2.1平面向量的实际背景及基本概念
主备人:胡珍谊 审核人: 使用人:
教材分析
向量这一概念是由物理学和工程技术抽象出来的,反过来,向量的理论和方法,又成为解决
物理学和工程技术的重要工具,向量之所以有用,关键是它具有一套良好的运算性质,通过
向量可把空间图形的性质转化为向量的运算,这样通过向量就能较容易地研究空间的直线和
平面的各种有关问题
学情分析
学生在学习了物理的标量和矢量之后,对这一部分内比较熟悉,学习起来会容易一点
教学目标
1、知识与技能:了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握
向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、
相等向量和共线向量.
2、过程与方法:通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质
区别.
3、情感态度与价值观:通过学生对向量与数量的识别能力的训练,培养学生认识客观
事物的数学本质的能力.
教学重点
理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.
教学难点
平行向量、相等向量和共线向量的区别和联系.
教学理念
自主、合作、探究
教学策略
由物理上的矢量和标量引入向量和数量,强调大小和方向这两个要素
教学环节:
一、前提测评
物理上的矢量和标量是怎样定义的?
二、展示目标
1、知识与技能:了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握
向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、
相等向量和共线向量.
2、过程与方法:通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质
区别.
3、情感态度与价值观:通过学生对向量与数量的识别能力的训练,培养学生认识客观
事物的数学本质的能力.
三、导学达标
(一)向量的概念:我们把既有大小又有方向的量叫向量
(二)请同学阅读课本后回答:
1、数量与向量有何区别?
2、如何表示向量?
3、有向线段和线段有何区别和联系?分别可以表示向量的什么?
4、长度为零的向量叫什么向量?长度为1的向量叫什么向量?
5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗?
6、有一组向量,它们的方向相同或相反,这组向量有什么关系?
7、如果把一组平行向量的起点全部移到一点O,这是它们是不是平行向量?这时各向
量的终点之间有什么关系?
(三)探究学习
1、数量与向量的区别:
数量只有大小,是一个代数量,可以进行代数运算、比较大小;
向量有方向,大小,双重性,不能比较大小.
2.向量的表示方法:
①用有向线段表示;
②用字母a、b
(黑体,印刷用)等表示;
③用有向线段的起点与终点字母:AB;
④向量AB的大小――长度称为向量的模,记作|AB|.
3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.
向量与有向线段的区别:
(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量
就是相同的向量;
(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是
不同的有向线段.
4、零向量、单位向量概念:
A(起点)
B
(终点)
a
①长度为0的向量叫零向量,记作0. 0的方向是任意的.
注意0与0的含义与书写区别.
②长度为1个单位长度的向量,叫单位向量.
说明:零向量、单位向量的定义都只是限制了大小.
5、平行向量定义:
①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.
说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥
b∥c
.
6、相等向量定义:
长度相等且方向相同的向量叫相等向量.
说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;
(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有
..
向线段的起点无关.........
7、共线向量与平行向量关系:
平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的
......
起点无关)......
说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量
可以相互平行,要区别于在同一直线上的线段的位置关系.
(四)理解和巩固:
例1 书本86页例1.
例2判断:
(1)平行向量是否一定方向相同?(不一定)
(2)不相等的向量是否一定不平行?(不一定)
(3)与零向量相等的向量必定是什么向量?(零向量)
(4)与任意向量都平行的向量是什么向量?(零向量)
(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(平行向量)
(6)两个非零向量相等的当且仅当什么?(长度相等且方向相同)
(7)共线向量一定在同一直线上吗?(不一定)
例3下列命题正确的是( )
A.a与b共线,b与c共线,则a与c也共线
B.任意两个相等的非零向量的始点与终点是一平行四边形
的四顶点
C.向量a与b不共线,则a与b都是非零向量
D.有相同起点的两个非零向量不平行
解:由于零向量与任一向量都共线,所以A不正确;由于数学中研究的向量是自由向
量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一
个平行四边形的四个顶点,所以B不正确;向量的平行只要方向相同或相反即可,与起点
是否相同无关,所以D不正确;对于C,其条件以否定形式给出,所以可从其逆否命题来入
手考虑,假若a与b不都是非零向量,即a与b至少有一个是零向量,而由零向量与任一向
量都共线,可有a与b共线,不符合已知条件,所以有a与b都是非零向量,所以应选C.
例4 如图,设O是正六边形ABCDEF的中心,分别写出图中与向量OA、OB、
OC
相等的向量.
变式一:与向量长度相等的向量有多少个?(11个)
变式二:是否存在与向量长度相等、方向相反的向量?(存在)
变式三:与向量共线的向量有哪些?(FEDOCB,,)
课堂练习:
1.判断下列命题是否正确,若不正确,请简述理由
①向量AB与CD是共线向量,则A、B、C、D四点必在一直线上;
②单位向量都相等;
③任一向量与它的相反向量不相等;
④四边形ABCD是平行四边形当且仅当AB=DC
⑤一个向量方向不确定当且仅当模为0;
⑥共线的向量,若起点不同,则终点一定不同.
解:①不正确.共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量
AB
、AC在同一直线上.
②不正确.单位向量模均相等且为1,但方向并不确定.
③不正确.零向量的相反向量仍是零向量,但零向量与零向量是相等的. ④、⑤正确.⑥
不正确.如图AC与BC共线,虽起点不同,但其终点却相同.
2.书本88页练习
三、小结 :
1、 描述向量的两个指标:模和方向.
2、 平行向量不是平面几何中的平行线段的简单类比.
3、 向量的图示,要标上箭头和始点、终点.
四、达标测评
书本88页习题2.1第3、5题