第12章BaselIBaselII和SolvencyII例题复习课程
- 格式:pptx
- 大小:240.55 KB
- 文档页数:18
巴塞尔问题(Baselproblem)的多种解法(PS:本⽂会不断更新)\newcommand\R{\operatorname{Res}}如何计算\zeta(2)=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\cdots\sum_{k=1}^{\infty}\frac{1}{k^2}=\frac{\pi^2}{6}解决这个问题的⽅法在近代不断涌现。
这⾥我从各处摘抄到⼀些⽅法,列举在此,仅供⼤家参考。
如有错误,请向我指出,谢谢!(PS:最近发现忻州师范学院抄了我博客后不给Reference,希望⼤家)⾸先,我们需要知道这个问题的等价形式,将这个数列除以4,我们⾃然得到\sum_{k=1}^{\infty} \frac{1}{(2k)^2}=\frac{\pi^2}{24}\sum_{k=1}^{\infty}\frac{1}{(2k-1)^2}=\frac{\pi^2}{8}⽽以下某些证明会⽤到这⼀点。
证明1:欧拉的证明欧拉的证明是⼗分聪明的。
他只是将幂级数同有限的多项式联系到了⼀起,就得到了答案。
⾸先注意到\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots从⽽\frac{\sin(x)}{x} = 1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \cdots但是\frac{\sin{x}}{x}x=n\cdot \pi,\mbox{ }(n = \pm1, \pm2, \pm3, \dots).\begin{align} \frac{\sin(x)}{x} & {} = \left(1 - \frac{x}{\pi}\right)\left(1 + \frac{x}{\pi}\right)\left(1 - \frac{x}{2\pi}\right)\left(1 + \frac{x}{2\pi}\right)\left(1 - \frac{x}{3\pi}\right)\left(1 + \frac{x}{3\pi}\right) \cdots \notag\\ & {} = \left(1 - \frac{x^2}{\pi^2}\right)\left(1 - \frac{x^2}{4\pi^2}\right)\left(1 -\frac{x^2}{9\pi^2}\right) \notag\cdots. \end{align}从⽽我们对这个⽆穷乘积的x^2-\left(\frac{1}{\pi^2} + \frac{1}{4\pi^2} + \frac{1}{9\pi^2} + \cdots \right) = -\frac{1}{\pi^2}\sum_{n=1}^{\infty}\frac{1}{n^2}.-\frac{1}{6} = -\frac{1}{\pi^2}\sum_{n=1}^{\infty}\frac{1}{n^2}.注:欧拉给出过严谨的证明,但是由于他的第⼀个证明太⼴为⼈知,所以有时候会认为他没给出真正的证明。
【VIP专享】近世代数复习(⼀)群在集合上的作⽤群在集合上的作⽤主要掌握如何求轨道、稳定⼦、不动元.下⾯分别对这三个概念简要介绍.设群G 作⽤在集合X 上,x X ∈.(1) 称{|}x O gx g G =∈为x 在G 下的轨道.该定义的含义是:对于固定的x X ∈,x 所在的轨道是⽤x 去乘G 中的每个元素,将结果记⼊x O 内.(2) 称{|()}x S g G g x x =∈=为x 在G 中的稳定⼦.该定义的含义是:对于固定的x X ∈,将群G 中的元素ig 依次作⽤于这个x 上,若作⽤结果仍为x ,将该i g 记⼊x S 内.(3) 称{|()}g F x X g x x =∈=为x 在G 中的稳定⼦(集).该定义的含义是:对于固定的g G ∈,将g 依次作⽤于i x X ∈上,若作⽤结果仍为i x ,将该i x 记⼊g F 内.⽤⼀个例⼦来说明这三者的求法.已知{1,2,3,4,5,6}X =,{(1),(12),(356),(365),(12)(356),(12)(365)}G =.(1) 轨道.固定1x X =∈,11{1,2}i O g =?=,i g G ∈.固定3x X =∈,33{3,5,6}i O g =?=,i g G ∈.固定4x X =∈,44{4}i O g =?=,i g G ∈.由此可以看到,在某轨道出现过的值不需要再次进⾏计算,,x y X ?∈,,x y O O 或者完全相同,或者完全不同,且x x X O =,这种算法类似于陪集的算法.(2) 稳定⼦.固定1x X =∈,G 中的每个元素分别去作⽤1,结果仍为1的只有1{(1),(356),(365)}S =.固定3x X =∈,G 中的每个元素分别去作⽤3,结果仍为3 的只有3{(1),(12)}S =.固定4x X =∈,G 中的每个元素分别去作⽤4,结果仍为4 的有4S G =.由此可以看到,同⼀轨道元素在G 中的稳定⼦相同,所以x 的取法和计算轨道时x 选取相同.(3) 不动元素.固定(1)G ∈,⽤(1)去与X 中每个元素作⽤,作⽤后元素值不变的是(1)F X =.固定(356)G ∈,⽤(356)去与X 中每个元素作⽤,作⽤后元素值不变的是(356){1,2,4}F =.固定(12)G ∈,⽤(12)去与X 中每个元素作⽤,作⽤后元素值不变的是(12){3,4,5,6}F =.固定(12)(356)G ∈,⽤(1 2)(3 5 6)去与X 中每个元素作⽤,作⽤后元素值不变的是(12)(356){4}F =.(⼆) Burnside 引理的应⽤(以P103的例12为例)例:今有红(r)、黄(y)、蓝(b)三种颜⾊的⼩珠⼦各2颗.问:⽤他们可以串成多少种不同的⼿链?【解答】(1) ⾸先要认识到,对于这样的问题,共有2264C C 种排列⽅法(在6个位置中先选取2个位置放⼀种颜⾊,再从剩下的4个位置中选取2个放另外⼀种颜⾊).所以集合X 的元素个数为90.(2) 我们需要知道群G 中有哪些变换.第⼀类:i τ为绕中⼼按逆时针⽅向旋转3i π.第⼆类:i η为沿着对边中线的反射,如右图.第三类:i σ为沿着对⾓线的反射,如右图.综上,{(1),(1,2,3,4,5),(1,2,3),(1,2,3)}i i i G i i i τησ====.(3) 下⾯来求不动元素数.因为当对⾓颜⾊相同时,旋转180?情况不变,其余旋转均会改变颜⾊的分布情况.另外,当对称两个⽅向的颜⾊相同时,翻折并不会使颜⾊分布发⽣变化.可得数P103表2.5.1.(4) 从⽽由Burnside 引理11||(90020266363)11||12g g G n F G ∈==+?+?++?+?=∑ 可以算得有11种不同的⼿链.(三)西罗定理(Sylow Theorem)的应⽤例1:证明:56阶群G 不是单群.【证明】(不失⼀般性)由西罗第三定理,35627=?.设P 为G 的Sylow 7⼦群,则||7P =.设7r 为G 的Sylow 7⼦群的个数,则7|[:]8r G P =,71(mod7)r ≡.则有71r =或8.(1) 若71r =,则P 为G 的正规⼦群,与G 是单群⽭盾.(2) 78r =,则G 有8个Sylow 7⼦群18,,P P ,它们互相共轭,由于j P 是素数阶的循环群,{}i j P P e =,因此G 中有8648?=个7阶元,1个单位元.设Q 为G 的Sylow 2⼦群,则Q 中有8个元素(其中⼀个是单位).但G 不能⾃由⼀个Sylow 2⼦群,不然Q 为G 的正规⼦群,与G 是单群⽭盾.所以G 不是单群.例2:证明:85阶的群G 是循环群.【证明】(不失⼀般性)对85进⾏素因数分解,85517=?.由西罗第⼀定理,G 有Sylow 5⼦群和Sylow 17⼦群.由西罗第三定理,Sylow 5⼦群的个数5|17n 且51(mod5)n ≡,则有551|17k n +=. Sylow 17⼦群的个数17|5n 且171(mod17)n ≡,则有17171|5t n +=.从上式可以解到:51n =,171n =,说明只有1个Sylow 5⼦群和1个Sylow 17⼦群.由性质:若群||G pq =,其中p q 、为素数,若G 中只有唯⼀p 阶⼦群和q 阶⼦群,则G 为循环群.由此,证毕.例3:试求:4A 的Sylow 2⼦群.【解答】(不失⼀般性)先求:44||4!||1222S A ===,2123432=?=?,所以由西罗第三定理,4A 有唯⼀的Sylow 2⼦群.4A 的Sylow 2⼦群即为4A 的4阶⼦群(同理,4S 的Sylow 2⼦群即为4S 的8阶⼦群).则4A 的Sylow 2⼦群为{(1),(12)(34),(13)(24),(14)(23)}K =,K 也是4A 的正规⼦群.例4:设G 是⼀个21阶的⾮循环群,求G 中Sylow 3⼦群的个数.【解答】(不失⼀般性)21的标准素因数分解为2137=?,则331n k =+|7,则有31n =或7,由条件G 是⾮循环群,则37n =,即G 中有7个Sylow 3⼦群.例5:设G 是⼀个36阶的群,求G 中Sylow 3⼦群的个数.【解答】(不失⼀般性)36的标准素因数分解为223623=?,则2331|2n k =+,则有31n =或4(1) 若G 是循环群,则31n =,即G 中有1个Sylow 3⼦群,G 为正规⼦群.(2) 若G 是不循环群,则34n =,即G 中有4个Sylow 3⼦群.(四)关于求⾼斯整环的理想的显然形式及其商环的⼀般解法:1.⾼斯整环的显然形式分两种情况:(a) 理想形如i I a =<+>⾸先,(i)(i)(i)N a a a I +=+-∈,所以对任意的z ∈Z ,(i)N a z I +?∈.对于i 前系数为1的情况,i x y +以y 优先凑y 的表达式i ()(i)x y x ay a y +=-++.因为(i)a I +∈,所以只要x ay I -∈,则i x y I +∈.则可以得到其显然表达式为i {i |mod((i))}a x y x ay N a <+>=+≡+.若mod((i))x ay N a ≡+/,则i x y I +?,若不然,1I ∈,则有[i]I =Z ,⽭盾.(b) 理想形如1i I b =<+>同样,(1i)(1i)(1i)N b b b I +=+-∈,所以对任意的z ∈Z ,(1i)N b z I +?∈.对于i 前系数为b 的情况,i x y +以x 优先凑x 的表达式i (1i)()i x y b x y bx +=++-.因为(1i)b I +∈,所以只要y bx I -∈,则i x y I +∈.则可以得到其显然表达式为1i {i |mod((1i))}b x y y bx N b <+>=+≡+.若mod((1i))y bx N b ≡+/,则i x y I +?,若不然,1I ∈,则有[i]I =Z ,⽭盾.2.⾼斯整环的商环当理想的⽣成元的范围为素数时,即若(i)N a b +为素数,(i)[i]/i N a b a b +<+>?Z Z .(a) 理想形如i I a =<+>的显然表达式为i {i |mod((i))}a x y x ay N a <+>=+≡+.当mod((i))x ay N a ≡+时,i x y a +∈+,i 0x y +=;当mod((i))x ay N a ≡+时,i i x y m a +∈+<+>,其中(i)N a m +∈Z ,则i 1,2,,(i)1x y N a +=+-.由此得[i]/i {0,1,2,,(i)1}a N a <+>=+-Z ,并且当(i)N a +为素数时,这是⼀个极⼤理想,当然也是⼀个素理想.(b) 理想形如1i I b =<+>的显然表达式为1i {i |mod((1i))}b x y y bx N b <+>=+≡+.当mod((1i))y bx N b ≡+时,i 1i x y b +∈<+>,i 0x y +=;当mod((1i))y bx N b ≡+时,i 1i x y m b +∈+<+>,其中(1i)N b m+∈Z ,则i 1,2,,(1i)1x y N b +=+-.由此得[i]/1i {0,1,2,,(1i)1}b N b <+>=+-Z ,并且当(1i)N b +为素数时,这是⼀个极⼤理想,当然也是⼀个素理想.(五)素理想、极⼤理想之间的关系在素理想、极⼤理想这⼀块我们主要研究四类环:Z 、[i]Z 、p Z 、2()M R .⾸先来观察前三类,它们是性质⾮常好的两类环,体现在:Z 是欧⼏⾥得整环、主理想整环、也是唯⼀分解整环(4.4).[i]Z 是欧⼏⾥得整环、主理想整环、也是唯⼀分解整环(4.4).1. 书本在3.5节给出两个等价命题:n 为Z 的素理想?n 为素数; m 为Z 的极⼤理想?m 为素数;这个命题同样可以类⽐到p Z 中,证明⽅式相同,即:n 为p Z 的素理想?n 为素数且|n p ;m 为p Z 的极⼤理想?m 为素数且|m p .⼀般地,在p Z 中,p a ?∈Z ,1212S l l l s a q q q =为标准素因数分解,则12s q q q 、、、均为素理想,且它们是全部的极⼤理想.2. 证明⼀个理想I 是素理想的⼀般⽅法:法⼀:先证明I 是⼀个极⼤理想,则在有单位元的交换环中,I 是素理想.法⼆:从定义出发,证明任取,a b I ∈,由ab I ∈可以推得a I ∈或b I ∈.法三:在满⾜条件的情况下,证明/R I 是⼀个整环.3. 证明⼀个理想I 是极⼤理想的⼀般⽅法:法⼀:从定义出发,选取⼀个理想J ,使得I J R ??,选取元素a J ∈,a I ?,推出1J ∈由1J ∈⽴得J R =,证毕.注:(1) 这个“1”是凑出来的,且在矩阵中,1应该对应变为为1001?? ???,在不同的环中,1代表不同的含义,应该把1理解为单位元.(2) 要得到1,不仅可以⽤加减法得到,也可以由乘法得到(在矩阵中).法⼆:在满⾜条件的情况下,证明/R I 是⼀个域.结合书P153例10、书P154习题10、习题11,可以直接写出这个商环的元素再证明它是⼀个域(其中元素可逆).4. 关于p q ⊕Z Z 的极⼤理想:特别注意:p Z 的极⼤理想和q Z 的极⼤理想的直和不是p q ⊕Z Z 的极⼤理想.(六)关于判断p 在[i]Z 、Z (整环)中是否为素元和不可约元的⼀般解法:1. 先判断p 是否为素元(1) 若p ∈Z 且3(mod 4)p ≡,则p 为素元,这在[i]Z 、Z 中均成⽴.(2) *若p ∈Z 且1(mod 4)p ≡,则存在a b ∈Z 、,使得22p a b =+,且i a b ±都是[i]Z 的素元.(3) 若p 不是整数且()N p 为素数,则p 必为素元:(法⼀):⽤书本P174的⽅法验证.注:在[i]Z 中,若题⽬中的i 前系数不为1,则要设⼀个i a b +,使得其乘积中i 前系数为1,这个由待定系数法很容易做到,则此时|p αβ应变为(i)|(i)(i)p a b a b a b αβ?++?+.(法⼆):以[i]Z 为例,Z 同理.设i,i [i]a b x y αβ+=+∈Z =,且有|p αβ.取范数得()|()()N p N N αβ,因为()N p 为素数,则由数论知识,()|()N p N α或()|()N p N β,则有|p α或|p β,则p 为素元.(4) 若p 不是整数且()N p 为合数 (以[i]Z 为例,Z 同理) :取i [i]a b α+∈Z =,求⽅程:22()()N a b N p α=+=的整数解.若⽅程⽆整数解,则p 只能写成1p ?的形式,显然p 是素元.若⽅程有整数解,则令i a b α=+,i a b β=-,此时|()p N p αβ=,但|p α/,|p β/,则p 不是素元.2. 再判断p 是否为不可约元(1) 若()N p 为素数(或p 为素元),则p 为不可约元;(2) 若()N p 为合数,则令p αβ=,其中[i](αβ∈Z Z 、,取范数()()()N p N N αβ=.下以[i]Z 为例,Z 同理:取i,i [i]a b x y αβ+=+∈Z =,设()N p 可以分解为12q q ?(12q q 、均不为单位),那么分别验证是否存在a b x y ∈Z 、、、,使得12(),()N p N p αβ==.若存在,则说明存在不为单位的αβ、分解p ,则p 不是不可约元;若不存在,则说明()()N N αβ、中必有⼀个值为1,即αβ、必有⼀个为单位,则p 是不可约元.。
目录Chapter 2 Linear programming (2)Solution: (4)Chapter 3 Simplex (6)Solution: (7)Chapter 4 Sensitivity Analysis and duality (11)Solution: (14)Chapter 5 Network (18)Solution: (20)Chapter 6 Integer Programming (23)Solution: (25)Chapter 7 Nonlinear Programming (28)Solution: (28)Chapter 8 Decision making under uncertainty (29)Solution: (31)Chapter 9 Game theory (34)Solution: (36)Chapter 10 Markov chains (39)Solution: (41)Chapter 11 Deterministic dynamic programming (43)Solution: (43)Expanded Projects (44)Chapter 2 Linear programming1. A firm manufactures chicken feed by mixing three different ingredients. Eachingredien t contains three key nutrients protein, fat and vitamin. The amount of each nutrient contained in 1 kilogram of the three basic ingredients is summarized in the following table:Ingredient Protein(grams)F at(grams)Vitamin(units)12511235245101603327190The costs per kilogram of Ingredients 1, 2, and 3 are $0.55, $0.42 and $0.38, respectively. Each kilogram of the feed must contain at least 35 grams of protein, a minimum of 8 grams of fat and a maximum of 10 grams of fat and at least 200 units of vitamin s. Formulate a linear programming model for finding the feed mix that has the minimum cost per kilogram.2.For a supermarket, the following clerks are required:Days Min. number of clerksMon 20T ue16Wed13Th u16F ri19Sat14Sun12Each clerk works 5 consecutive days per week and may start working on Monday, Wednesday or Friday.The objective is to find the smallest number of clerks required to comply with the above requirements. Formulate the problem as a linear programming model.3.Consider the following LP problem:12121212126841634243412,0MaxZ x x Subject tox x x x x x x x =++≤+≤-≤≥ (a) Sketch the feasible region.(b) Find two alternative optimal extreme (corner) points.(c) Find an infinite set of optimal solutions.4. A power plant has three thermal generators. The generators’ generation costsare $36/MW, $30/MW, and $25/MW, respectively. The output limitation for the generators is shown in the table. Some moment, the power demand for thisplant is 360MW, please set up an LP optimization model and find out the optimal output for each generator (with lowest operation cost).5. Use the Graphical Solution to find the optimal solutions to the following LP:12121212max 4.. 36 20 ,0z x x s t x x x x x x =-++≤-+≤≥Solution :1. Let x 1 = the amoun t of Ingredien t 1 mixed in 1 kilogram of thechicken feedx 2 = the amoun t of Ingredien t 2 mixed in 1 kilogram of the chicken feedx 3 = the amoun t of Ingredien t 3 mixed in 1 kilogram of the chicken feedThe LP model is:1231231231231231231230.550.420.382545323511107811107102351601902001,,0Min Z x x x Subject tox x x x x x x x x x x x x x x x x x =++++≥++≥++≤++≥++=≥2.Let x1 = number of clerks start working on Mondayx2 =number of clerks start working on Wednesday x3 =number of clerks start working on Friday The LP model is:12313131212123232312320161316191412,,0Min Z x x x Subject tox x x x x x x x x x x x x x x x x x =+++≥+≥+≥+≥++≥+≥+≥≥3. (a)(b) The t w o alternativ e optimal extreme points are (4, 3) and (6,3/2 ). (c) The infinite set of optimal solutions: {λ(4, 3) + (1 − λ)(6,3/2) : 0 ≤ λ ≤ 14. Model:123123111123max 363025.. 360 5020050150 50150 ,,0z x x x s t x x x x x x x x x =++++=≤≤≤≤≤≤≥Solution:x 1=60(MW); x 2=150(MW); x 3=150(MW)5. According to the figure, the solution is: x 1=0; x 2=0Chapter 3 Simplex1. Show that if ties are broken in favor of lower-numbered rows, then cyclingoccurs when the simplex method is used to solve the following LP: 123123412341234369920/32/3099210(1,2,3,4)i Max Z x x x Subject tox x x x x x x x x x x x x i =-+-+--≤+--≤--++≤≥= 2. Use the simplex algorithm to find two optimal solutions to the following LP:123123123123max 53.. 36 53615 ,,0z x x x s t x x x x x x x x x =++++≤++≤≥3. Use the Big M method to find the optimal solution to the following LP:1212121212max 5.. 26 4 25 ,0z x x s t x x x x x x x x =-+=+≤+≤≥4. Use the simplex algorithm to find two optimal solutions to the following LP .123123123123max 53.. 3653615 ,,0z x x x s t x x x x x x x x x =++++≤++≤≥5. For a linear programming problem:1212121234241232850(1,2)i Max Z x x Subject tox x x x x x x i =++≤+≤+≤≥= Find the optimal solution using the simplex algorithm.Solution:1.Here are the pivots:BV={S1,S2,S3}.BV={X2,S2,S3}.We now enter X3 into the basis in Row 2.BV={X2,X3,S3}.We now enter X4 into the basis in Row 1.BV={X4,X3,S3}.X1 now enters basis in Row 2.BV={X4,X1,S3}.We now choose to enter S1 in Row 1.BV={S1,X1,S3}.S2 would now enter basis in Row 2. This will bring us back to the initial tableau, so cycling has occurred. 2. Standard form:1231231123212312max 53.. 36 53615 ,,,,0z x x x s t x x x s x x x s x x x s s =+++++=+++=≥Tableau:So: z=15; x 1=3 ; x 2=0;x 3=03. Standard form:12121211221212max 5.. 26 4 25 ,,,0z x x s t x x x x s x x s x x s s =-+=++=++=≥=>12112112112212121max 5.. 26 4 25 ,,,,0z x x a M s t x x a x x s x x s x x s s a =--++=++=++=≥ Tableau: => => So, the solution is z=15, x 1=3, x 2=04. Standard form:1231231123212312max 53.. 36 53615 ,,,,0z x x x s t x x x s x x x s x x x s s =+++++=+++=≥So, the solution is z=15,x 1=0,x 2=5 or z=15,x 1=3,x 2=0 5. Optimal solution:Chapter 4 Sensitivity Analysis and duality1. Consider the following linear program (LP):1212232420(1,2)i Max Z x x Subject tox x x x i =++≤≤≥=(a). De termin e the shadow price for b 2, the right-hand side of the constrai n t x 2 ≤ b 2. (b). De t e rmin e th e allowable r ange to s tay optimal for c 1, the co e ffic i e n t of x 1 in theob jec tiv e function Z = c 1x 1 + 3x 2.(c). De termin e the allowable range to stay feasible for b 1, th e right-hand side of theconstrai n t 2x 1 + x 2 ≤ b 1.2. There is a LP model as following,1212121234524123280(1,2)i Max Z x x Subject tox x x x x x x i =++≤+≤+≤≥= The optimal simplex tableau is1) Give the dual problem of the primal problem.2) If C2 increases from 4 to 5, will the optimal solution change? Why? 3) If b2 changes from 12 to 15, will the optimal solution change? Why? 3. There is a LP model as following12312312312236222333280(1,2)j Min Z x x x Subject tox x x x x x x x x j =++++≥-++≤-+≤≥= 1) give its dual problem.2) Use the graphical solution to solve the dual problem.4. You have a constraint that limits the amount of labor available to 40 hours perweek. If your shadow price is $10/hour for the labor constraint, and the market price for the labor is $11/hour. Should you pay to obtain additional labor? 5. Consider the following LP model of a production plan of tables and chairs:Max 3T + 2C (profit) Subject to the constraints:2T + C ≤100 (carpentry hrs) T + C ≤80 (painting hrs)T ≤ 40T, C ≥ 0 (non-negativity)1) Draw the feasible region. 2) Find the optimal solution.3)Does the optimal solution change if the profit contribution for tables changed from $3 to $4 per table?4) What if painting hours available changed from 80 to 100?6. For a linear programming problem:11221212121234524123280(1,2)i Max Z c x c x x x Subject tox x x x x x x i =+=++≤+≤+≤≥=Suppose C2 rising from 4 to 5, if the optimal solution will change? Explain the reason. 7. For a linear programming problem:112212121221234524123280(1,2)i Max Z c x c x x x Subject tox x x x b x x x i =+=++≤+≤=+≤≥=Suppose b2 rising from 12 to 15, if the optimal solution will change? Explain thereason.8. For a linear programming problem:112212121221234524123280(1,2)i Max Z c x c x x x Subject tox x x x b x x x i =+=++≤+≤=+≤≥=Calculate the shadow price of all of the three constraints. 9.1) Use the simplex algorithm to find the optimal solution to the model below(10 points)1212125231250(1,2)i Max Z x x Subject tox x x x x i =++≤+≤≥=2) For which objective function coefficient value ranges of x 1 and x 2 does thesolution remain optimal? (10 points) 3) Find the dual of the model; (5 points)4) Find the shadow prices of constraints. (5 points)5) If x1 and x2 are all integers, using the branch-and-bound to solve it.( 15points)10. A factory is going to produce Products I, II and III by using raw materials A and B.1) Please arrange production plan to make the profit maximization. (15) 2) Write the dual problem of the primal problem. (5)3) If one more kg of raw material A is available, how much the total profit will be increased? (5) 4) If the profit of product II changes from 1 to 2,will the optimal solution change? (5)Solution :1.(a) T h e shadow pr ic e for b 2 is 2.5. Replace th e constrai n t x 2 ≤ 2 by the constrain t x 2 ≤ 3.The new optimal solution is (x 1, x 2) = (0.5, 3) with Z = 9.5. Thus, a unit increas e in b 2 leads t o a 2.5 unit increase in Z .(b) The all o wabl e range to s tay optimal i s 0 ≤ c 1 ≤ 6. The ob j e ctiv e fun c t ion Z =c 1x 1 + 3x 2 is p arall e l to th e c on s tr ain t boundary equation 2x 1 + x 2 = 4 when c 1 = 6. The ob j e ctiv e function Z = c 1x 1 + 3x 2 is parallel to t he c on s tr ain t boundary equation x 2 = 2 wh e n c 1 = 0.(c) T h e allowable range to stay feasible is 2 ≤ b 1 < ∞. The righ t -h and sideb 1 can b e decreased un t il thec on s tr ain t boundary e qu ation 2x 1 + x 2 = 4 intersects th e solution (x 1, x 2) = (0, 2). This occurs when b 1 = 2. T h e right-hand side b 1 can b e in c r e ase d w i thou t i nte r s ec t ing a s olu tion .2.1) the dual problem:123123123125128..233424,0Min w y y y S ty y y y y y y y =++++≥++≥≥2) when C2 changes from 4 to 5, the optimal basic variable will not change, because the coefficient of the nonbasic variable remain positive.3) when b2 changes from 12 to 15, the optimal basic variable will not change. 3.1) the dual problem of the primal problem is :121212121223..222336,0Max w y y S ty y y y y y y y =--≤+≤+≤≥ 2) using the graphical solution, the optimal solution of the dual problem is: w= 19/5, y1=8/5, y2=-1/5.4. No. If you obtain one additional labor, you should pay $11. But by the shadowprice, you can only earn $10. So we should not pay to obtain additional labor. 5.2) The optimal solution is T=20, C=60 and the maximum profit is 180.3) If the profit contribution for tables changed from $3 to $4 per table, therewill be two optimal solutions, says T=20, C=60 and T=40, C=20, and the maximum profit is 200.4) Because painting hrs is a constraint condition for T=20, C=60, so theoptimal solution will change. The new optimal solution is T=0, C=100, and the maximum profit is 200.6. Parameter is calculated below:1212311211[,,][,][0,4,3][0,0]11104202311/81/403/81/401/41/2111240320001001BV NBV s j BV NBVBV s x x NBV s s C C B B a a a N c c B N c --====⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦--⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦=-If c2 rising from 4 to 5, then ,and >0,so the optimal solution will not change.7. If b2 rising from 12 to 15, every element of =[9/8,29/8,1/4] is large thenzero,so the optimal solution will not change. 8. Shadow price is calculated by 。
1.用图解法求解下列线性规划问题,并指出问题具有惟一最优解、无穷多最优解、无界解还是无可行解。
⎪⎩⎪⎨⎧≤≤≤≤≤++=83105120106max 212121x x x x x x z2.将下述线性规划问题化成标准形式。
(1)⎪⎪⎩⎪⎪⎨⎧≥≥-++-≤+-+-=-+-+-+-=无约束4,03,2,12321422245243min 4321432143214321x x x x x x x x x x x x x x x x x x x x z解:令z z -=',''4'44x x x -=⎪⎪⎩⎪⎪⎨⎧≥=-+-++-=+-+-+=-+-+-+-+-=0,,,,,,232142222455243'max 65''4'43216''4'43215''4'4321''4'4321''4'4321x x x x x x x x x x x x x x x x x x x x x x x x x x x x x z 3.分别用图解法和单纯形法求解下述线性规划问题,并对照指出单纯形表中的各基可行解对应图解法中的可行域的哪个顶点。
⎪⎩⎪⎨⎧≥≤+≤++=0,825943510max 21212121x x x x x x x x z解:①图解法:②单纯形法:将原问题标准化:⎪⎩⎪⎨⎧≥=++=+++=0,,,825943510max 42132121x x x x x x x x x x x x z C j105 0 0对应图解法中的点C B B b x 1 x 2 x 3 x 4 0 x 3 9 3 4 1 0 3 O 点x 4 8 [5] 2 0 1 8/5 j0 10 5 0 0 0 x 3 21/5 0 [14/5] 1 -3/5 3/2 C 点10 x 18/5 1 2/5 0 1/5 4 j-16 0 1 0 -2 5 x 2 3/2 0 1 5/14 -3/14 B 点10x 11 1 0 -1/7 2/7 j35/2-5/14-25/14单纯型法步骤:转化为标准线性规划问题;找到一个初始可行解,列出初始单纯型表;最优性检验,求cj-zj ,若所有的值都小于0,则表中的解便是最优解,否则,找出最大的值的那一列,求出bi/aij ,选取最小的相对应的xij ,作为换入基进行初等行变换,重复此步骤。
2025高考数学专项复习马尔科夫链含答案马尔科夫链1.(2024·高三·广东·开学考试)马尔科夫链因俄国数学家安德烈・马尔科夫得名,其过程具备“无记忆”的性质,即第n+1次状态的概率分布只跟第n次的状态有关,与第n-1,n-2,n-3,⋯次状态无关.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习、自然语言处理、金融领域、天气预测等方面都有着极其广泛的应用.现有A,B两个盒子,各装有2个黑球和1个红球,现从A,B两个盒子中各任取一个球交换放入另一个盒子,重复进行n n∈N*次这样的操作后,记A盒子中红球的个数为X n,恰有1个红球的概率为p n.(1)求p1,p2的值;(2)求p n的值(用n表示);(3)求证:X n的数学期望E X n为定值.理、金融领域、天气预测等方面都有着极其广泛的应用.其数学定义为:假设我们的序列状态是⋯⋯X t-2,X t-1,X t,X t+1,⋯,那么X t+1时刻的状态的条件概率仅依赖前一状态X t,即P X t+1⋯,X t-2,X t-1,X t=P X t+1X t.现实生活中也存在着许多马尔科夫链,例如著名的赌徒模型.假如一名赌徒进入赌场参与一个赌博游戏,每一局赌徒赌赢的概率为50%,且每局赌赢可以赢得1元,每一局赌徒赌输的概率为50%,且赌输就要输掉1元.赌徒会一直玩下去,直到遇到如下两种情况才会结束赌博游戏:记赌徒的本金为A A∈N*,A<B一种是赌金达到预期的B元,赌徒停止赌博;另一种是赌徒输光本金后,赌徒可以向赌场借钱,最多借A元,再次输光后赌场不再借钱给赌徒.赌博过程如图的数轴所示.当赌徒手中有n元-A≤n≤B,n∈Z时,最终欠债A元(可以记为该赌徒手中有-A元)概率为P(n),请回答下列问题:(1)请直接写出P(-A)与P(B)的数值.(2)证明{P(n)}是一个等差数列,并写出公差d.(3)当A=100时,分别计算B=300,B=1500时,P(A)的数值,论述当B持续增大时,P(A)的统计含义.状态到另一个状态的转换的随机过程.该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关.甲、乙两口袋中各装有1个黑球和2个白球,现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复进行n n∈N*次这样的操作,记口袋甲中黑球的个数为X n,恰有1个黑球的概率为p n.(1)求p1,p2的值;(2)求p n的值(用n表示);(3)求证:X n的数学期望E X n为定值.4.(2024·高三·江西·开学考试)马尔科夫链是概率统计中的一个重要模型,其过程具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,即第n+1次状态的概率分布只与第n次的状态有关,与第n -1,n-2,n-3,⋯次的状态无关,即P(X n+1|X1,X2,⋯,X n-1,X n)=P(X n+1|X n).已知甲盒中装有1个白球和2个黑球,乙盒中装有2个白球,现从甲、乙两个盒中各任取1个球交换放入对方的盒中,重复n 次(n∈N∗)这样的操作,记此时甲盒中白球的个数为X n,甲盒中恰有2个白球的概率为a n,恰有1个白球的概率为b n.(1)求a1,b1和a2,b2.为等比数列.(2)证明:a n+2b n-65(3)求X n的数学期望(用n表示).5.在概率论中,马尔可夫不等式给出了随机变量的函数不小于某正数的概率的上界,它以俄国数学家安德雷·马尔可夫命名,由马尔可夫不等式知,若ξ是只取非负值的随机变量,则对∀a>0,都有Pξ≥a≤Eξa.某市去年的人均年收入为10万元,记“从该市任意选取3名市民,则恰有1名市民去年的年收入超过100万元”为事件A,其概率为P A.则P A的最大值为()A.271000B.2431000C.427D.496.(2024·广东肇庆·模拟预测)马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,为状态空间中经过从一个状态到另一个状态的转换的随机过程,该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关.甲口袋中各装有1个黑球和2个白球,乙口袋中装有2个黑球和1个白球,现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复进行n(n∈N*)次这样的操作,记口袋甲中黑球的个数为X n,恰有1个黑球的概率为p n,则p1的值是;X n的数学期望E X n是.7.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,为状态空间中经过从一个状态到另一个状态的转换的随机过程.该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关.甲乙两个口袋中各装有1个黑球和2个白球,现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复进行n n∈N∗次这样的操作,记甲口袋中黑球个数为X n,恰有1个黑球的概率为p n,则p1=;p n=.8.马尔科夫链是机器学习和人工智能的基石,其数学定义为:假设序列状态是...,X t-2,X t-1,X t,X t+1,⋯,那么X t+1时刻的状态的条件概率仅依赖前一状态X t,即P X t+1∣⋯,X t-2,X t-1,X t=P X t+1∣X t.著名的赌徒模型就应用了马尔科夫链:假如一名赌徒进入赌场参与一个赌博游戏,每一局赌徒赌赢的概率都为50%,每局赌赢可以赢得1金币,赌输就要输掉1金币.赌徒自以为理智地决定,遇到如下两种情况就会结束赌博游戏:一是输光了手中金币;二是手中金币达到预期的1000金币,出现这两种情况赌徒都会停止赌博.记赌徒的本金为70金币,求赌徒输光所有金币的概率.9.(2024·广东茂名·二模)马尔可夫链是因俄国数学家安德烈·马尔可夫得名,其过程具备“无记忆”的性质,即第n+1次状态的概率分布只跟第n次的状态有关,与第n-1,n-2,n-3,⋅⋅⋅次状态是“没有任何关系的”.现有甲、乙两个盒子,盒子中都有大小、形状、质地相同的2个红球和1个黑球.从两个盒子中各任取一个球交换,重复进行n n∈N*次操作后,记甲盒子中黑球个数为X n,甲盒中恰有1个黑球的概率为a n,恰有2个黑球的概率为b n.(1)求X1的分布列;(2)求数列a n的通项公式;(3)求X n的期望.10.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,为状态空间中经过从一个状态到另一个状态的转换的随机过程.该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关.甲、乙两口袋中各装有1个黑球和2个白球,现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复进行n n∈N*次这样的操作,记口袋甲中黑球的个数为X n,恰有1个黑球的概率为p n,恰有2个黑球的概率为q n,恰有0个黑球的概率为r n.(1)求p1,p2的值;(2)根据马尔科夫链的知识知道p n=a⋅p n-1+b⋅q n-1+c⋅r n-1,其中a,b,c∈0,1为常数,同时p n+q n+ r n=1,请求出p n;(3)求证:X n的数学期望E X n为定值.11.(2024·云南·模拟预测)材料一:英国数学家贝叶斯1701∼1763在概率论研究方面成就显著,创立了贝叶斯统计理论,对于统计决策函数、统计推断等做出了重要贡献.贝叶斯公式就是他的重大发现,它用来描述两个条件概率之间的关系.该公式为:设A1,A2,⋯,A n是一组两两互斥的事件,A1∪A2∪⋯∪A n=Ω,且P A i>0,i=1,2,⋯,n,则对任意的事件B⊆Ω,P B >0,有P A i∣B=P A iP B∣A iP(B)=P A iP B∣A i∑n k=1P A kP B∣A k,i=1,2,⋯,n.材料二:马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习、自然语言处理、金融领域、天气预测等方面都有着极其广泛的应用.其数学定义为:假设我们的序列状态是⋯,X t-2,X t-1,X t,X t+1,⋯,那么X t+1时刻的状态的条件概率仅依赖前一状态X t,即P X t+1∣⋯,X t-2,X t-1,X t=P X t+1∣X t.请根据以上材料,回答下列问题.(1)已知德国电车市场中,有10%的车电池性能很好.W公司出口的电动汽车,在德国汽车市场中占比3%,其中有25%的汽车电池性能很好.现有一名顾客在德国购买一辆电动汽车,已知他购买的汽车不是W公司的,求该汽车电池性能很好的概率;(结果精确到0.001)(2)为迅速抢占市场,W公司计划进行电动汽车推广活动.活动规则如下:有11个排成一行的格子,编号从左至右为0,1,⋯,10,有一个小球在格子中运动,每次小球有34的概率向左移动一格;有14的概率向右移动一格,规定小球移动到编号为0或者10的格子时,小球不再移动,一轮游戏结束.若小球最终停在10号格子,则赢得6百欧元的购车代金券;若小球最终停留在0号格子,则客户获得一个纪念品.记P i为以下事件发生的概率:小球开始位于第i个格子,且最终停留在第10个格子.一名顾客在一次游戏中,小球开始位于第5个格子,求他获得代金券的概率.马尔科夫链1.(2024·高三·广东·开学考试)马尔科夫链因俄国数学家安德烈・马尔科夫得名,其过程具备“无记忆”的性质,即第n +1次状态的概率分布只跟第n 次的状态有关,与第n -1,n -2,n -3,⋯次状态无关.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习、自然语言处理、金融领域、天气预测等方面都有着极其广泛的应用.现有A ,B 两个盒子,各装有2个黑球和1个红球,现从A ,B 两个盒子中各任取一个球交换放入另一个盒子,重复进行n n ∈N * 次这样的操作后,记A 盒子中红球的个数为X n ,恰有1个红球的概率为p n .(1)求p 1,p 2的值;(2)求p n 的值(用n 表示);(3)求证:X n 的数学期望E X n 为定值.【解析】(1)设第n n ∈N * 次操作后A 盒子中恰有2个红球的概率为q n ,则没有红球的概率为1-p n -q n .由题意知p 1=C 12C 12+C 11C 11C 13C 13=59,q 1=C 12C 11C 13C 13=29,p 2=p 1⋅C 12C 12+C 11C 11C 13C 13+q 1⋅C 12C 13C 13C 13+1-p 1-q 1 ⋅C 13C 12C 13C 13=4981.(2)因为p n =p n -1⋅C 12C 12+C 11C 11C 13C 13+q n -1⋅C 12C 13C 13C 13+1-p n -1-q n -1 ⋅C 13C 12C 13C 13=-19p n -1+23.所以p n -35=-19p n -1-35 .又因为p 1-35=-245≠0,所以p n -35 是以-245为首项,-19为公比的等比数列.所以p n -35=-245×-19 n -1,p n =-245×-19 n -1+35.(3)因为q n =C 12C 11C 13C 13p n -1+C 11C 13C 13C 13q n -1=29p n -1+13q n -1,①1-q n -p n =C 11C 12C 13C 13p n -1+C 13C 11C 13C 131-q n -1-p n -1 =29p n -1+131-q n -1-p n -1 ,②.所以①一②,得2q n +p n -1=132q n -1+p n -1-1 .又因为2q 1+p 1-1=0,所以2q n +p n -1=0,所以q n =1-p n 2.X n 的可能取值是0,1,2,P X n =0 =1-p n -q n =1-p n 2,P X n =1 =p n ,P X n =2 =q n =1-p n 2.所以X n 的概率分布列为X n012p 1-p n2p n 1-p n2所以E X n =0×1-p n 2+1×p n +2×1-p n 2=1.2.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习、自然语言处理、金融领域、天气预测等方面都有着极其广泛的应用.其数学定义为:假设我们的序列状态是⋯⋯X t -2,X t -1,X t ,X t +1,⋯,那么X t +1时刻的状态的条件概率仅依赖前一状态X t ,即P X t +1⋯,X t -2,X t -1,X t =P X t +1X t .现实生活中也存在着许多马尔科夫链,例如著名的赌徒模型.假如一名赌徒进入赌场参与一个赌博游戏,每一局赌徒赌赢的概率为50%,且每局赌赢可以赢得1元,每一局赌徒赌输的概率为50%,且赌输就要输掉1元.赌徒会一直玩下去,直到遇到如下两种情况才会结束赌博游戏:记赌徒的本金为A A ∈N *,A <B 一种是赌金达到预期的B 元,赌徒停止赌博;另一种是赌徒输光本金后,赌徒可以向赌场借钱,最多借A 元,再次输光后赌场不再借钱给赌徒.赌博过程如图的数轴所示.当赌徒手中有n 元-A ≤n ≤B ,n ∈Z 时,最终欠债A 元(可以记为该赌徒手中有-A 元)概率为P (n ),请回答下列问题:(1)请直接写出P (-A )与P (B )的数值.(2)证明{P (n )}是一个等差数列,并写出公差d .(3)当A =100时,分别计算B =300,B =1500时,P (A )的数值,论述当B 持续增大时,P (A )的统计含义.【解析】(1)当n =-A 时,赌徒已经欠债-A 元,因此P (-A )=1.当n =B 时,赌徒到了终止赌博的条件,不再赌了,因此输光的概率P (B )=0;(2)记M :赌徒有n 元最后输光的事件,N :赌徒有n 元上一场赢的事件,P M =P N P M N +P N P M N ,即P (n )=12P (n -1)+12P (n +1),所以P (n )-P (n -1)=P (n +1)-P (n ),所以{P (n )}是一个等差数列,设P (n )-P (n -1)=d ,则P (n -1)-P (n -2)=d ,⋯,P (-A +1)-P (-A )=d ,累加得P (n )-P (-A )=(n +A )d ,故P (B )-P (-A )=(A +B )d ,得d =-1A +B ;(3)A =100,由(2)P (n )-P (-A )=(n +A )d =-n +A A +B ,代入n =A 可得P (A )-P (-A )=-2A A +B ,即P (A )=1-2A A +B ,当B =300时,P A =12,当B =1500时,P (A )=78,当B 增大时,P (A )也会增大,即输光欠债的可能性越大,因此可知久赌无赢家,即便是一个这样看似公平的游戏,只要赌徒一直玩下去就会100%的概率输光并负债.3.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,为状态空间中经过从一个状态到另一个状态的转换的随机过程.该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关.甲、乙两口袋中各装有1个黑球和2个白球,现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复进行n n∈N*次这样的操作,记口袋甲中黑球的个数为X n,恰有1个黑球的概率为p n.(1)求p1,p2的值;(2)求p n的值(用n表示);(3)求证:X n的数学期望E X n为定值.【解析】(1)设恰有2个黑球的概率为q n,则恰有0个黑球的概率为1-p n-q n.由题意知p1=C12C12+C11C11C13C13=59,q1=C12C11C13C13=29,所以p2=C12C12+C11C11C13C13p1+C12C13C13C13q1+C13C12C13C131-p1-q1=4981.(2)因为p n=C12C12+C11C11C13C13p n-1+C12C13C13C13q n-1+C13C12C13C131-p n-1-q n-1=-19p n-1+23,所以p n-35=-19p n-1-35.又因为p1-35=-245≠0,所以p n-35是以-245为首项,-19为公比的等比数列.所以p n-35=-245×-19n-1,p n=-245×-19n-1+35.(3)因为q n=C12C11C13C13p n-1+C11C13C13C13q n-1=29p n-1+13q n-1①,1-q n-p n=C11C12C13C13p n-1+C13C11C13C131-q n-1-p n-1=29p n-1+131-q n-1-p n-1②.所以①-②,得2q n+p n-1=132q n-1+p n-1-1.又因为2q1+p1-1=0,所以2q n+p n-1=0.所以q n=1-p n 2.所以X n的概率分布列为:X n012p1-p n-1-p n2p n1-p n2所以E X n=0×1-p n-1-p n 2+1×p n+2×1-p n2=1.所以X n的数学期望E X n为定值1.4.(2024·高三·江西·开学考试)马尔科夫链是概率统计中的一个重要模型,其过程具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,即第n+1次状态的概率分布只与第n次的状态有关,与第n -1,n-2,n-3,⋯次的状态无关,即P(X n+1|X1,X2,⋯,X n-1,X n)=P(X n+1|X n).已知甲盒中装有1个白球和2个黑球,乙盒中装有2个白球,现从甲、乙两个盒中各任取1个球交换放入对方的盒中,重复n 次(n∈N∗)这样的操作,记此时甲盒中白球的个数为X n,甲盒中恰有2个白球的概率为a n,恰有1个白球的概率为bn.(1)求a1,b1和a2,b2.(2)证明:a n+2b n-65为等比数列.(3)求X n的数学期望(用n表示).【解析】(1)若甲盒取黑球、乙盒取白球,互换,则甲盒中的球变为2白1黑,乙盒中的球变为1白1黑,概率a1 =23;若甲盒取白球、乙盒取白球,互换,则甲盒中的球仍为1白2黑,乙盒中的球仍为2白,概率b1=1 3,研究第2次交换球时的概率,根据第1次交换球的结果讨论如下:①当甲盒中的球为2白1黑,乙盒中的球为1白1黑时,对应概率为a1=2 3,此时,若甲盒取黑球、乙盒取黑球,互换,则甲盒中的球仍为2白1黑,乙盒中的球仍为1白1黑,概率为a1×13×12=16a1;若甲盒取黑球、乙盒取白球,互换,则甲盒中的球变为3白,乙盒中的球变为2黑,概率为a1×13×12=16a1;若甲盒取白球、乙盒取黑球,互换,则甲盒中的球变为1白2黑,乙盒中的球变为2白,概率为a1×23×12=13a1;若甲盒取白球、乙盒取白球,互换,则甲盒中的球仍为2白1黑,乙盒中的球仍为1白1黑,概率为a1×23×12=13a1,②当甲盒中的球为1白2黑,乙盒中的球为2白时,对应概率为b1=1 3,此时,若甲盒取黑球、乙盒取白球,互换,则甲盒中的球变为2白1黑,乙盒中的球变为1白1黑,概率为b1×23=23b1若甲盒取白球,乙盒取白球,互换,则甲盒中的球仍为1白2黑,乙盒中的球仍为2白,概率为b1×13=13b1,综上,a2=16a1+13a1+23b1=59,b2=13a1+13b1=13.(2)依题意,经过n次这样的操作,甲盒中恰有2个白球的概率为a n,恰有1个白球的概率为b n,则甲盒中恰有3个白球的概率为1-a n-b n,研究第n+1次交换球时的概率,根据第n次交换球的结果讨论如下:①当甲盒中的球为2白1黑,乙盒中的球为1白1黑时,对应概率为a n,此时,若甲盒取黑球、乙盒取黑球,互换,则甲盒中的球仍为2白1黑,乙盒中的球仍为1白1黑,概率为a n×13×12=16a n;若甲盒取黑球、乙盒取白球,互换,则甲盒中的球变为3白,乙盒中的球变为2黑,概率为a n×13×12=16a n;若甲盒取白球、乙盒取黑球,互换,则甲盒中的球变为1白2黑,乙盒中的球变为2白,概率为a n×23×12=13a n;若甲盒取白球、乙盒取白球,互换,则甲盒中的球仍为2白1黑,乙盒中的球仍为1白1黑,概率为a n×23×12=13a n,②当甲盒中的球为1白2黑,乙盒中的球为2白时,对应概率为b n,此时,若甲盒取黑球、乙盒取白球,互换,则甲盒中的球变为2白1黑,乙盒中的球变为1白1黑,概率为b n×2 3=23b n;若甲盒取白球、乙盒取白球,互换,则甲盒中的球仍为1白2黑,乙盒中的球仍为2白,概率为b n ×13=13b n ,③当甲盒中的球为3白,乙盒中的球为2黑时,对应概率为1-a n -b n ,此时,甲盒只能取白球、乙盒只能取黑球,互换,则甲盒中的球变为2白1黑,乙盒中的球变为1白1黑,概率为1-a n -b n ,综上,a n +1=13a n +16a n +23b n +1-a n -b n =1-12a n -13b n ,b n +1=13a n +13b n 则a n +1+2b n +1-65=1-12a n -13b n +23a n +23b n -65=16a n +13b n -15,整理得a n +1+2b n +1-65=16a n +2b n -65 ,又a 1+2b 1-65=215>0,所以数列a n +2b n -65 是公比为16的等比数列.(3)由(2)知a n +2b n -65=215×16 n -1,则a n +2b n =65+215×16n -1,随机变量X n 的分布列为X n123P b n a n 1-a n -b n所以E (X n )=b n +2a n +3-3b n -3a n =3-(a n +2b n )=95-215×16 n -1.5.在概率论中,马尔可夫不等式给出了随机变量的函数不小于某正数的概率的上界,它以俄国数学家安德雷·马尔可夫命名,由马尔可夫不等式知,若ξ是只取非负值的随机变量,则对∀a >0,都有P ξ≥a ≤E ξ a.某市去年的人均年收入为10万元,记“从该市任意选取3名市民,则恰有1名市民去年的年收入超过100万元”为事件A ,其概率为P A .则P A 的最大值为()A.271000 B.2431000 C.427 D.49【答案】B【解析】记该市去年人均收入为X 万元,从该市任意选取3名市民,年收入超过100万元的人数为Y .设从该市任选1名市民,年收入超过100万元的概率为p ,则根据马尔可夫不等式可得p =P X ≥100 ≤E X 100=10100=110,∴0≤p ≤110,因为Y ~B (3,p ),所以P A =P Y =1 =C 13p 1-p 2=3p 1-p 2=3p 3-6p 2+3p ,令f (p )=3p 3-6p 2+3p ,则f (p )=9p 2-12p +3=3(3p -1)(p -1),∵0≤p ≤110,∴3p -1<0,p -1<0,即f (p )>0,∴f (p )在0,110上单调递增.∴f (p )max =f 110 =3×110×1-110 2=2431000,即P (A )max =2431000.故选:B6.(2024·广东肇庆·模拟预测)马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关.甲口袋中各装有1个黑球和2个白球,乙口袋中装有2个黑球和1个白球,现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复进行n (n ∈N *)次这样的操作,记口袋甲中黑球的个数为X n ,恰有1个黑球的概率为p n ,则p 1的值是;X n 的数学期望E X n 是.【答案】4932-1213 n【解析】考虑到乙袋中拿出的球可能是黑的也可能是白的,由全概率公式可得p 1=13×23+23×13=49;记X n -1取0,1,2,3的概率分别为p 0,p 1,p 2,p 3,推导X n 的分布列:P X n =1 =p 0+49p 1+49p 2,P X n =2 =49p 1+49p 2+p 3,P X n =3 =19p 2,则E X n =0⋅P X n =0 +1⋅P X n =1 +2⋅P X n =2 +3⋅P X n =3 =p 0+43p 1+53p 2+2p 3=1+13p 1+2p 2+3p 3 =1+13E X n -1 ,则E X n -32=13E X n -1 -32,故E X n -32=E X 1 -32 ×13n -1给合E X 1 =43,可知E X n =32-1213 n .故答案为:49;32-1213n .7.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,为状态空间中经过从一个状态到另一个状态的转换的随机过程.该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关.甲乙两个口袋中各装有1个黑球和2个白球,现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复进行n n ∈N ∗ 次这样的操作,记甲口袋中黑球个数为X n ,恰有1个黑球的概率为p n ,则p 1=;p n =.【答案】5925⋅-19 n +35【解析】由题意,p 1=C 12C 12+C 11C 11C 13C 13=59;当n ≥2n ∈N ∗ 时,p n =C 12C 12+C 11C 11C 13C 13p n -1+C 12C 13C 13C 13P X n -1=0 +C 13C 12C 13C 13P X n -1=2 =59p n -1+23P X n -1=0 +P X n -1=2 =59p n -1+231-p n -1 =-19p n -1+23,整理得p n -35=-19p n -1-35 ,p 1-35=59-35=-245,故可知p n -35 是以-245为首项,以-19为公比的等比数列,所以p n =25⋅-19 n +35.故答案为:59;25⋅-19 n +358.马尔科夫链是机器学习和人工智能的基石,其数学定义为:假设序列状态是...,X t -2,X t -1,X t ,X t +1,⋯,那么X t +1时刻的状态的条件概率仅依赖前一状态X t ,即P X t +1∣⋯,X t -2,X t -1,X t =P X t +1∣X t .著名的赌徒模型就应用了马尔科夫链:假如一名赌徒进入赌场参与一个赌博游戏,每一局赌徒赌赢的概率都为50%,每局赌赢可以赢得1金币,赌输就要输掉1金币.赌徒自以为理智地决定,遇到如下两种情况就会结束赌博游戏:一是输光了手中金币;二是手中金币达到预期的1000金币,出现这两种情况赌徒都会停止赌博.记赌徒的本金为70金币,求赌徒输光所有金币的概率.【答案】93100/0.93【解析】设当赌徒手中有n 元0≤n ≤1000,n ∈N 时,最终输光的概率为P (n ),当n =0时,赌徒已经输光了,所以P (0)=1,当n =1000时,赌徒到了终止赌博的条件,不再赌了,因此输光的概率为P (1000)=0,记M :赌徒有n 元最后输光的事件,N :赌徒有n 元下一次赢的事件,所以P M =P N P (M |N )+P N P (M |N ),即P (n )=12P (n -1)+12P (n +1),所以P (n +1)-P (n )=P (n )-P (n -1),所以P (n ) 为等差数列,设P (n )-P (n -1)=d ,由于P (1000)=P (0)+1000d =1+1000d =0,所以d =-11000,所以P (n )=P (0)+nd =1-n 1000,故P (70)=1-701000=93100故答案为:931009.(2024·广东茂名·二模)马尔可夫链是因俄国数学家安德烈·马尔可夫得名,其过程具备“无记忆”的性质,即第n +1次状态的概率分布只跟第n 次的状态有关,与第n -1,n -2,n -3,⋅⋅⋅次状态是“没有任何关系的”.现有甲、乙两个盒子,盒子中都有大小、形状、质地相同的2个红球和1个黑球.从两个盒子中各任取一个球交换,重复进行n n ∈N * 次操作后,记甲盒子中黑球个数为X n ,甲盒中恰有1个黑球的概率为a n ,恰有2个黑球的概率为b n .(1)求X 1的分布列;(2)求数列a n 的通项公式;(3)求X n 的期望.【解析】(1)(1)由题可知,X 1的可能取值为0,1,2.由相互独立事件概率乘法公式可知:P X 1=0 =13×23=29;P X 1=1 =13×13+23×23=59;P X 1=2 =23×13=29,故X 1的分布列如下表:X 1012P 295929(2)由全概率公式可知:P X n +1=1=P X n =1 ⋅P X n +1=1X n =1 +P X n =2 ⋅P X n +1=1X n =2 +P X n =0 ⋅P X n +1=1X n =0=13×13+23×23 P X n =1 +23×1 P X n =2 +1×23 P X n =0 =59P X n =1 +23P X n =2 +23P X n =0 ,即:a n +1=59a n +23b n +231-a n -b n ,所以a n +1=-19a n +23,所以a n +1-35=-19a n -35 ,又a 1=P X 1=1 =59,所以,数列a n -35 为以a 1-35=-245为首项,以-19为公比的等比数列,所以a n -35=-245⋅-19 n -1=25⋅-19 n ,即:a n =35+25⋅-19n .(3)由全概率公式可得:P X n +1=2 =P X n =1 ⋅P X n +1=2X n =1 +P X n =2 ⋅P X n +1=2X n =2 +P X n =0 ⋅P X n +1=2X n =0=23×13 ⋅P X n =1 +13×1 ⋅P X n =2 +0⋅P X n =0 ,即:b n +1=29a n +13b n ,又a n =35+25⋅-19 n ,所以b n +1=13b n +2935+25-19 n ,所以b n +1-15+15-19 n +1=13b n -15+15-19 n,又b 1=P X 1=2 =29,所以b 1-15+15×-19 =29-15-145=0,所以b n -15+15-19 n =0,所以b n =15-15-19n ,所以E X n =a n +2b n +01-a n -b n =a n +2b n =1.10.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,为状态空间中经过从一个状态到另一个状态的转换的随机过程.该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关.甲、乙两口袋中各装有1个黑球和2个白球,现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复进行n n ∈N * 次这样的操作,记口袋甲中黑球的个数为X n ,恰有1个黑球的概率为p n ,恰有2个黑球的概率为q n ,恰有0个黑球的概率为r n .(1)求p 1,p 2的值;(2)根据马尔科夫链的知识知道p n =a ⋅p n -1+b ⋅q n -1+c ⋅r n -1,其中a ,b ,c ∈0,1 为常数,同时p n +q n +r n =1,请求出p n ;(3)求证:X n 的数学期望E X n 为定值.【解析】(1)由题意恰有0个黑球的概率为1-p n -q n .由题意知p 1=C 12C 12+C 11C 11C 13C 13=59,q 1=C 12C 11C 13C 13=29,所以p2=C12C12+C11C11C13C13p1+C12C13C13C13q1+C13C12C13C131-p1-q1=4981.(2)因为p n=C12C12+C11C11C13C13p n-1+C12C13C13C13q n-1+C13C12C13C131-p n-1-q n-1=-19p n-1+23,所以p n-35=-19p n-1-35.又因为p1-35=-245≠0,所以p n-35是以-245为首项,-19为公比的等比数列.所以p n-35=-245×-19n-1,p n=-245×-19n-1+35.(3)因为q n=C12C11C13C13p n-1+C11C13C13C13q n-1=29p n-1+13q n-1①,1-q n-p n=C11C12C13C13p n-1+C13C11C13C131-q n-1-p n-1=29p n-1+131-q n-1-p n-1②所以①-②,得2q n+p n-1=132q n-1+p n-1-1 .又因为2q1+p1-1=0,所以2q n+p n-1=0.所以q n=1-p n 2.所以X n的概率分布列为:X n012p1-p n-1-p n2p n1-p n2所以E X n=0×1-p n-1-p n 2+1×p n+2×1-p n2=1.所以X n的数学期望E X n为定值1.11.(2024·云南·模拟预测)材料一:英国数学家贝叶斯1701∼1763在概率论研究方面成就显著,创立了贝叶斯统计理论,对于统计决策函数、统计推断等做出了重要贡献.贝叶斯公式就是他的重大发现,它用来描述两个条件概率之间的关系.该公式为:设A1,A2,⋯,A n是一组两两互斥的事件,A1∪A2∪⋯∪A n=Ω,且P A i>0,i=1,2,⋯,n,则对任意的事件B⊆Ω,P B >0,有P A i∣B=P A iP B∣A iP(B)=P A iP B∣A i∑n k=1P A kP B∣A k,i=1,2,⋯,n.材料二:马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习、自然语言处理、金融领域、天气预测等方面都有着极其广泛的应用.其数学定义为:假设我们的序列状态是⋯,X t-2,X t-1,X t,X t+1,⋯,那么X t+1时刻的状态的条件概率仅依赖前一状态X t,即P X t+1∣⋯,X t-2,X t-1,X t=P X t+1∣X t.请根据以上材料,回答下列问题.(1)已知德国电车市场中,有10%的车电池性能很好.W公司出口的电动汽车,在德国汽车市场中占比3%,其中有25%的汽车电池性能很好.现有一名顾客在德国购买一辆电动汽车,已知他购买的汽车不是W公司的,求该汽车电池性能很好的概率;(结果精确到0.001)(2)为迅速抢占市场,W公司计划进行电动汽车推广活动.活动规则如下:有11个排成一行的格子,编号从左至右为0,1,⋯,10,有一个小球在格子中运动,每次小球有34的概率向左移动一格;有14的概率向右移动一格,规定小球移动到编号为0或者10的格子时,小球不再移动,一轮游戏结束.若小球最终停在10号格子,则赢得6百欧元的购车代金券;若小球最终停留在0号格子,则客户获得一个纪念品.记P i 为以下事件发生的概率:小球开始位于第i 个格子,且最终停留在第10个格子.一名顾客在一次游戏中,小球开始位于第5个格子,求他获得代金券的概率.【解析】(1)记事件A 为一辆德国市场的电车性能很好,事件B 为一辆德国市场的车来自W 公司.由全概率公式知:P A =P A |B P B +P A |B P B ,故:P A |B =P A -P A |B ⋅P B P B=10%-0.25×3%97%≈0.095.(2)记事件A i i =0,1,⋯,10 表示小球开始位于第i 个格子,且最终停留在第10个格子,事件C 表示小球向右走一格.小球开始于第i 格,此时的概率为P i ,则下一步小球向左或向右移动,当小球向右移动,即可理解为小球始于P i +1,当小球向左移动,即可理解为小球始于P i -1,即P i =14P i +1+34P i -1.由题知P 0=0,P 10=1,又4P i =3P i -1+P i +1,故P i +1-P i =3P i -P i -1 ,所以P i -P i -1 是以P 1-P 0为首项,3为公比的等比数列,即:P i -P i -1=3i -1P 1-P 0 ,即:P 10-P 9=39P 1-P 0 ,P 9-P 8=38P 1-P 0 ,⋯P 1-P 0=30P 1-P 0 ,故P 10=39+38+⋯+30P 1-P 0 =310-12P 1,P 5=34+33+⋯+30 P 1-P 0 =35-12P 1,则P 5=P 5P 10=35-1310-1=135+1=1244,故这名顾客获得代金券的概率为1244.。