中考数学压轴题辽宁
- 格式:doc
- 大小:496.50 KB
- 文档页数:13
2023年辽宁省沈阳市中考模拟数学试题学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.如果一个负数大于它的倒数,那么,这个负数是( ) A .真负分数B .分数C .整数D .假分数2.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .3.下列运算正确的是( ) A .236a a a ⋅=B .1234y y y ÷=C .33(2)8x x -=-D .3362x x x +=4.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x ,则下列方程中正确的是( ) A .12(1+x )=17 B .17(1﹣x )=12 C .12(1+x )2=17D .12+12(1+x )+12(1+x )2=175.如图,将边长相等的正方形、正五边形、正六边形纸板,按如图方式放在桌面上,则a ∠的度数是( )A .42B .40C .36D .326.若关于x 的方程2(1)10a x -+=有两个实数根,则a 的最大整数值为( ) A .-1B .0C .1D .27.如图,由8个边长为1的小正方形组成的图形,被线段AB 平分为面积相等的两部分,已知点A 的坐标是()1,0,则点B 的坐标为( )A .11,33⎛⎫ ⎪⎝⎭B .10,33⎛⎫ ⎪⎝⎭C .15,34⎛⎫ ⎪⎝⎭D .18,35⎛⎫ ⎪⎝⎭8.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地.快车的速度为60千米/小时,特快车的速度为90千米/小时.甲、乙两地之间的距离为300千米,两车同时出发,则图中折线大致表示两车之间的距离y (千米)与快车行驶时间t (小时)之间的函数图象是( )A .B .C .D .9.如图,BD 是O 的直径,弦AC 交BD 于点G .连接OC ,若126COD ∠=︒,AB AD =,则AGB ∠的度数为( )A .98°B .103°C .108°D .113°10.如图,在平面直角坐标系中,平行四边形OABC 的边OA 在y 轴的正半轴上,反比例函数(0)k y x x=>的图像分别交AB 于中点D ,交OC 于点E ,且:1:2CE OE =,连接AE ,若2ADE S =△,则k 的值为( )A .5B .367C .6D .647二、填空题11.新冠肺炎疫情爆发后,学生上学检测体温采用的调查方式是_____________ .(填“普查”或“抽样调查”)12.分别写有数字13、1-、π的四张大小和质地均相同的卡片,从中任意抽取一张后不放回再抽取一张,两次抽到的卡片都是无理数的概率是______.13.某校八年级(3)班团支部为了让同学们进一步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作.A .“北斗卫星”;B .“5G 时代”;C .“智轨快运系统”;D .“东风快递”;E .“高铁”.统计同学们所选内容的频数,绘制如图所示的折线统计图,则选“5G 时代”的百分率为 ______.14.某同学用描点法y=ax 2+bx+c 的图象时,列出了表: x … ﹣2 ﹣1 0 1 2 … y …﹣11﹣21﹣2﹣5…由于粗心,他算错了其中一个y 值,则这个错误的y 值是_______.15.如图是按以下步骤作图:(1)在ABC 中,分别以点B ,C 为圆心,大于12BC 长为半径作弧,两弧相交于点M ,N ;(2)作直线MN 交AB 于点D ;(3)连接CD ,若90,8BCA AB ∠=︒=,则CD 的长为________.16.某中学为了选拔一名运动员参加区运会100m 短跑比赛,有甲、乙、丙3名运动员备选,他们100m 短跑的平均成绩和方差如下表所示如果要选择一名成绩优秀且稳定的人去参赛,应派_______去.17.如图,在ABC 中,90ACB ∠=︒,AC BC ==ABC 绕点C 按逆时针方向旋转得到DEC ,连接AD ,BE ,直线AD ,BE 相交于点F ,连接CF ,在旋转过程中,线段CF 长度的范围为__________.18.如图,点E 是菱形ABCD 的边AD 的中点,点F 是AB 上的一点,点G 是BC 上的一点,先以CE 为对称轴将CDE △折叠,使点D 落在CF 上的点D 处,再以EF 为对称轴折叠AEF ,使得点A 的对应点A '与点D '重合,以FG 为对称轴折叠BFG ,使FG19.如图,点A 为等边三角形BCD 外一点,连接AB 、AD 且AB =AD ,过点A 作AE CD ∥分别交BC 、BD 于点E 、F ,若34,5BD AE EF ==,则线段AE 的长________.20.如图是抛物线21(0)y ax bx c a =++≠图象的一部分,抛物线的顶点坐标为()1,3A -,与x 轴的一个交点为()4,0B ,点A 和点B 均在直线2(0)y mx n m =+≠上.①20a b +=;①0abc >:①抛物线与x 轴的另一个交点时()4,0-;①方程23ax bx c ++=-有两个不相等的实数根:①4a b c m n -+>+;①不等式2mx n ax bx c +>++的解集为14x <<.上述六个结论中,其中正确的结论是________.(填写序号即可) 三、解答题21.计算:20202||2|(1)-+-.22.如图,一次函数5y x =+的图象与反比例函数ky x=(k 为常数,且0k ≠)的图象相交于()2,A m -和B 两点.(1)求反比例函数的表达式:______________ (2)直接写出不等式5kx x+≤的解集___________ (3)将一次函数5y x =+的图象沿y 轴向下平移b 个单位()0b >.使平移后的图象与反比例函数ky x=的图象有且只有一个交点,b 的值=________ 23.如图,在钝角三角形ABC 中,90ABC ∠>︒,点A ,B ,C 在O 上,过点A 作AD BC ⊥交CB 的延长线于点D ,且DAB C ∠=∠,过点B 作BE AB ⊥交O 于点E ,过点E 作EF AC ,交O 于点M ,交DA 的延长线于点F .(1)求证:DF 是O 的切线.(2)若点C 是BE 的中点,BE =BM 的长_________.24.如图1,在矩形ABCD 中,AB =2,E 是AD 的中点,以点E 为直角顶点的直角三角形EFG 的两边EF ,EG 分别过点B ,C ,30F ∠=︒.将EPG △绕点E 旋转,(1)若EF ,EG 分别与线段AB ,线段BC 相交于点M ,N (如图2).求证:BM CN =;(2)在(1)的条件下,①BMN △面积的最大值___________①当旋转停止时,点B 恰好在FG 上(如图3),sin EBG ∠的值___________ (3)在旋转过程中,射线EF 与直线BC 交于P .射线EG 与直线CD 交于Q ﹐30EPQ S =△,CP =________25.如图,抛物线2(0)y ax bx c a =++≠与x 轴交于A 、B 两点,点A 在点B 的左边,与y 轴交于点C ,点A 的坐标为()2,0-,::1:2:3AO CO BO =.(1)如图1,求抛物线的解析式;(2)如图1,点D 在直线BC 上方的抛物线上运动(不含端点B 、C ),连接DC 、DB ,当四边形ABDC 面积最大时,求出面积最大值和点D 的坐标;(3)如图2,将(1)中的抛物线向右平移,当它恰好经过原点时,设原抛物线与平移后的抛物线交于点E ,连接BE .点M 为原抛物线对称轴上一点,N 为平面内一点,以B 、E 、M 、N 为顶点的四边形是矩形时,若直线OK 平分这个矩形面积,请直接写出直线OK 的解析式. ①________________ ①________________ ①_______________参考答案:1.A 【解析】 【分析】设这个负数为a ,则a <0,且1a a>,可得10a -<<,即可求解. 【详解】解:设这个负数为a ,则a <0,且1a a>, ①21a <, 解得:10a -<<, ①这个负数是真负分数. 故选:A 【点睛】本题主要考查了倒数,解不等式,根据题意得到1a a>是解题的关键. 2.A 【解析】 【分析】利用轴对称图形、中心对称图形的定义进行判断即可. 【详解】A 选项既是轴对称图形,又是中心对称图形,符合题意;B 选项既不是轴对称图形,又不是中心对称图形,不符合题意;C 选项是轴对称图形,不是中心对称图形,不符合题意;D 选项不是轴对称图形,是中心对称图形,不符合题意; 故选:A . 【点睛】本题考查了轴对称图形、中心对称图形的定义,即一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;一个图形绕着中心点旋转180°后能与自身重合,那么这个图形叫做中心对称图形. 3.C 【解析】根据同底数幂的乘法法则可判断A ,根据同底数幂的除法法则可判断B ,根据积的乘法法则可判断C ,根据合并同类项法则可判断D . 【详解】A .23235a a a a +⋅==,A 选项错误;B .1231239y y y y -÷==,B 选项错误;C .3333(2)(2)8x x x -=-=-,C 选项正确;D .3332x x x +=,D 选项错误. 故选:C . 【点睛】本题主要考查了同底数幂的运算法则以及合并同类项的知识,熟记相关运算法则是解答本题关键. 4.C 【解析】 【详解】【分析】设游客人数的年平均增长率为x ,由2015年约为12万人次,到2017年约为17万人次,增长了2次,可列出方程.【详解】设游客人数的年平均增长率为x ,由2015年约为12万人次,到2017年约为17万人次,增长2次,可列出方程12(1+x)2=17. 故选C【点睛】本题考核知识点:列一元二次方程解应用题.解题关键点:找出相等关系,列方程. 5.A 【解析】 【分析】根据正多边形的内角,角的和差,可得答案. 【详解】解:正方形的内角为90°,正五边形的内角为(52)1801085︒︒-⨯=,正六边形的内角为(62)1801206︒︒-⨯=,①1=360°-90°-108°-120°=42°,故选:A .本题考查多边形的内角与外角,解题关键是利用正多边形的内角进行计算. 6.B 【解析】 【分析】分当10a -=,即1a =时,当10a -≠,即1a ≠-时,两种情况讨论求解即可. 【详解】解:当10a -=,即1a =10+=只有一个实数根,不符合题意; 当10a -≠,即1a ≠-时,原方程为一元二次方程,且有两个实数根,①()22=4410b ac a ∆-=--≥,①74a ≤且1a ≠, ①a 的最大整数值为0, 故选B . 【点睛】本题主要考查了一元二次方程根的判别式和一元二次方程的定义,熟知一元二次方程根的判别式是解题的关键. 7.A 【解析】 【分析】如图所示,过点B 作BC ①y 轴于C ,设点B 的坐标为(m ,3),则OC =3,BC =m ,根据题意可知7OABC S =梯形,则72BC OAOC +⋅=,由此求解即可. 【详解】解:如图所示,过点B 作BC ①y 轴于C , 由题意得可知点B 的纵坐标为3, 设点B 的坐标为(m ,3), ①OC =3,BC =m ,①线段AB 平分这8个正方形组成的图形的面积, ①18372OABC S =⨯+=梯形,①72BC OA OC +⋅=, ①1372m +⨯=, ①113m =, ①点B 的坐标为11,33⎛⎫ ⎪⎝⎭, 故选A .【点睛】本题主要考查了坐标与图形,正确作出辅助线构造梯形OABC 是解题的关键.8.D【解析】【分析】分三段讨论,①两车从开始到相遇,这段时间两车距迅速减小,①相遇后向相反方向行驶到特快到达甲地,这段时间两车距迅速增加,①特快车到达甲地至快车到达乙地,这段时间两车距缓慢增大,结合实际选符合的图象即可.【详解】解:①两车从开始到相遇,这段时间两车距迅速减小;①相遇后向相反方向行驶到特快到达甲地这段时间两车距迅速增加;①特快车到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得D 选项符合题意.故选:D .【点睛】本题考查了函数的图象,解答本题关键是分段讨论,要结合实际解答,明白每条直线所代表的实际含义及拐点的含义.9.C【解析】【分析】先求出①COB的度数,由圆周角定理求出①BAC的度数,再根据弧、弦之间的关系求出①ABD=45°,即可得到答案.【详解】解:①①COD=126°,①①COB=54°,①1=272BAC COB=︒∠∠,①BD是圆O的直径,①①BAD=90°,①AB AD=,①AB=AD,①①ABD=①ADB=45°,①①AGB=180°-①BAG-①ABG=108°,故选C.【点睛】本题主要考查了圆周角定理,直径所对的圆周角是直角,等弧所对的弦相等,等腰直角三角形的性质与判定,三角形内角和定理等等,熟知圆周角定理是解题的关键.10.D【解析】【分析】连结BE,延长BC交x轴于H,过E作EG①x轴于G,DF①x轴于F,由点D为AB中点,可得AD=BD=12AB,由S△AED=2,可求S平行四边形AOCB=2 S△AEB=8,设D(,kaa),OF=a,OH=2a,可求OA=842a a=,由:1:2CE OE=,可求23OEOC=,由EG①CH,可证△OGE①①OHC,可求2433OG OH a==,EG=23CH,求出E(43a,41633ka a-),由点E在反比例函数图像上得43a41633kka a⎛⎫⋅-=⎪⎝⎭,解得647k=.【详解】解:连结BE,延长BC交x轴于H,过E作EG①x轴于G,DF①x轴于F,①点D为AB中点,①AD=BD=12AB,OF=FH,①S△AED=2,①S△AEB=2 S△AED=4,①S平行四边形AOCB=2 S△AEB=8,设D(,kaa),OF=a,FH=OF=a,OH=2a,OA=842a a=,①:1:2 CE OE=,,①12 CEOE=,①122CE OEOE++=,①23 OEOC=,①EG①CH,①①OEG=①OCH,①OGE=①OHC=90°,①①OGE①①OHC,①23 OE OG EGOC OH CH===,①2433OG OH a==,EG=23CH,由梯形中位线2FD=OA+HB=2OA+CH,①CH=28 22kFD OAa a-=-,EG=2416 333kCHa a=-,E(43a,41633ka a-),点E在反比例函数图像上,43a41633kka a⎛⎫⋅-=⎪⎝⎭,解得647k=,故选择:D.【点睛】本题考查平行四边形性质,梯形中位线,相似三角形判定与性质,利用点E坐标在反比例函数图像上构造方程是解题关键.11.普查【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行解答即可.【详解】解:因为新冠肺炎疫情事关重大,学生上学必须进行体温检测,所以采用的调查方式是普查,故答案为:普查.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.12.1 6【解析】【分析】根据题意画出树状图得出所有等可能的情况数,找出符合条件的情况数,再根据概率公式即可得出答案.【详解】解:根据题意,画出树状图,如下:共有12种等可能结果,其中两次抽到的卡片都是无理数的有2种,①两次抽到的卡片都是无理数的概率是21 126.故答案为:1 6【点睛】此题考查的是用列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.13.30%【解析】【分析】根据折线图,先算出总人数,然后用“5G时代”的人数除以总人数即可得到答案.【详解】解:由折线图可知:这个班的总人数=25+30+10+20+15=100人①“5G时代”的人数是30①“5G时代”的百分率=30÷100=30%故答案为:30%【点睛】本题主要考查了折线统计图,解题的关键在于能够准确地从折线图中获取信息求解.14.﹣5.【解析】【详解】根据关于对称轴对称的自变量对应的函数值相等,可得答案.解:由函数图象关于对称轴对称,得(﹣1,﹣2),(0,1),(1,2)在函数图象上,把(﹣1,﹣2),(0,1),(1,﹣2)代入函数解析式,得212a b c c a b c -+=-⎧⎪=⎨⎪++=-⎩, 解得,301a b c =-⎧⎪=⎨⎪=⎩,函数解析式为y=﹣3x 2+1x=2时y=﹣11,故答案为﹣5.“点睛”本题考查了二次函数图象,利用函数图象关于对称轴对称是解题关键.15.4【解析】【分析】根据作图可以判断MN 垂直平分BC ,然后根据线段的垂直平分线的性质得到DB =DC ,再证明DA =DC ,即可得到CD =12AB =4.【详解】解:由作图方法可得MN 垂直平分BC ,∴DB =DC ,∴B BCD ∠=∠,90BCA ∠=︒,∴①B +①A =90°,①BCD +①ACD =90°,①①ACD =①A ,①DA =DC ,①CD =12AB =12×8=4.故答案为:3.【点睛】本题考查了识别线段的垂直平分线的作图,常见的基本作图有作一条线段等于已知线段、作一个角等于已知角、作已知线段的垂直平分线、作已知角的角平分线、过一点作已知直线的垂线.识别出MN 为线段BC 的垂直平分线,然后根据垂直平分线的性质和直角三角形的性质是解题的关键.16.乙【解析】【分析】综合比较平均成绩和方差,甲和乙的平均成绩较好,均为12.85秒,乙和丙方差较小,均为1.1,说明乙的成绩优秀且稳定.【详解】解:①12.85秒<12.87秒,①甲,乙的平均成绩较好,①1.1<2.1,①乙的成绩稳定,①应派乙去参赛.故答案为:乙.【点睛】本题考查了用平均数和方差做决策,解决问题的关键是熟练比较平均数选出平均数最小的,比较方差选出方差最小的.17.0CF≤≤【解析】【分析】取AB的中点H,连接CH、FH,设EC,DF交于点G,在①ABC中,由勾股定理得到AB=①DCE①①ACB,从而①DCA=①BCE,①ADC=①BEC,由①DGC=①EGF,可得①AFB=90º,由直角三角形斜边上的中线等于斜边的一半,可得AB①FCH中,当F、C、H在一条直线上时,CFFH=CH=12再求出CF的最小值即可.【详解】解:取AB的中点H,连接CH、FH,设EC,DF交于点G,在①ABC中,①ACB=90º,AC BC,①AB由旋转可知:①DCE①①ACB,①①DCE=①ACB,DC=AC,CE=CB,①①DCA=①BCE,①①ADC=12(180º-①ACD) ,①BEC=12(180º-①BCE),①①ADC=①BEC,①①DGC=①EGF,①①DCG=①EFG=90º,①①AFB=90º,①H是AB的中点,①FH=12AB,①①ACB=90º,①CH=12AB,①FH=CH=12AB在①FCH中,FH+CH>CF,当F、C、H在一条直线上时,CF=①线段CF.如图所示,当①ABC绕点C逆时针旋转180度时,直线AD与直线BE的交点即为点C,则此时C、F重合,即此时CF=0,①0CF≤≤故答案为:0CF≤≤【点睛】本题考查了旋转的性质、三角形内角和定理、勾股定理,直角三角形斜边上的中线,解决本题的关键是掌握旋转的性质.18.35【解析】【分析】过点C 作CH AB ⊥,交AB 延长线于点H ,设AF A F x '==,分别解得FC ,BF ,BH ,FH 的长,在t R FCH 中利用勾股定理解得45x =,在证明ECA GFB ''∽最后根据相似三角形对应边成比例解答即可.【详解】解:过点C 作CH AB ⊥,交AB 延长线于点H ,设AF A F x '==,①22CF CD AF x BF AB AF x =+=+=-=-,,①四边形ABCD 是菱形,①AD BC ∥, 60CBH A ∴∠=∠=︒,①30BCH ∠=︒112BH BC ∴==,①CH3FH x ∴=-,在t R FCH 中,由勾股定理得222CF CH FH =+,222(2)(3)x x ∴+=+-,2244396x x x x ∴++=+-+,45x ∴=, 65BF ∴=, ①四边形ABCD 是菱形,①D B ∠=∠,AB CD ∥,由折叠的性质可得EA C GB F B D ''∠=∠==∠∠,1122DCE ECF DCF BFG GFC BFC ∠=∠=∠∠=∠=∠,, ①AB CD ∥,DCF CFB ∴∠=∠,1122DCE ECF DCF BFG GFC BFC ∴∠=∠=∠∠=∠=∠,, ECF GFC ∴∠=∠,ECA GFB ''∴∽,FG B F BF CE A C DC'∴==', ①3=5FG BF CE DC =, 故答案为:35. 【点睛】本题考查菱形的性质、相似三角形的判定与性质、折叠的性质、含30°角的直角三角形的性质、勾股定理等知识,是重要考点,作出正确辅助线是解题关键.19.15【解析】【分析】连接AC交BD于点O,可得AC是BD的垂直平分线,设BD=4x,则AE=3x,求出OF=OB-BF=2x-5,AF=AE-EF=3x-5,证明①BOE是等边三角形,得30AFE∠=︒,利用AF=2OF列出方程求出x的值,进而可得AE的长.【详解】解:如图,连接AC交BD于点O,①3BD=4AE,①43 BDAE=,设BD=4x,则AE=3x,①①BCD是等边三角形,①BC=CD=BD=4x,①DCB=①DBC=60°,①AB=AD,BC=CD,①AC是BD的垂直平分线,①OB=OD=2x,OC平分①BCD,①AOF=90°,①①DCO=12①DCB=30°,①OC=,①AE①CD,①①AEB=①BCD=60°,①①AEB =①FBE =①BFE =60°,①①BEF 是等边三角形,①BE =BF =EF =5,①BFE =60°,①OF =OB -BF =2x -5,AF =AE -EF =3x -5,①60AFO BFE =∠=︒∠①30FAC ∠=︒①2AF OF =①()35225x x -=-,解得x =5,①AE =3x =15.故答案为:15.【点睛】本题考查了垂直平分线的判定与性质,勾股定理,等边三角形的判定与性质,直角三角形的性质,解决本题的关键是得到AF =2OF 列出方程求解.20.①①①①【解析】【分析】根据抛物线的顶点坐标即可确定抛物线的对称轴即可得到20a b +=即可判断①;根据抛物线的开口方向以及与y 轴的交点情况即可判断①;根据抛物线的对称轴结合已知的与x 轴的一个交点即可判断①;利用图象法即可判断①;分别求出当x =-1时10y a b c =-+<,当x =4时,240y m n =+=,即可判断①;利用图象法即可判断①.【详解】解:①抛物线的顶点坐标为(1,-3),①抛物线的对称轴为直线12b x a=-=, ①20a b +=,故①正确;①抛物线开口向上,与y 轴的交点在y 轴的负半轴,①00a c ><,,①0b <,①0abc >,故①正确;①抛物线对称轴为直线x =1,与x 轴的一个交点为(4,0),①抛物线与x 轴的另一个交点为(-2,0),故①错误;①抛物线顶点坐标为(1,-4),①由函数图象可知,抛物线与直线y =-3有两个不同的交点,①方程23ax bx c ++=-有两个不相等的实数根,故①正确;①抛物线与x 轴的另一个交点为(-2,0)①当x =-1时,10y a b c =-+<,①点A 和点B 均在直线2(0)y mx n m =+≠上,①当x =4时,240y m n =+=,①4a b c m n -+<+,故①错误;①不等式2mx n ax bx c +>++的解集即为一次函数图象在抛物线图象上方时x 的取值范围, ①不等式2mx n ax bx c +>++的解集为14x <<,故①正确;故答案为:①①①①.【点睛】本题主要考查了二次函数图象的性质,二次函数与一次函数图象综合等等,熟知二次函数图象的性质是解题的关键.21.【解析】【分析】直接利用绝对值的性质以及立方根的性质、有理数的乘方运算法则分别化简,进而得出答案.【详解】解:2020|2||2|(1)-+-【点睛】本题主要考查了实数的运算,理解相关运算法则,正确化简各数是解题关键.22.(1)6y x=- (2)3x ≤-或20x -≤<(3)5或5【解析】【分析】(1)把点()2,A m -代入5y x =+,可得点A (-2,3),再把点A (-2,3)代入k y x=,即可求解;(2)联立得:65y x y x ⎧=-⎪⎨⎪=+⎩,求出点D 的坐标,再观察图象,即可求解; (3)根据题意得到平移后的图象的解析式为5y x b =+-,可得到方程2(5)60x b x +-+=,再利用一元二次方程根的判别式,即可求解.(1)解:把点()2,A m -代入5y x =+,得:253m =-+=,①点A (-2,3),把点A (-2,3)代入k y x=,得:32k =-,解得:k =-6, ①反比例函数的表达式为6y x=-; 故答案为:6y x=- (2) 解:联立得:65y x y x ⎧=-⎪⎨⎪=+⎩,解得:121123,32x x y y =-=-⎧⎧⎨⎨==⎩⎩, ①点B (-3,2),观察图象得:当3x ≤-或20x -≤<时,一次函数图象位于反比例函数图象的下方或两图象相交,①不等式5k x x+≤的解集为3x ≤-或20x -≤<; 故答案为:3x ≤-或20x -≤<(3)解:①一次函数5y x =+的图象沿y 轴向下平移b 个单位()0b >.①平移后的图象的解析式为5y x b =+-, 联立得:65x b x-=+-, 整理得:2(5)60x b x +-+=,①平移后的图象与反比例函数k y x=的图象有且只有一个交点, ①2(5)240b ∆=--=,解得:5b =5故答案为:55【点睛】本题主要考查了反比例函数与一次函数的综合题,一元二次方程根的判别式,熟练掌握反比例函数与一次函数的图象和性质是解题的关键.23.(1)见解析 (2)43π 【解析】【分析】(1)连接AE ,根据圆周角定理得出AE 为O 的直径,根据直角三角形的两锐角互余及等量代换可推出90DAO ∠=︒,即可得解;(2)连接OM ,OB ,先根据切线的性质易得EBC AEB ∠=∠,再根据弧、圆心角的关系得到BAC CAE ∠=∠,进而得到AEB EAC BAC ∠=∠=∠,得到 390EAC ∠=︒,求出30EAC ∠=︒,再根据等腰三角形的性质及三角形外角性质得出120MOB ∠=︒,在Rt ABE △中,解直角三角形得到4AE =,即得圆的半径为2,再根据弧长公式求解即可.(1)解:连接AE ,如下图.①AB BE ⊥,①90ABE ∠=︒,①AE 是O 的直径,90BEA BAE ∠+∠=︒.①C DAB ∠=∠,C BEA ∠=∠,①DAB BEA ∠=∠,①90DAB BAE ∠+∠=︒,即:EA FD ⊥.又①点A 在O 上,OA 为O 的半径,①FD 是O 的切线;(2)解:①FD 是O 的切线,①90EAD ∠=︒.①AD CD ⊥,①90ADC ∠=︒,①180EAD ADC ∠+∠=︒.①AE CD ∥,①EBC AEB ∠=∠.①C 是BE 的中点,①BC CE =,①EAC BAC EBC ∠=∠=∠,①AEB EAC BAC ∠=∠=∠.①在Rt ABE △中,390EAC ∠=︒,①30EAC ∠=︒.①AC EF ,①30FEA EAC ∠=∠=︒,①60FEB =︒∠,连接OB ,OM ,则2120MOB MEB ∠=∠=︒,在Rt ABE △中,30AEB ∠=︒, ①4cos30BEAE ,①2OA =,①120241803BM ππ=⨯=. 【点睛】本题考查了切线的判定与性质、圆周角定理、弧长计算公式,解直角三角形,熟记切线的判定与性质、弧长计算公式并作出合理的辅助线是解题的关键.24.(1)证明见解析(2)①2;(3)2或2【解析】【分析】(1)利用“SAS ”定理证明BAE CDE △≌△得到BE CE =,再等腰直角三角形的性质得到45EBC ECB ∠=∠=︒,进而得到BEM CEN ∠=∠,利用“SAS ”定理证明BEM CEN ≌,根据全等三角形的性质求解;(2)①设AB a ,BM CN x ==,利用全等三角形的性质得到2BN a x =-,根据三角形的面积公式得到()221-22BMN a S x a =-+,根据二次函数的性质解答; ①作EH BG ⊥于H ,设NG m =,根据直角三角形的性质、勾股定理用m 表示出BN 、BG ,根据三角形的面积公式用m 表示出EH ,根据正弦的定义计算,得到答案;(3)根据图1,求得AD 的长为2,继而证△MPE ≌DEQ ,得到三角形EPQ 为等腰直角三角形,勾股定理即可求解.(1)证明:如图1,①四边形ABCD 是矩形,①AB DC =,90A D ∠=∠=︒.①E 是AD 中点,①AE DE =,①BAE CDE SAS ≌(), ①BE CE =.①以点E 为直角顶点的直角三角形EFG 的两边EF ,将EPG △绕点E 旋转, ①EBC 是等腰直角三角形,①==45EBC ECB ∠∠︒.①90ABC BCD ∠=∠=︒,①45EBM ECN ∠=∠=︒.①90MEN BEC ∠=∠=︒,①MEN BEN BEC BEN ∠-∠=∠-∠,即BEM CEN ∠=∠.在BEM △和CEN 中,BEM CEN EB EC EBM ECN ∠∠⎧⎪⎨⎪∠∠⎩===, ①BEM CEN ASA ≌(), ①BM CN =;(2)解:设AB a .①45ABE ∠=︒,90A ∠=︒,①==AE AB a ,①==2BC AD a .①BEM CEN ≌,①BM CN =,设BM CN x ==,则2BN a x =-, ①()()22112-222BMN a S x a x x a =⋅⋅-=-+. ①1-02<, ①x a =时,BMN △的面积最大,此时AB CN =,即2AB a x ===时,BMN △的最大面积是22=22. 故答案为:2;解:如下图,作EH BG ⊥于H ,①EF BN ∥,①==30GBN F ∠∠︒ ,设=NG m ,则=2BG m ,由勾股定理得,BN EN ===,则EB ==,①)1EG EN NG m =+=. ①1122EBG S EG BN EG EH =⋅⋅=⋅⋅,①)111222m m EH ⨯=⨯⨯,解得EH =, 在Rt EBH △中,=EH sin EBG EB ∠=(3)如图1中,①四边形ABCD 是矩形,①AB =DC ,①A =①D =90°,①E 是AD 中点,①AE =DE ,①①BAE ①①CDE ,①BE =CE .90EEG ∠=︒EBC ∴△是等腰直角三角形45ABE AEB DEC DCE ∴∠=∠=∠=∠=︒ ,AE AB DC ED ∴==2AB =4AD ∴=如图,过点P 作PM AD ⊥交直线AD 于M , 则四边形,MPCD MPBA 是矩形, 2PM CD ∴==90,90PEQ M EDQ ∠=︒∠=∠=︒, 90MEP DEQ EQD ∴∠=︒-∠=∠ 在△MPE 与DEQ 中,MP DE M EDQ MEP DQE =⎧⎪∠=∠⎨⎪∠=∠⎩∴△MPE ≌DEQPE PQ ∴=,DQ ME =PEQ ∴是等腰直角三角形1302EPQ S EP EQ =⋅=,①PE EQ ==当P 在CD 的左边时,QD ME ∴===2PC ME ED ∴=+=当P 在CD 的右边时,2PC ME ED =-=故答案为:2或2.【点睛】本题考查的是全等三角形的判定和性质、正方形的性质、锐角三角函数的定义、二次函数的应用,掌握全等三角形的判定定理和性质定理、二次函数的性质是解题的关键.25.(1)214433y x x =-++ (2)ABDC S 四边形最大值为25,点D 的坐标为()3,5 (3)59y x =或1120y x =或1325y x = 【解析】【分析】(1)先根据()2,0A -,::1:2:3AO CO BO =.求出OA =2,OC =4,OB =6,得出()6,0B ,()0,4C 将A 、B 、C 代入()20y ax bx c c =++≠得:42036604a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解方程组即可;(2)作DM x ⊥轴交BC 于点M ,利用待定系数法求出直线BC 的解析式为243y x =-+,令214,433D t t t ⎛⎫-++ ⎪⎝⎭,则2,43M t t ⎛⎫-+ ⎪⎝⎭,求出2123DM t t =-+,将四边形ABCD 分割成两个三角形面积利用公式得出ABC BCD ABDC S S S ∆∆=+四边形2616t t =-++()2325t =--+即可;(3)将抛物线配方为()2214116423333y x x x =-++=--+.向右平移2个单位抛物线过原点,解析式为()2116433y x =--+,求两抛物线交点点E (3,5),分两种情况以BE 为对角线时和以BE 为边时,求出以B 、E 、M 、N 为顶点的矩形的中心点P 坐标,当直线OK 经过点P 时满足题意,据此求解即可.(1)解:①()2,0A -,::1:2:3AO CO BO =.①OA =2,OC =4,OB =6,①()6,0B ,()0,4C ,将A 、B 、C 代入()20y ax bx c c =++≠得:42036604a b c a b c c -+=⎧⎪++=⎨⎪=⎩, 解得13434a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩, ①抛物线的解析式为214433y x x =-++; (2)解:过点D 作DM x ⊥轴交BC 于点M ,设BC 的解析式为1y kx b =+,①()6,0B ,()0,4C ,代入坐标得:11460b k b =⎧⎨+=⎩, 解得:1423b k =⎧⎪⎨=-⎪⎩, ①直线BC 的解析式为243y x =-+, 设214,433D t t t ⎛⎫-++ ⎪⎝⎭,则2,43M t t ⎛⎫-+ ⎪⎝⎭, ①2123DM t t =-+, ①ABC BCD ABDC S S S ∆∆=+四边形,1122AB OC DM OB =⋅+⋅, 21118426223t t ⎛⎫=⨯⨯+-+⨯ ⎪⎝⎭, 2616t t =-++,()2325t =--+,①当3t =时,ABDC S 四边形的值最大,最大值为25.当3t =时,5y =,①点D 的坐标为()3,5;(3) 解:将抛物线配方为()2214116423333y x x x =-++=--+. ①原抛物线对称轴为直线2x =,①原抛物线向右平移2个单位抛物线过原点,①平移后的抛物线解析式为()2116433y x =--+, 联立()()22116233116433y x y x ⎧=--+⎪⎪⎨⎪=--+⎪⎩,两式相减得()()2224x x -=-, 解得x =3, ①()211634533y =--+=, ①点E (3,5),设点M 的坐标为(2,m ),如图1所示,以BE 为对角线,且四边形EMBN 为矩形时,①矩形EMBN 的中心P 的坐标为(92,52), ①直线OK 平分这个矩形EMBN 的面积,①当直线OK 经过点P 时满足题意,设直线OK 的解析式为1y k x =, ①19522k =, ①159k =, ①直线OK 的解析式为59y x =;如图2所示,当BE 为矩形M 1N 1BE 的边时,M 1E ①BE ,过E 作EH ①MG ,EF 垂直于直线x =2于F ,①①HEM 1+①HEB =90°,①FEM 1+①HEM 1=90°,①①FEM 1=①HEB ,①①EFM 3=①EHB =90°,①①EFM 1①①EHB , ①1EF FM EH HB=, ①BH =6-3=3,EF =3-2=1,FM 1=5-m ,EH =5, ①1553m -=, 解得225m =, ①M 1(2,225), ①矩形M 1N 1BE 的中心P 的坐标为(4,115), 同理可求得直线OK 的解析式为1120y x =; 如图2所示,当BE 为矩形N 2M 2BE 的边时,M 2E ①BE ,①①M 2BE =90°,①①M 2BG +①EBH =90°,①EBH +①BEH =90°,①①M 2BG =①BEH ,①①M 2GB =①EHB =90°,①①M 2GB ①①BHE , ①2M G BG BH EH =即435m -=, 解得125m, ①点M (2,125-), ①矩形N 2M 2BE 的中点嗲P 的坐标为(52,1310), 同理求得直线OK 的解析式为1325y x =; 综上所述,当以B 、E 、M 、N 为顶点的四边形是矩形时,若直线OK 平分这个矩形面积,则直线OK 的解析式为59y x =或1120y x =或1325y x =【点睛】本题考查待定系数法求抛物线解析式,一次函数解析式,四边形面积,二次函数的最值,抛物线平移,三角形相似判定与性质,矩形性质,中点坐标公式,掌握待定系数法求抛物线解析式,四边形面积,二次函数的最值,抛物线平移性质,三角形相似判定与性质,矩形性质,中点坐标公式是解题关键.。
图1@2 图3 二、四边形中的计算和证明综合题1. (2020安徽)如图1,已知四边形ABCD 是矩形,点E 在的延长线上,AE=AD. EC 与8D 相交于点 G,与A 。
相交于点F, AF=AB.求证:BDREC ;2. (2020黑龙江七台河)以Rt&BC 的两边AB 、AC 为边,向外作正方形ABDE 和正方形ACFG,连接EG, 过点A 作AMLBC 于M,延长MA 交EG 于点N.(1)如图①,若ZBAC=90° , AB=AC,易证:EN=GN :(2)如图②,ZBAC=90c :如图③,匕8ACK90° , (1)中结论, 形进行证明;若不成立,写出你的结论,并说明理由.(2) 若AB=1,求AE 的长:如图2,连接AG,求证:EG ・DG= y/^AG.是否成立,若成立,选择一个图 (3) ® 1ENGB M C3.(2020黑龙江绥化)如图,在正方形A8CD中,A8=4,点G在边8C上,连接AG,作。
EVAG于点E,BGBFA.AG 于点、F,连接BE、OF,设ZEDF=a. ZEBF=B,— =k.BC(1)求证:AE=BF;(2)求证:tana=k・tai】。
:(3)若点G从点B沿8C边运动至点C停止,求点E, F所经过的路径与边A8围成的图形的面积.4. (2020湖南长沙)在矩形ABCD中,E为DC边上一点,把左ADE沿AE翻折,使点。
恰好落在BC边上的点F.(1)求证:△ABFs/^FCE;(2)若AB=2V5, AO=4,求EC 的长:(3)若AE・DE=2EC,记N8AF=a, ZME=p.求tana+tanp 的值.5. (2020江苏连云港)(1)如图1,点P为矩形ABCD对角线上一点,过点P作EF〃BC,分别交A8、CD 于点、E、F.若BE=2, PF=6, ZkAEP 的面积为Si, 的面积为则Si+S2=:(2)如图2,点P为"ABCD内一点(点P不在BD上),点E、F、G、H分别为各边的中点.设四边形AEPH的面积为Si,四边形PFCG的面积为S2 (其中S2>Si),求△P8O的面积(用含Si、S?的代数式表示):(3)如图3,点P为"BCD内一点(点P不在BD上),过点P作EF〃A。
2019年省市中考数学试卷〔总分120分〕一、选择题〔每题2分,共20分〕 1.〔2分〕﹣5的相反数是〔 〕 A .5B .﹣5C .51D .512.〔2分〕2019年1月1日起我国开场贯彻?国务院关于印发个人所得税专项附加扣除暂行方法的通知?的要求,此次减税围广,其中有6500万人减税70%以上,将数据6500用科学记数法表示为〔 〕 A .6.5×102B .6.5×103C .65×103D .0.65×1043.〔2分〕如图是由五个一样的小立方块搭成的几何体,这个几何体的俯视图是〔 〕4.〔2分〕以下说确的是〔 〕A .假设甲、乙两组数据的平均数一样,S 甲2=0.1,S 乙2=0.04,那么乙组数据较稳定 B .如果明天降水的概率是50%,那么明天有半天都在降雨 C .了解全国中学生的节水意识应选用普查方式 D .早上的太阳从西方升起是必然事件 5.〔2分〕以下运算正确的选项是〔 〕 A .2m 3+3m 2=5m 5B .m 3÷m 2=mC .m •〔m 2〕3=m 6D .〔m ﹣n 〕〔n ﹣m 〕=n 2﹣m 26.〔2分〕某青少年篮球队有12名队员,队员的年龄情况统计如下:年龄〔岁〕 12 13 14 15 16 人数31251那么这12名队员年龄的众数和中位数分别是〔 〕 A .15岁和14岁B .15岁和15岁 C .15岁和14.5岁D .14岁和15岁7.〔2分〕△ABC ∽△A 'B 'C ',AD 和A 'D '是它们的对应中线,假设AD =10,A 'D '=6,那么△ABC 与△A 'B 'C '的周长比是〔 〕A .3:5B .9:25C .5:3D .25:98.〔2分〕一次函数y =〔k +1〕x +b 的图象如下图,那么k 的取值围是〔 〕A .k <0B .k <﹣1C .k <1D .k >﹣19.〔2分〕如图,AB 是⊙O 的直径,点C 和点D 是⊙O 上位于直径AB 两侧的点,连接AC ,AD ,BD ,CD ,假设⊙O 的半径是13,BD =24,那么sin ∠ACD 的值是〔 〕 A .1312B .512C .125D .13510.〔2分〕二次函数y =ax 2+bx +c 〔a ≠0〕的图象如下图,那么以下结论正确的选项是〔 〕A .abc <0B .b 2﹣4ac <0C .a ﹣b +c <0D .2a +b =0 二、填空题〔每题3分,共18分〕 11.〔3分〕因式分解:﹣x 2﹣4y 2+4xy =. 12.〔3分〕二元一次方程组⎩⎨⎧=+=-52323y x y x 的解是.13.〔3分〕一个口袋中有红球、白球共10个,这些球除颜色外都一样.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有70次摸到红球.请你估计这个口袋中有个白球. 14.〔3分〕如图,在四边形ABCD 中,点E ,F ,G ,H 分别是AB ,CD ,AC ,BD 的中点,假设AD =BC =52,那么四边形EGFH 的周长是.15.〔3分〕如图,正比例函数y 1=k 1x 的图象与反比例函数y 2=xk 2〔x >0〕的图象相交于点A 〔3,23〕,点B 是反比例函数图象上一点,它的横坐标是3,连接OB ,AB ,那么△AOB 的面积是.16.〔3分〕如图,形ABCD 的对角线AC 上有一点E ,且CE =4AE ,点F 在DC 的延长线上,连接EF ,过点E 作EG ⊥EF ,交CB 的延长线于点G ,连接GF 并延长,交AC 的延长线于点P ,假设AB =5,CF =2,那么线段EP 的长是.三、解答题〔第17小题6分,第18、19小题各8分,共22分〕17.〔6分〕计算:02)2019(|31|30cos 221-+-︒-+⎪⎭⎫⎝⎛--π18.〔8分〕为了丰富校园文化生活,提高学生的综合素质,促进中学生全面开展,学校开展了多种社团活动.小明喜欢的社团有:合唱社团、足球社团、书法社团、科技社团〔分别用字母A ,B ,C ,D 依次表示这四个社团〕,并把这四个字母分别写在四完全一样的不透明的卡片的正面上,然后将这四卡片反面朝上洗匀后放在桌面上. 〔1〕小明从中随机抽取一卡片是足球社团B 的概率是.〔2〕小明先从中随机抽取一卡片,记录下卡片上的字母后不放回,再从剩余的卡片中随机抽取一卡片,记录下卡片上的字母.请你用列表法或画树状图法求出小明两次抽取的卡片中有一是科技社团D 的概率.19.〔8分〕如图,在四边形ABCD 中,点E 和点F 是对角线AC 上的两点,AE =CF ,DF =BE ,且DF ∥BE ,过点C 作CG ⊥AB 交AB 的延长线于点G .〔1〕求证:四边形ABCD 是平行四边形; 〔2〕假设tan ∠CAB =52,∠CBG =45°,BC =42,那么▱ABCD 的面积是.四、〔每题8分,共16分〕20.〔8分〕“勤劳〞是中华民族的传统美德,学校要求同学们在家里帮助父母做一些力所能及的家务.在本学期开学初,小颖同学随机调查了局部同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x 小时,将做家务的总时间分为五个类别:A 〔0≤x <10〕,B 〔10≤x <20〕,C 〔20≤x <30〕,D 〔30≤x <40〕,E 〔x ≥40〕.并将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答以下问题: 〔1〕本次共调查了名学生;〔2〕请根据以上信息直接在答题卡中补全条形统计图;〔3〕扇形统计图中m 的值是,类别D 所对应的扇形圆心角的度数是度;〔4〕假设该校有800名学生,根据抽样调查的结果,请你估计该校有多少名学生寒假在家做家务的总时间不低于20小时.21.〔8分〕2019年3月12日是第41个植树节,某单位积极开展植树活动,决定购置甲、乙两种树苗,用800元购置甲种树苗的棵数与用680元购置乙种树苗的棵数一样,乙种树苗每棵比甲种树苗每棵少6元. 〔1〕求甲种树苗每棵多少元?〔2〕假设准备用3800元购置甲、乙两种树苗共100棵,那么至少要购置乙种树苗多少棵?五、〔此题10分〕22.〔10分〕如图,AB 是⊙O 的直径,BC 是⊙O 的弦,直线MN 与⊙O 相切于点C ,过点B 作BD ⊥MN 于点D . 〔1〕求证:∠ABC =∠CBD ; 〔2〕假设BC =45,CD =4,那么⊙O 的半径是.六、〔此题10分〕23.〔10分〕在平面直角坐标系中,直线y =kx +4〔k ≠0〕交x 轴于点A 〔8,0〕,交y 轴于点B .〔1〕k 的值是;〔2〕点C 是直线AB 上的一个动点,点D 和点E 分别在x 轴和y 轴上.①如图,点E 为线段OB 的中点,且四边形OCED 是平行四边形时,求▱OCED 的周长; ②当CE 平行于x 轴,CD 平行于y 轴时,连接DE ,假设△CDE 的面积为433,请直接写出点C 的坐标.七、〔此题12分〕24.〔12分〕思维启迪:〔1〕如图1,A,B两点分别位于一个池塘的两端,小亮想用绳子测量A,B间的距离,但绳子不够长,聪明的小亮想出一个方法:先在地上取一个可以直接到达B点的点C,连接BC,取BC的中点P〔点P可以直接到达A点〕,利用工具过点C作CD∥AB 交AP的延长线于点D,此时测得CD=200米,那么A,B间的距离是米.思维探索:〔2〕在△ABC和△ADE中,AC=BC,AE=DE,且AE<AC,∠ACB=∠AED=90°,将△ADE绕点A顺时针方向旋转,把点E在AC边上时△ADE的位置作为起始位置〔此时点B和点D位于AC的两侧〕,设旋转角为α,连接BD,点P是线段BD的中点,连接PC,PE.①如图2,当△ADE在起始位置时,猜测:PC与PE的数量关系和位置关系分别是;②如图3,当α=90°时,点D落在AB边上,请判断PC与PE的数量关系和位置关系,并证明你的结论;③当α=150°时,假设BC=3,DE=l,请直接写出PC2的值.八、〔此题12分〕25.〔12分〕如图,在平面直角坐标系中,抛物线y=ax2+bx+2〔a≠0〕与x轴交于A,B两点〔点A在点B的左侧〕,与y轴交于点C,抛物线经过点D〔﹣2,﹣3〕和点E〔3,2〕,点P是第一象限抛物线上的一个动点.〔1〕求直线DE和抛物线的表达式;〔2〕在y轴上取点F〔0,1〕,连接PF,PB,当四边形OBPF的面积是7时,求点P的坐标;2,〔3〕在〔2〕的条件下,当点P在抛物线对称轴的右侧时,直线DE上存在两点M,N〔点M在点N的上方〕,且MN=2动点Q从点P出发,沿P→M→N→A的路线运动到终点A,当点Q的运动路程最短时,请直接写出此时点N的坐标.2019年省市中考数学试卷参考答案与试题解析一、选择题〔以下各题的备选答案中,只有一个答案是正确的.每题2分,共20分〕 1.〔2分〕﹣5的相反数是〔 〕 A .5B .﹣5C .51D .51【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数. 【解答】解:﹣5的相反数是5, 应选:A .【点评】此题考察了相反数,在一个数的前面加上负号就是这个数的相反数.2.〔2分〕2019年1月1日起我国开场贯彻?国务院关于印发个人所得税专项附加扣除暂行方法的通知?的要求,此次减税围广,其中有6500万人减税70%以上,将数据6500用科学记数法表示为〔 〕 A .6.5×102B .6.5×103C .65×103D .0.65×104【分析】科学记数法的表示形式为a ×10n的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数一样.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【解答】解:6500=6.5×103, 应选:B .【点评】此题考察科学记数法的表示方法.科学记数法的表示形式为a ×10n的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.〔2分〕如图是由五个一样的小立方块搭成的几何体,这个几何体的俯视图是〔 〕【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得上面一层有3个形,下面左边有一个形.应选:A.【点评】此题考察了三视图的知识,俯视图是从物体的上面看得到的视图.4.〔2分〕以下说确的是〔〕A.假设甲、乙两组数据的平均数一样,S甲2=0.1,S乙2=0.04,那么乙组数据较稳定B.如果明天降水的概率是50%,那么明天有半天都在降雨C.了解全国中学生的节水意识应选用普查方式D.早上的太阳从西方升起是必然事件【分析】根据方差、概率、全面调查和抽样调查以及随机事件的意义分别对每一项进展分析即可得出答案.【解答】解:A、∵S甲2=0.1,S乙2=0.04,∴S甲2>S乙2,∴乙组数据较稳定,故本选项正确;B、明天降雨的概率是50%表示降雨的可能性,故此选项错误;C、了解全国中学生的节水意识应选用抽样调查方式,故本选项错误;D、早上的太阳从西方升起是不可能事件,故本选项错误;应选:A.【点评】此题考察了方差、概率、全面调查和抽样调查以及随机事件,熟练掌握定义是解题的关键.5.〔2分〕以下运算正确的选项是〔〕A.2m3+3m2=5m5B.m3÷m2=mC.m•〔m2〕3=m6D.〔m﹣n〕〔n﹣m〕=n2﹣m2【分析】根据合并同类项、幂的乘法除法、幂的乘方、完全平方公式分别计算即可.【解答】解:A.2m3+3m2=5m5,不是同类项,不能合并,故错误;B.m3÷m2=m,正确;C.m•〔m2〕3=m7,故错误;D.〔m﹣n〕〔n﹣m〕=﹣〔m﹣n〕2=﹣n2﹣m2+2mn,故错误.应选:B.【点评】此题考察了整式的运算,熟练掌握合并同类项、幂的乘除法、幂的乘方、完全平方公式是解题的关键.6.〔2分〕某青少年篮球队有12名队员,队员的年龄情况统计如下:那么这12名队员年龄的众数和中位数分别是〔〕A.15岁和14岁B.15岁和15岁C.15岁和14.5岁D.14岁和15岁【分析】众数就是出现次数最多的数,而中位数就是大小处于中间位置的数,根据定义即可求解.【解答】解:在这12名队员的年龄数据里,15岁出现了5次,次数最多,因而众数是14512名队员的年龄数据里,第6和第7个数据的平均数21514=14.5,因而中位数是14.5.应选:C.【点评】此题考察了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,那么正中间的数字即为所求,如果是偶数个那么找中间两位数的平均数.7.〔2分〕△ABC∽△A'B'C',AD和A'D'是它们的对应中线,假设AD=10,A'D'=6,那么△ABC与△A'B'C'的周长比是〔〕A.3:5B.9:25C.5:3D.25:9【分析】相似三角形的周长比等于对应的中线的比.【解答】解:∵△ABC∽△A'B'C',AD和A'D'是它们的对应中线,AD=10,A'D'=6,∴△ABC与△A'B'C'的周长比=AD:A′D′=10:6=5:3.应选:C.【点评】此题考察相似三角形的性质,解题的关键是记住相似三角形的性质,灵活运用所学知识解决问题.8.〔2分〕一次函数y=〔k+1〕x+b的图象如下图,那么k的取值围是〔〕A.k<0B.k<﹣1C.k<1D.k>﹣1【分析】根据一次函数的增减性确定有关k的不等式,求解即可.【解答】解:∵观察图象知:y随x的增大而减小,∴k+1<0,解得:k<﹣1,应选:B.【点评】考察了一次函数的图象与系数的关系,解题的关键是了解系数对函数图象的影响,难度不大.9.〔2分〕如图,AB 是⊙O 的直径,点C 和点D 是⊙O 上位于直径AB 两侧的点,连接AC ,AD ,BD ,CD ,假设⊙O 的半径是13,BD =24,那么sin ∠ACD 的值是〔 〕 A .1312B .512C .125D .135【分析】首先利用直径所对的圆周角为90°得到△ABD 是直角三角形,然后利用勾股定理求得AD 边的长,然后求得∠B 的正弦即可求得答案. 【解答】解:∵AB 是直径, ∴∠ADB =90°, ∵⊙O 的半径是13, ∴AB =2×13=26, 由勾股定理得:AD =10, ∴sin ∠B =1352610==AB AD ∵∠ACD =∠B , ∴sin ∠ACD =sin ∠B =135, 应选:D .【点评】此题考察了圆周角定理及解直角三角形的知识,解题的关键是能够得到直角三角形并利用锐角三角函数求得一个锐角的正弦值,难度不大.10.〔2分〕二次函数y =ax 2+bx +c 〔a ≠0〕的图象如下图,那么以下结论正确的选项是〔 〕A .abc <0B .b 2﹣4ac <0C .a ﹣b +c <0D .2a +b =0【分析】由图可知a >0,与y 轴的交点c <0,对称轴x =1,函数与x 轴有两个不同的交点,当x =﹣1时,y >0;【解答】解:由图可知a >0,与y 轴的交点c <0,对称轴x =1, ∴b =﹣2a <0; ∴abc >0,A 错误;由图象可知,函数与x 轴有两个不同的交点,∴△>0,B 错误;当x =﹣1时,y >0,〔由图像关于对称轴对称可知〕 ∴a ﹣b +c >0,C 错误; ∵b =﹣2a ,D 正确; 应选:D .【点评】此题考察二次函数的图象及性质;熟练掌握二次函数的图象及性质,能够从给出的图象上获取信息确定a ,b ,c ,△,对称轴之间的关系是解题的关键. 二、填空题〔每题3分,共18分〕11.〔3分〕因式分解:﹣x 2﹣4y 2+4xy = ﹣〔x ﹣2y 〕2.【分析】先提取公因式﹣1,再套用公式完全平方公式进展二次因式分解. 【解答】解:﹣x 2﹣4y 2+4xy , =﹣〔x 2+4y 2﹣4xy 〕, =﹣〔x ﹣2y 〕2.【点评】此题考察利用完全平方公式分解因式,先提取﹣1是利用公式的关键.12.〔3分〕二元一次方程组⎩⎨⎧=+=-52323y x y x 的解是⎩⎨⎧==5.12y x .【分析】通过观察可以看出y 的系数互为相反数,故①+②可以消去y ,解得x 的值,再把x 的值代入①或②,都可以求出y 的值. 【解答】解:⎩⎨⎧=+=-②52①323y x y x ,①+②得:4x =8, 解得x =2,把x =2代入②中得:2+2y =5, 解得y =1.5, 所以原方程组的解为⎩⎨⎧==5.12y x .故答案为⎩⎨⎧==5.12y x .【点评】此题主要考察了二元一次方程组的解法,解题的关键是消元,消元的方法有两种:①加减法消元,②代入法消元.13.〔3分〕一个口袋中有红球、白球共10个,这些球除颜色外都一样.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有70次摸到红球.请你估计这个口袋中有 3 个白球.【分析】从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况. 【解答】解:由题意可得,红球的概率为70%.那么白球的概率为30%, 这个口袋中白球的个数:10×30%=3〔个〕, 故答案为3.【点评】此题考察了用样本估计总体,正确理解概率的意义是解题的关键.14.〔3分〕如图,在四边形ABCD 中,点E ,F ,G ,H 分别是AB ,CD ,AC ,BD 的中点,假设AD =BC =25,那么四边形EGFH 的周长是 45.【分析】根三角形的中位线定理即可求得四边形EFGH 的各边长,从而求得周长. 【解答】证明:∵E 、G 是AB 和AC 的中点,∴EG =21BC =55221=⨯, 同理HF =21BC =5,EH =GF =21AD =55221=⨯.∴四边形EGFH 的周长是:4×5=45. 故答案为:45.【点评】此题考察了三角形的中位线定理,三角形的中位线平行于第三边且等于第三边的一半. 15.〔3分〕如图,正比例函数y 1=k 1x 的图象与反比例函数y 2=xk 2〔x >0〕的图象相交于点A 〔3,23〕,点B 是反比例函数图象上一点,它的横坐标是3,连接OB ,AB ,那么△AOB 的面积是 23.【分析】把点A 〔3,23〕代入y 1=k 1x 和y 2=xk 2〔x >0〕可求出k 1、k 2的值,即可正比例函数和求出反比例函数的解析式,过点B 作BD ∥x 轴交OA 于点D ,结合点B 的坐标即可得出点D 的坐标,再根据三角形的面积公式即可求出△AOB 的面积.【解答】解:〔1〕∵正比例函数y 1=k 1x 的图象与反比例函数y 2=xk 2〔x >0〕的图象相交于点A 〔3,23〕, ∴23=3k 1,23=31k , ∴k 1=2,k 2=6,∴正比例函数为y =2x ,反比例函数为:y =x6, ∵点B 是反比例函数图象上一点,它的横坐标是3, ∴y =36=2, ∴B 〔3,2〕, ∴D 〔1,2〕, ∴BD =3﹣1=2. ∴S △AOB =S △ABD +S △OBD =21×2×〔23﹣2〕+21×2×2=23, 故答案为23.【点评】此题考察了反比例函数与一次函数的交点问题、反比例〔一次〕函数图象上点的坐标特征、待定系数法求一次函数和反比例函数的解析式以及三角形的面积,解题的关键是:根据点的坐标利用待定系数法求出函数解析式;利用分割图形求面积法求出△AOB 的面积.16.〔3分〕如图,形ABCD 的对角线AC 上有一点E ,且CE =4AE ,点F 在DC 的延长线上,连接EF ,过点E 作EG ⊥EF ,交CB 的延长线于点G ,连接GF 并延长,交AC 的延长线于点P ,假设AB =5,CF =2,那么线段EP的长是2213. 【分析】如图,作FH ⊥PE 于H .利用勾股定理求出EF ,再证明△CEF ∽△FEP ,可得EF 2=EC •EP ,由此即可解决问题.【解答】解:如图,作FH ⊥PE 于H .∵四边形ABCD 是形,AB =5, ∴AC =52,∠ACD =∠FCH =45°, ∵∠FHC =90°,CF =2, ∴CH =HF =2,∵CE =4AE ,∴EC =42,AE =2, ∴EH =52,在Rt △EFH 中,EF 2=EH 2+FH 2=〔52〕2+〔2〕2=52, ∵∠GEF =∠GCF =90°, ∴E ,G ,F ,C 四点共圆, ∴∠EFG =∠ECG =45°, ∴∠ECF =∠EFP =135°, ∵∠CEF =∠FEP , ∴△CEF ∽△FEP , ∴EFECEP EF =, ∴EF 2=EC •EP ,∴EP =22132452= 故答案为2213. 【点评】此题考察形的性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题. 三、解答题〔第17小题6分,第18、19小题各8分,共22分〕17.〔6分〕计算:02)2019(3130cos 221-+--︒+⎪⎭⎫⎝⎛--π【分析】直接利用负指数幂的性质、特殊角的三角函数值、绝对值的性质、零指数幂的性质分别化简得出答案.【解答】解:原式=4+2×23﹣3+1+1=6. 【点评】此题主要考察了实数运算,正确化简各数是解题关键.18.〔8分〕为了丰富校园文化生活,提高学生的综合素质,促进中学生全面开展,学校开展了多种社团活动.小明喜欢的社团有:合唱社团、足球社团、书法社团、科技社团〔分别用字母A ,B ,C ,D 依次表示这四个社团〕,并把这四个字母分别写在四完全一样的不透明的卡片的正面上,然后将这四卡片反面朝上洗匀后放在桌面上.〔1〕小明从中随机抽取一卡片是足球社团B 的概率是41. 〔2〕小明先从中随机抽取一卡片,记录下卡片上的字母后不放回,再从剩余的卡片中随机抽取一卡片,记录下卡片上的字母.请你用列表法或画树状图法求出小明两次抽取的卡片中有一是科技社团D 的概率. 【分析】〔1〕直接根据概率公式求解;〔2〕利用列表法展示所有12种等可能性结果,再找出小明两次抽取的卡片中有一是科技社团D 的结果数,然后根据概率公式求解.【解答】解:〔1〕小明从中随机抽取一卡片是足球社团B 的概率=41; 〔2〕列表如下:由表可知共有12种等可能结果,小明两次抽取的卡片中有一是科技社团D 的结果数为6种, 所以小明两次抽取的卡片中有一是科技社团D 的概率为21126 . 【点评】此题考察了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率19.〔8分〕如图,在四边形ABCD 中,点E 和点F 是对角线AC 上的两点,AE =CF ,DF =BE ,且DF ∥BE ,过点C 作CG ⊥AB 交AB 的延长线于点G . 〔1〕求证:四边形ABCD 是平行四边形; 〔2〕假设tan ∠CAB =52,∠CBG =45°,BC =42,那么▱ABCD 的面积是 24 .【分析】〔1〕根据条件得到AF =CE ,根据平行线的性质得到∠DFA =∠BEC ,根据全等三角形的性质得到AD =CB ,∠DAF =∠BCE ,于是得到结论;〔2〕根据条件得到△BCG 是等腰直角三角形,求得BG =CG =4,解直角三角形得到AG =10,根据平行四边形的面积公式即可得到结论. 【解答】〔1〕证明:∵AE =CF , ∴AE ﹣EF =CF ﹣EF , 即AF =CE ,∵DF ∥BE , ∴∠DFA =∠BEC , ∵DF =BE ,∴△ADF ≌△CBE 〔SAS 〕, ∴AD =CB ,∠DAF =∠BCE , ∴AD ∥CB ,∴四边形ABCD 是平行四边形; 〔2〕解:∵CG ⊥AB , ∴∠G =90°, ∵∠CBG =45°,∴△BCG 是等腰直角三角形, ∵BC =42, ∴BG =CG =4, ∵tan ∠CAB =52, ∴AG =10, ∴AB =6,∴▱ABCD 的面积=6×4=24, 故答案为:24.【点评】此题考察了平行相交线的判定和性质,全等三角形的判定和性质,解直角三角形,正确的识别图形是解题的关键. 四、〔每题8分,共16分〕20.〔8分〕“勤劳〞是中华民族的传统美德,学校要求同学们在家里帮助父母做一些力所能及的家务.在本学期开学初,小颖同学随机调查了局部同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x 小时,将做家务的总时间分为五个类别:A 〔0≤x <10〕,B 〔10≤x <20〕,C 〔20≤x <30〕,D 〔30≤x <40〕,E 〔x ≥40〕.并将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答以下问题: 〔1〕本次共调查了 50 名学生;〔2〕请根据以上信息直接在答题卡中补全条形统计图;〔3〕扇形统计图中m 的值是 32 ,类别D 所对应的扇形圆心角的度数是 57.6 度;〔4〕假设该校有800名学生,根据抽样调查的结果,请你估计该校有多少名学生寒假在家做家务的总时间不低于20小时.【分析】〔1〕本次共调查了10÷20%=50〔人〕;〔2〕B 类人数:50×24%=12〔人〕,D 类人数:50﹣10﹣12﹣16﹣4=8〔人〕,根据此信息补全条形统计图即可; 〔3〕%1005016⨯=32%,即m =32,类别D 所对应的扇形圆心角的度数360°×508=57.6°; 〔4〕估计该校寒假在家做家务的总时间不低于20小时的学生数.800×〔1﹣20%﹣24%〕=448〔名〕. 【解答】解:〔1〕本次共调查了10÷20%=50〔人〕, 故答案为50;〔2〕B 类人数:50×24%=12〔人〕,D 类人数:50﹣10﹣12﹣16﹣4=8〔人〕,〔3〕%1005016⨯=32%,即m =32, 类别D 所对应的扇形圆心角的度数360°×508=57.6°,故答案为32,57.6;〔4〕估计该校寒假在家做家务的总时间不低于20小时的学生数. 800×〔1﹣20%﹣24%〕=448〔名〕,答:估计该校有448名学生寒假在家做家务的总时间不低于20小时.【点评】此题考察的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个工程的数据;扇形统计图直接反映局部占总体的百分比大小.21.〔8分〕2019年3月12日是第41个植树节,某单位积极开展植树活动,决定购置甲、乙两种树苗,用800元购置甲种树苗的棵数与用680元购置乙种树苗的棵数一样,乙种树苗每棵比甲种树苗每棵少6元. 〔1〕求甲种树苗每棵多少元?〔2〕假设准备用3800元购置甲、乙两种树苗共100棵,那么至少要购置乙种树苗多少棵? 【分析】〔1〕根据题意列出分式方程求解即可; 〔2〕根据题意列出不等式求解即可.【解答】解:〔1〕设甲种树苗每棵x 元,根据题意得:6600800-=x x , 解得:x =40,经检验:x =40是原方程的解, 答:甲种树苗每棵40元;〔2〕设购置乙中树苗y 棵,根据题意得: 40〔100﹣y 〕+36y ≤3800, 解得:y ≥3331, ∵y 是正整数, ∴y 最小取34,答:至少要购置乙种树苗34棵.【点评】此题考察了分式方程的应用及一元一次不等式的应用,解题的关键是根据题意找到等量关系,难度不大. 五、〔此题10分〕22.〔10分〕如图,AB 是⊙O 的直径,BC 是⊙O 的弦,直线MN 与⊙O 相切于点C ,过点B 作BD ⊥MN 于点D . 〔1〕求证:∠ABC =∠CBD ;〔2〕假设BC =45,CD =4,那么⊙O 的半径是 5 .【分析】〔1〕连接OC ,由切线的性质可得OC ⊥MN ,即可证得OC ∥BD ,由平行线的性质和等腰三角形的性质可得∠CBD =∠BCO =∠ABC ,即可证得结论;〔2〕连接AC ,由勾股定理求得BD ,然后通过证得△ABC ∽△CBD ,求得直径AB ,从而求得半径. 【解答】〔1〕证明:连接OC , ∵MN 为⊙O 的切线, ∴OC ⊥MN , ∵BD ⊥MN , ∴OC ∥BD , ∴∠CBD =∠BCO . 又∵OC =OB , ∴∠BCO =∠ABC , ∴∠CBD =∠ABC .; 〔2〕解:连接AC ,在Rt △BCD 中,BC =4,CD =4, ∴BD =22CD BC -=8, ∵AB 是⊙O 的直径, ∴∠ACB =90°, ∴∠ACB =∠CDB =90°, ∵∠ABC =∠CBD , ∴△ABC ∽△CBD , ∴BD CB BC AB =,即85454=AB , ∴AB =10, ∴⊙O 的半径是5, 故答案为5.【点评】此题考察了切线的性质和圆周六、〔此题10分〕角定理、三角形相似的判定和性质以及解直角三角形,作出辅助线构建等腰三角形、直角三角形是解题的关键.23.〔10分〕在平面直角坐标系中,直线y =kx +4〔k ≠0〕交x 轴于点A 〔8,0〕,交y 轴于点B .〔1〕k 的值是21-; 〔2〕点C 是直线AB 上的一个动点,点D 和点E 分别在x 轴和y 轴上.①如图,点E 为线段OB 的中点,且四边形OCED 是平行四边形时,求▱OCED 的周长; ②当CE 平行于x 轴,CD 平行于y 轴时,连接DE ,假设△CDE 的面积为433,请直接写出点C 的坐标. 【分析】〔1〕根据点A 的坐标,利用待定系数法可求出k 值;〔2〕①利用一次函数图象上点的坐标特征可得出点B 的坐标,由平行四边形的性质结合点E 为OB 的中点可得出CE 是△ABO 的中位线,结合点A 的坐标可得出CE 的长,在Rt △DOE 中,利用勾股定理可求出DE 的长,再利用平行四边形的周长公式即可求出▱OCED 的周长; ②设点C 的坐标为〔x ,421+-x 〕,那么CE =|x |,CD =|421+-x |,利用三角形的面积公式结合△CDE 的面积为433可得出关于x 的方程,解之即可得出结论. 【解答】解:〔1〕将A 〔8,0〕代入y =kx +4,得:0=8k +4,解得:k =21-. 故答案为:21-.〔2〕①由〔1〕可知直线AB 的解析式为y =21-x +4. 当x =0时,y =21-x +4=4, ∴点B 的坐标为〔0,4〕, ∴OB =4.∵点E 为OB 的中点, ∴BE =OE =21OB =2. ∵点A 的坐标为〔8,0〕, ∴OA =8.∵四边形OCED 是平行四边形, ∴CE ∥DA , ∴1==OEBEAC BC , ∴BC =AC ,∴CE 是△ABO 的中位线, ∴CE =21OA =4. ∵四边形OCED 是平行四边形, ∴OD =CE =4,OC =DE .在Rt △DOE 中,∠DOE =90°,OD =4,OE =2, ∴DE =5222=+OE OD ,∴C 平行四边形OCED =2〔OD +DE 〕=2〔4+25〕=8+45.②设点C 的坐标为〔x ,x 21-+4〕,那么CE =|x |,CD =|21-x +4|, ∴S △CDE =21CD •CE =|﹣41x 2+2x |=433,∴x 2+8x +33=0或x 2+8x ﹣33=0. 方程x 2+8x +33=0无解;解方程x 2+8x ﹣33=0,得:x 1=﹣3,x 2=11, ∴点C 的坐标为〔﹣3,211〕或〔11,23-〕.【点评】此题考察了待定系数法求一次函数解析式、一次函数图象上点的坐标特征、平行四边形的性质、勾股定理、平行四边形的周长、三角形的面积、解一元二次方程以及三角形的中位线,解题的关键是:〔1〕根据点的坐标,利用待定系数法求出k 值;〔2〕①利用勾股定理及三角形中位线的性质,求出CE ,DE 的长;②利用三角形的面积公式结合△CDE 的面积为433,找出关于x 的方程. 七、〔此题12分〕24.〔12分〕思维启迪:〔1〕如图1,A ,B 两点分别位于一个池塘的两端,小亮想用绳子测量A ,B 间的距离,但绳子不够长,聪明的小亮想出一个方法:先在地上取一个可以直接到达B 点的点C ,连接BC ,取BC 的中点P 〔点P 可以直接到达A 点〕,利用工具过点C 作CD ∥AB 交AP 的延长线于点D ,此时测得CD =200米,那么A ,B 间的距离是 200 米.思维探索:〔2〕在△ABC 和△ADE 中,AC =BC ,AE =DE ,且AE <AC ,∠ACB =∠AED =90°,将△ADE 绕点A 顺时针方向旋转,把点E 在AC 边上时△ADE 的位置作为起始位置〔此时点B 和点D 位于AC 的两侧〕,设旋转角为α,连接BD ,点P 是线段BD 的中点,连接PC ,PE .①如图2,当△ADE 在起始位置时,猜测:PC 与PE 的数量关系和位置关系分别是PC =PE ,PC ⊥PE . ; ②如图3,当α=90°时,点D 落在AB 边上,请判断PC 与PE 的数量关系和位置关系,并证明你的结论; ③当α=150°时,假设BC =3,DE =l ,请直接写出PC 2的值.【分析】〔1〕由由CD ∥AB ,可得∠C =∠B ,根据∠APB =∠DPC 即可证明△ABP ≌△DCP ,即可得AB =CD ,。
2024年辽宁省部分学校中考数学模拟试卷(一)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.我国古代数学名著《九章算术》中对正负数的概念注有“今两算得失相反,要令正负以名之”.如:粮库把运进30吨粮食记为“+30”,则“−30”表示( )A. 运出30吨粮食B. 亏损30吨粮食C. 卖掉30吨粮食D. 吃掉30吨粮食2.下列计算正确的是( )A. a2⋅a3=a6B. (−a3b)2=−a6b2C. a6÷a3=a2D. (a2)3=a63.估计6的值在( )A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间4.如图所示的三棱柱的展开图不可能是( )A.B.C.D.5.关于x的一元二次方程x2+mx−8=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根6.淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70°的方向,则淇淇家位于西柏坡的( )A. 南偏西70°方向B. 南偏东20°方向C. 北偏西20°方向D. 北偏东70°方向7.掷两枚质地均匀的骰子,下列事件是随机事件的是( )A. 点数的和为1B. 点数的和为6C. 点数的和大于12D. 点数的和小于138.下列命题中,是真命题的是( )A. 平行四边形是轴对称图形B. 对角线互相垂直的四边形是菱形C. 到一条线段两个端点距离相等的点,在这条线段的垂直平分线上D. 在△ABC中,若∠A:∠B:∠C=3:4:5,则△ABC是直角三角形9.今年2月,某班准备从《在希望的田野上》、《我和我的祖国》、《十送红军》三首歌曲中选择两首进行排练,参加永州市即将举办的“唱响新时代,筑梦新征程”合唱选拔赛,那么该班恰好选中前面两首歌曲的概率是( )A. 12B. 13C. 23D. 110.二次函数y=ax2+bx的图象如图所示,则一次函数y=x+b的图象一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限二、填空题:本题共5小题,每小题3分,共15分。
2006年全国中考数学压轴题全解全析31、(辽宁沈阳卷)如图,在平面直角坐标系中,直线13y x =-+分别与x 轴,y 轴交于点A ,点B .(1)以AB 为一边在第一象限内作等边ABC △及ABC △的外接圆M (用尺规作图,不要求写作法,但要保留作图痕迹);(2)若M 与x 轴的另一个交点为点D ,求A ,B ,C ,D 四点的坐标;(3)求经过A ,B ,D 三点的抛物线的解析式,并判断在抛物线上是否存在点P ,使AD P △的面积等于ADC △的面积?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.[解] (1)如图,正确作出图形,保留作图痕迹(2)由直线13y x =-+,求得点A的坐标为),点B 的坐标为()01,∴在Rt AOB △中,OA =1OB =2AB ∴=,tan OAOBA OB==∠60OBA ∴=∠9030OAB OBA ∴=-=∠∠ ABC △是等边三角形 2CA AB ∴==,60CAB =∠90CAD CAB OAB ∴=+=∠∠∠∴点C的坐标为),连结BMABC △是等边三角形 1302MBA ABC ∴==∠∠90OBM OBA MBA ∴=+=∠∠∠ OB BM ∴⊥∴直线OB 是M 的切线2OB OD OA ∴=213OD ∴=OD ∴=∴点D 的坐标为0⎫⎪⎪⎝⎭(3)设经过A ,B ,D 三点的抛物线的解析式是(y a x x ⎛= ⎝⎭把()01B ,代入上式得1a =∴抛物线的解析式是21y x =+ 存在点P ,使ADP △的面积等于ADC △的面积点P 的坐标分别为123P ⎛⎫⎪ ⎪⎝⎭,,223P ⎛⎫⎪ ⎪⎝⎭,. [点评]本题是一道综合性很强的压轴题,主要考查二次函数、一次函数、圆、几何作图等大量知识,第3小题是比较常规的结论存在性问题,运用方程思想和数形结合思想可解决。
32、(山东滨州卷)已知:抛物线2:(1)(2)M y x m x m =+-+-与x 轴相交于12(0)(0)A x B x ,,,两点,且12x x <.(Ⅰ)若120x x <,且m 为正整数,求抛物线M 的解析式; (Ⅱ)若1211x x <>,,求m 的取值范围;(Ⅲ)试判断是否存在m ,使经过点A 和点B 的圆与y 轴相切于点(02)C ,,若存在,求出m 的值;若不存在,试说明理由;(Ⅳ)若直线:l y kx b =+过点(07)F ,,与(Ⅰ)中的抛物线M 相交于P Q ,两点,且使12PF FQ =,求直线l 的解析式. [解] (Ⅰ)解法一:由题意得, 1220x x m =-<. 解得,2m <.m 为正整数,1m ∴=.21y x ∴=-.解法二:由题意知,当0x =时,20(1)0(2)0y m m =+-⨯+-<.(以下同解法一) 解法三:22(1)4(2)(3)m m m ∆=---=-,12(1)(3)122m m x x x m --±-∴=∴=-=-,,.又122020x x x m <∴=->,.2m ∴<.(以下同解法一.)解法四:令0y =,即2(1)(2)0x m x m +-+-=,12(1)(2)012x x m x x m∴++-=∴=-=-,,.(以下同解法三.) (Ⅱ)解法一:1212111010x x x x <>∴-<->,,,.12(1)(1)0x x ∴--<,即1212()10x x x x -++<.1212(1)2x x m x x m +=--=-,, (2)(1)10m m ∴-+-+<.解得 1m <.m ∴的取值范围是1m <.解法二:由题意知,当1x =时,1(1)(2)0y m m =+-+-<.解得:1m <.m ∴的取值范围是1m <.解法三:由(Ⅰ)的解法三、四知,1212x x m =-=-,.121121x x m <>∴->,,,1m ∴<.m ∴的取值范围是1m <. (Ⅲ)存在.解法一:因为过A B ,两点的圆与y 轴相切于点(02)C ,,所以A B ,两点在y 轴的同侧,120x x ∴>.由切割线定理知,2OC OA OB =, 即2122x x =.124x x ∴=,12 4.x x ∴=2 4.6m m ∴-=∴=.解法二:连接O B O C '',.圆心所在直线11222b m m x a --=-=-=, 设直线12mx -=与x 轴交于点D ,圆心为O ', 则122mO D OC O C OD -''====,.2132ABAB x x m BD =-==-=,, 32m BD -∴=.在Rt O DB '△中, 222O D D B O B ''+=.即22231222m m --⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭.解得 6m =.(Ⅳ)设1122()()P x y Q x y ,,,,则22112211y x y x =-=-,.过P Q ,分别向x 轴引垂线,垂足分别为112(0)(0)P x Q x ,,,.则11PP FO QQ ∥∥.所以由平行线分线段成比例定理知,11PO PF OQ FQ=.因此,120102x x -=-,即212x x =-. 过P Q ,分别向y 轴引垂线,垂足分别为2122(0)(0)P y Q y ,,,, 则22PP QQ ∥.所以22FP P FQ Q △∽△.22P F FPFQ FQ∴=. 127172y y -∴=-.12212y y ∴-=.22122211212(1) 1.2324 1.x x x x ∴--=-∴-=-21142x x ∴=∴=,,或12x =-.当12x =时,点(23)P ,.直线l 过(23)(07)P F ,,,,7032.k b k b =⨯+⎧∴⎨=⨯+⎩, 解得72.b k =⎧⎨=-⎩,当12x =-时,点(23)P -,.直线l 过(23)(07)P F -,,,,703(2).k b k b =⨯+⎧∴⎨=⨯-+⎩, 解得72.b k =⎧⎨=⎩,故所求直线l 的解析式为:27y x =+,或27y x =-+.[点评]本题对学生有一定的能力要求,涉及了初中数学的大部分重点章节的重点知识,是一道选拔功能卓越的好题。
中考数学复习《函数压轴题》经典题型及测试题(含答案)阅读与理解函数压轴题主要分为两大类:一是动点函数图象问题;二是与动点、存在点、相似等有关的二次函数综合题.解答动点函数图象问题,要把问题拆分,分清动点在不同位置运动或不同时间段运动时对应的函数关系式,进而确定函数图象;解答二次函数综合题,要把大题拆分,做到大题小做,逐步分析求解,最后汇总成最终答案.类型一 动点函数图象问题此类问题一般是通过分析动点在几何图形边上的运动情况,确定出有关动点函数图象的变化情况.分析此类问题,首先要明确动点在哪条边上运动,在运动过程中引起了哪个量的变化,然后求出在运动过程中对应的函数关系式,最后根据函数关系式判断图象的变化.例1 (2016·济南) 如图,在四边形ABCD 中,AB ∥CD ,∠B =90°,AB =AD =5,BC =4,M 、N 、E 分别是A B 、AD 、CB 上的点,AM =CE =1,AN =3,点P 从点M 出发,以每秒1个单位长度的速度沿折线MB -BE 向点E 运动,同时点Q 从点N ,以相同的速度沿折线ND -DC -CE 向点E 运动,设△APQ 的面积为S ,运动的时间为t 秒,则S 与t 函数关系的大致图象为( )【分析】 由点Q 从点N 出发,沿折线NDDCCE 向点E 运动,确定出点Q 分别在ND ,DC ,CE 运动时对应的t 的取值范围,再根据t 所在的取值范围分别求出其对应的函数关系式,最后根据函数关系式确定对应的函数图象.【自主解答】过点D 作DF ⊥AB 于点F (如图1),则DF =BC =4.第15题图 A BCDM N Q∵AD =5,DF =4,∴AF =3.∴sin ∠A=DF AD =45,MF =3-1=2,BF =AB -AF =5-3=2,DC =BF =2.∵AD =5,AN =3,∴ND =5-3=2.(1)当0≤t ≤2时,点P 在MF 上,点Q 在ND 上(如图2),此时AP =AM +MP =1+t ,AQ =AN +NQ =3+t .∴S =12AP •AQ •sin ∠A =12(1+t )(3+t )×45=25(t +2)2―25.当0≤t ≤2时,S随t 的增大而增大,且当t =2时,S =6.由此可知A 、B 选项都不对.(2)当t =5时,点P 在MF 上,点Q 在ND 上(如图3),此时BP =1,PE =BC -BP -CE =4-1-1=2.∴S =12AB •PE =12×5×2=5.∵6>5,∴选项D 正确.变式训练1.如图,△ABC 是等腰直角三角形,∠C =90°,AC =BC ,AB =4,D 为AB 上的动点,DP ⊥AB 交折线A -C -B 于点P.设AD =x ,△ADP 的面积为y ,则y 与x 的函数图象正确的是( )2.(2016·烟台)如图,⊙O 的半径为1,AD ,BC 是⊙O 的两条相互垂直的直径,图1 DC B A E M N QP F 图2 A B C D E M N Q P F 图3 A B C D E (Q )M N F P点P从点O出发(P点与O点不重合),沿OCD的路线运动.设AP=x,sin∠APB =y,那么y与x之间的关系图象大致是()类型二二次函数的实际问题解答此类问题时,首先要构建合理的坐标系,并写出对应的函数解析式,并利用二次函数的性质求解后续的问题.一般来说,选择的坐标系不同,得出的解析式必然不同,因此解答此类问题时,选择最恰当的坐标系往往显得尤为重要.例2 (2017·金华) 甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x﹣4)2+h,已知点O与球网的水平距离为5m,球网的高度为1.55m.(1)当a=﹣时,①求h的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到点O的水平距离为7m,离地面的高度为m的Q处时,乙扣球成功,求a的值.【分析】(1)①将点P(0,1)代入y=﹣(x﹣4)2+h即可求得h;②求出x=5时,y的值,与1.55比较即可得出判断;(2)将(0,1)、(7,)代入y=a(x﹣4)2+h代入即可求得a、h.【自主解答】解:(1)①当a=﹣时,y=﹣(x﹣4)2+h,将点P(0,1)代入,得:﹣×16+h=1,解得:h=;②把x=5代入y=﹣(x﹣4)2+,得:y=﹣×(5﹣4)2+=1.625,∵1.625>1.55,∴此球能过网;(2)把(0,1)、(7,)代入y=a(x﹣4)2+h,得:,解得:,∴a=﹣.变式训练3.(2017·沈阳)某商场购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可销售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,当销售单价是_____元时,才能在半月内获得最大利润.4、(2017•青岛)青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨.下表是去年该酒店豪华间某两天的相关记录:淡季旺季未入住房间数100日总收入(元)2400040000(1)该酒店豪华间有多少间?旺季每间价格为多少元?(2)今年旺季来临,豪华间的间数不变.经市场调查发现,如果豪华间仍旧实行去年旺季价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间.不考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入最高?最高日总收入是多少元?【分析】(1)根据题意可以列出相应的方程组,进而求得该酒店豪华间的间数和旺季每间的价格;(2)根据题意可以求得总收入和上涨价格之间的函数解析式,然后化为顶点式即可解答本题.【自主解答】解:(1)设淡季每间的价格为x元,酒店豪华间有y间,,解得,,∴x+x=600+=800,答:该酒店豪华间有50间,旺季每间价格为800元;(2)设该酒店豪华间的价格上涨x元,日总收入为y元,y=(800+x)(50﹣)=42025,∴当x=225时,y取得最大值,此时y=42025,答:该酒店将豪华间的价格上涨225元时,豪华间的日总收入最高,最高日总收入是42025元.类型三二次函数的综合题二次函数作为整套试卷的压轴题,往往会命制三个小问题,其中第一问求解二次函数的解析式,此问题往往利用待定系数法便可解决;第二、三问往往涉及动点问题及存在点问题,此问题需要利用全等三角形、相似三角形、平行四边形、圆等知识综合解答,计算量很大,且题目较为综合.例3 (2017·泰安) )如图,是将抛物线y=﹣x2平移后得到的抛物线,其对称轴为直线x=1,与x轴的一个交点为A(﹣1,0),另一个交点为B,与y轴的交点为C.(1)求抛物线的函数表达式;(2)若点N为抛物线上一点,且BC⊥NC,求点N的坐标;(3)点P是抛物线上一点,点Q是一次函数y=x+的图象上一点,若四边形OAPQ为平行四边形,这样的点P、Q是否存在?若存在,分别求出点P,Q的坐标;若不存在,说明理由.【分析】(1)已知抛物线的对称轴,因而可以设出顶点式,利用待定系数法求函数解析式;(2)首先求得B和C的坐标,易证△OBC是等腰直角三角形,过点N作NH⊥y 轴,垂足是H,设点N纵坐标是(a,﹣a2+2a+3),根据CH=NH即可列方程求解;(3)四边形OAPQ是平行四边形,则PQ=OA=1,且PQ∥OA,设P(t,﹣t2+2t+3),代入y=x+,即可求解.【自主解答】解:(1)设抛物线的解析式是y=﹣(x﹣1)2+k.把(﹣1,0)代入得0=﹣(﹣1﹣1)2+k,解得k=4,则抛物线的解析式是y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;(2)在y=﹣x2+2x+3中令x=0,则y=3,即C的坐标是(0,3),OC=3.∵B的坐标是(3,0),∴OB=3,∴OC=OB,则△OBC是等腰直角三角形.∴∠OCB=45°,过点N作NH⊥y轴,垂足是H.∵∠NCB=90°,∴∠NCH=45°,∴NH=CH,∴HO=OC+CH=3+CH=3+NH,设点N纵坐标是(a,﹣a2+2a+3).∴a+3=﹣a2+2a+3,解得a=0(舍去)或a=1,∴N的坐标是(1,4);(3)∵四边形OAPQ是平行四边形,则PQ=OA=1,且PQ∥OA,设P(t,﹣t2+2t+3),代入y=x+,则﹣t2+2t+3=(t+1)+,整理,得2t2﹣t=0,解得t=0或.∴﹣t2+2t+3的值为3或.∴P、Q的坐标是(0,3),(1,3)或(,)、(,).变式训练5.(2016·襄阳) 如图,已知点A的坐标为(﹣2,0),直线y=﹣x+3与x轴、y轴分别交于点B和点C,连接AC,顶点为D的抛物线y=ax2+bx+c过A、B、C三点.(1)请直接写出B、C两点的坐标,抛物线的解析式及顶点D的坐标;(2)设抛物线的对称轴DE交线段BC于点E,P是第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP 为平行四边形,求点P的坐标;(3)设点M是线段BC上的一动点,过点M作MN∥AB,交AC 于点N,点Q从点B出发,以每秒1个单位长度的速度沿线段BA 向点A运动,运动时间为t(秒),当t(秒)为何值时,存在△QMN 为等腰直角三角形?解:(1)令x=0代入y=﹣x+3∴y=3,∴C(0,3),令y=0代入y=﹣x+3∴x=4,∴B(4,0),设抛物线的解析式为:y=a(x+2)(x﹣4),把C(0,3)代入y=a(x+2)(x﹣4),∴a=﹣,∴抛物线的解析式为:y=(x+2)(x﹣4)=﹣x2+x+3,∴顶点D的坐标为(1,);(2)当DP∥BC时,此时四边形DEFP是平行四边形,设直线DP的解析式为y=mx+n,∵直线BC的解析式为:y=﹣x+3,∴m=﹣,∴y=﹣x+n,把D(1,)代入y=﹣x+n,∴n=,∴直线DP的解析式为y=﹣x+,∴联立,解得:x=3或x=1(舍去),∴把x=3代入y=﹣x+,y=,∴P的坐标为(3,);(3)由题意可知:0≤t≤6,设直线AC的解析式为:y=m1x+n1,把A(﹣2,0)和C(0,3)代入y=m1x+n1,得:,∴解得,∴直线AC的解析式为:y=x+3,由题意知:QB=t,如图1,当∠NMQ=90°,∴OQ=4﹣t,令x=4﹣t代入y=﹣x+3,∴y=t,∴M(4﹣t,t),∵MN∥x轴,∴N的纵坐标为t,把y=t代入y=x+3,∴x=t﹣2,∴N(t﹣2,t),∴MN=(4﹣t)﹣(﹣2)=6﹣t,∵MQ∥OC,∴△BQM∽△BOC,∴,∴MQ=t,当MN=MQ时,∴6﹣t=t,∴t=,此时QB=,符合题意,如图2,当∠QNM=90°时,∵QB=t,∴点Q的坐标为(4﹣t,0)∴令x=4﹣t代入y=x+3,∴y=9﹣t,∴N(4﹣t,9﹣t),∵MN∥x轴,∴点M的纵坐标为9﹣t,∴令y=9﹣t代入y=﹣x+3,∴x=2t﹣8,∴M(2t﹣8,9﹣t),∴MN=(2t﹣8)﹣(4﹣t)=3t﹣12,∵NQ∥OC,∴△AQN∽△AOC,∴=,∴NQ=9﹣t,当NQ=MN时,∴9﹣t=3t﹣12,∴t=,∴此时QB=,符合题意如图3,当∠NQM=90°,过点Q作QE⊥MN于点E,过点M作MF⊥x轴于点F,设QE=a,令y=a代入y=﹣x+3,∴x=4﹣,∴M(4﹣a,a),令y=a代入y=x+3,∴x=﹣2,∴N(﹣2,0),∴MN=(4﹣a)﹣(a﹣2)=6﹣2a,当MN=2QE时,∴6﹣2a=2a,∴a=,∴MF=QE=,∵MF∥OC,∴△BMF∽△BCO,∴=,∴BF=2,∴QB=QF+BF=+2=,∴t=,此情况符合题意,综上所述,当△QMN为等腰直角三角形时,此时t=或或6.(2017·潍坊) 如图1,抛物线y=ax2+bx+c经过平行四边形ABCD的顶点A(0,3)、B(﹣1,0)、D(2,3),抛物线与x轴的另一交点为E.经过点E的直线l将平行四边形ABCD分割为面积相等两部分,与抛物线交于另一点F.点P在直线l上方抛物线上一动点,设点P的横坐标为t(1)求抛物线的解析式;(2)当t何值时,△PFE的面积最大?并求最大值的立方根;(3)是否存在点P使△PAE为直角三角形?若存在,求出t的值;若不存在,说明理由.解:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)∵A(0,3),D(2,3),∴BC=AD=2,∵B(﹣1,0),∴C(1,0),∴线段AC的中点为(,),∵直线l将平行四边形ABCD分割为面积相等两部分,∴直线l过平行四边形的对称中心,∵A、D关于对称轴对称,∴抛物线对称轴为x=1,∴E(3,0),设直线l的解析式为y=kx+m,把E点和对称中心坐标代入可得,解得,∴直线l的解析式为y=﹣x+,联立直线l和抛物线解析式可得,解得或,∴F(﹣,),如图1,作PH⊥x轴,交l于点M,作FN⊥PH,∵P点横坐标为t,∴P(t,﹣t2+2t+3),M(t,﹣t+),∴PM=﹣t2+2t+3﹣(﹣t+)=﹣t2+t+,∴S△PEF =S△PFM+S△PEM=PM•FN+PM•EH=PM•(FN+EH)=(﹣t2+t+)(3+)=﹣(t﹣)+×,∴当t=时,△PEF的面积最大,其最大值为×,∴最大值的立方根为=;(3)由图可知∠PEA≠90°,∴只能有∠PAE=90°或∠APE=90°,①当∠PAE=90°时,如图2,作PG⊥y轴,∵OA=OE,∴∠OAE=∠OEA=45°,∴∠PAG=∠APG=45°,∴PG=AG,∴t=﹣t2+2t+3﹣3,即﹣t2+t=0,解得t=1或t=0(舍去),②当∠APE=90°时,如图3,作PK⊥x轴,AQ⊥PK,则PK=﹣t2+2t+3,AQ=t,KE=3﹣t,PQ=﹣t2+2t+3﹣3=﹣t2+2t,∵∠APQ+∠KPE=∠APQ+∠PAQ=90°,∴∠PAQ=∠KPE,且∠PKE=∠PQA,∴△PKE∽△AQP,∴=,即=,即t2﹣t﹣1=0,解得t=或t=<﹣(舍去),综上可知存在满足条件的点P,t的值为1或.。
【压轴必刷】2023年中考数学压轴大题之经典模型培优案专题3对角互补模型模型1:全等形——90°对角互补模型模型2:全等形——120°对角互补模型模型3:全等形——任意角对角互补模型模型4:相似形——90°对角互补模型【例1】.(2021·全国·1,在四边形ABCD 中,AB=AD,∠B+∠ADC=180°,点E,F 分别在四边形ABCD 的边BC,CD 上,∠EAF=12∠BAD,连接EF,试猜想EF,BE,DF 之间的数量关系.(1)思路梳理将△ABE 绕点A 逆时针旋转至△ADG,使AB 与AD 重合,由∠B+∠ADC=180°,得∠FDG=180°,即点F,D,G 三点共线,易证△AFG ≌△AFE,故EF,BE,DF 之间的数量关系为__;(2)类比引申如图2,在图1的条件下,若点E,F 由原来的位置分别变到四边形ABCD 的边CB,DC 延长线上,∠EAF=12∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系,并给出证明.(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D,E均在边BC上,且∠DAE=45°,若BD=1,EC=2,直接写出DE的长为________________.【例2】.(2019·山东枣庄·中考真题)在ΔABC中,∠BAC=90°,AB=AC,AD⊥BC于点D,(1)如图1,点M,N分别在AD,AB上,且∠BMN=90°,当∠AMN=30°,AB=2时,求线段AM的长;(2)如图2,点E,F分别在AB,AC上,且∠EDF=90°,求证:BE=AF;(3)如图3,点M在AD的延长线上,点N在AC上,且∠BMN=90°,求证:AB+AN=√2AM;【例3】.(2022·江苏·八年级课时练习)(1)如图①,在四边形ABCD中,AB=AD,∠B=∠D=90°,E,F分别是∠BAD.请直接写出线段EF,BE,FD之间的数量关系:__________;边BC,CD上的点,且∠EAF=12∠BAD,(2)如图②,在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是边BC,CD上的点,且∠EAF=12(1)中的结论是否仍然成立?请写出证明过程;(3)在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是边BC,CD所在直线上的点,且∠EAF=1∠BAD.请画出图形(除图②外),并直接写出线段EF,BE,FD之间的数量关系.2【例4】.(2022·全国·八年级课时练习)四边形ABCD是由等边ΔABC和顶角为120°的等腰ΔABD排成,将一个60°角顶点放在D处,将60°角绕D点旋转,该60°交两边分别交直线BC、AC于M、N,交直线AB于E、F两点.(1)当E、F都在线段AB上时(如图1),请证明:BM+AN=MN;(2)当点E在边BA的延长线上时(如图2),请你写出线段MB,AN和MN之间的数量关系,并证明你的结论;(3)在(1)的条件下,若AC=7,AE=2.1,请直接写出MB的长为.一、解答题1.(2022·陕西·西安市第三中学七年级期末)回答问题(1)【初步探索】如图1:在四边形ABCD中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF=BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF ≌△AGF,可得出结论,他的结论应是_______________;(2)【灵活运用】如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;(3)【拓展延伸】知在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,若点E在CB的延长线上,点F在CD 的延长线上,如图3所示,仍然满足EF=BE+FD,请直接写出∠EAF与∠DAB的数量关系.2.(2021·陕西·交大附中分校八年级开学考试)问题探究((1)如图①,已知∠A=45°,∠ABC=30°,∠ADC=40°,则∠BCD的大小为___________;(2)如图②,在四边形ABCD中,AB=BC,∠ABC=∠ADC=90°,对角线BD=6.求四边形ABCD的面积;小明这样来计算.延长DC,使得CE=AD,连接BE,通过证明△ABD≌△CBE,从而可以计算四边形ABCD的面积.请你将小明的方法完善.并计算四边形ABCD的面积;问题解决(3)如图③,四边形ABCD是正在建设的城市花园,其中AB=BC,∠ABC=60°,∠ADC=30°,DC=40米,AD=30米.请计算出对角线BD的长度.3.(2021·福建三明·八年级期中)感知:如图①,AD平分∠BAC,∠B+∠C=180°,∠B=90°.判断DB与DC的大小关系并证明.探究:如图②,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,DB与DC的大小关系变吗?请说明理由.应用:如图③,四边形ABDC中,∠B=45°,∠C=135°,DB=DC=m,则AB与AC差是多少(用含m的代数式表示)4.(2021·辽宁大连·九年级期中)如图1,正方形ABCD中,BD是对角线,点E在AB上,点F在BC上,连接EF(EF 与BD不垂直),点G是线段EF的中点,过点G作GH⊥EF交线段BD于点H.(1)猜想GH与EF的数量关系,并证明;(2)探索AE,CF,DH之间的数量关系,并证明;(3)如图2,若点E在AB的延长线上,点F在BC的延长线上,其他条件不变,请直接写出AE,CF,DH之间的数量关系.5.(2020·河南洛阳·八年级期中)在∠MAN内有一点D,过点D分别作DB⊥AM,DC⊥AN,垂足分别为B,C.且BD=CD,点E,F分别在边AM和AN上.(1)如图1,若∠BED=∠CFD,请说明DE=DF;(2)如图2,若∠BDC=120°,∠EDF=60°,猜想EF,BE,CF具有的数量关系,并说明你的结论成立的理由.6.(2020·江西萍乡·八年级期末)【课题研究】旋转图形中对应线段所在直线的夹角(小于等于90°的角)与旋转角的关系.【问题初探】线段AB绕点O顺时针旋转得到线段CD,其中点A与点C对应,点B与点D对应,旋转角的度数为α,且0°<α<180°.(1)如图①,当α=60°时,线段AB、CD所在直线夹角(锐角)为;(2)如图②,当90°<α<180°时,直线AB与直线CD所夹锐角与旋转角α存在怎样的数量关系?请说明理由;【形成结论】旋转图形中,当旋转角小于平角时,对应线段所在直线的夹角与旋转角.【运用拓广】运用所形成的结论解决问题:(3)如图③,四边形ABCD中,∠ABC=60°,∠ADC=30°,AB=BC,CD=3,BD=√19,求AD的长.7.(2021··九年级专题练习)如图,在△ABC中,∠ACB=120°,BC>AC,点E在BC上,点D在AB上,CE=CA,连接DE,∠ACB+∠ADE=180°,CH⊥AB,垂足为H.证明:DE+AD=2√3CH.8.(2020·湖南湘西·中考真题)问题背景:如图1,在四边形ABCD中,∠BAD=90°,∠BCD=90°,BA= BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD、DC于E、F.探究图中线段AE,CF,EF之间的数量关系.小李同学探究此问题的方法是:延长FC到G,使CG=AE,连接BG,先证明△BCG≌△BAE,再证明△BFC≌△BFE,可得出结论,他的结论就是_______________;探究延伸1:如图2,在四边形ABCD中,∠BAD=90°,∠BCD=90°,BA=BC,∠ABC=2∠MBN,∠MBN绕B点旋转,它的两边分别交AD、DC于E、F.上述结论是否仍然成立?请直接写出结论(直接写出“成立”或者“不成立”),不要说明理由.探究延伸2:如图3,在四边形ABCD中,BA=BC,∠BAD+∠BCD=180°,∠ABC=2∠MBN,∠MBN绕B点旋转,它的两边分别交AD、DC于E、F.上述结论是否仍然成立?并说明理由.实际应用:如图4,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等接到行动指令后,舰艇甲向正东方向以75海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以100海里/小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E、F处,且指挥中心观测两舰艇视线之间的夹角为70°,试求此时两舰艇之间的距离.9.(2019·重庆·西南大学附中八年级阶段练习)如图1,四边形ABCD中,BD⊥AD,E为BD上一点,AE=BC,CE⊥BD,CE=ED(1)已知AB=10,AD=6,求CD;(2)如图2,F为AD上一点,AF=DE,连接BF,交BF交AE于G,过G作GH⊥AB于H,∠BGH=75°.求证:BF=2√2GH+√2EG.10.(2021·全国·九年级专题练习)探究问题:(1)方法感悟:如图①,在正方形ABCD中,点E,F DC,BC边上的点,且满足∠BAF=45°,连接EF,求证DE+BF=EF.感悟解题方法,并完成下列填空:将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,∴∠ABG+∠ABF=90°+90°=180°,因此,点G,B,F在同一条直线上.∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.∵∠1=∠2,∠1+∠3=45°.即∠GAF=∠________.又AG=AE,AF=AE∴△GAF≌△________.∴_________=EF,故DE+BF=EF.(2)方法迁移:∠DAB.试猜想如图②,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=12DE,BF,EF之间有何数量关系,并证明你的猜想.11.(2021·全国·八年级专题练习)我们规定:一组邻边相等且对角互补的四边形叫作“完美四边形”.(1)在①平行四边形,②菱形,③矩形,④正方形中,一定为“完美”四边形的是(请填序号);(2)在“完美”四边形ABCD中,AB=AD,∠B+∠D=180°,连接AC.①如图1,求证:AC平分∠BCD;小明通过观察、实验,提出以下两种想法,证明AC平分∠BCD:想法一:通过∠B+∠D=180°,可延长CB到E,使BE=CD,通过证明△AEB≌△ACD,从而可证AC平分∠BCD;想法二:通过AB=AD,可将△ACD A顺时针旋转,使AD与AB重合,得到△AEB,可证C,B,E三点在条直线上,从而可证AC平分∠BCD.请你参考上面的想法,帮助小明证明AC平分∠BCD;②如图2,当∠BAD=90°,用等式表示线段AC,BC,CD之间的数量关系,并证明.12.(2019·全国·九年级专题练习)如图,△ABC是边长为4的等边三角形,点D是线段BC的中点,∠EDF=120°,把∠EDF绕点D旋转,使∠EDF的两边分别与线段AB、AC交于点E、F.(1)当DF⊥AC时,求证:BE=CF;(2)在旋转过程中,BE+CF是否为定值?若是,求出这个定值;若不是,请说明理由13.(2022·全国·八年级专题练习)如图所示,ΔABC为等边三角形,边长为4,点O为BC边中点,∠EOF=120°,其两边分别交AB和CA的延长线于E,F,求AE−AF的值.14.(2019·全国·九年级专题练习)如图所示,ΔABC中,AB=BC=1,∠ABC=90°,把一块含30°角的直角三角板DEF的直角顶点D放在AC的中点上(直角三角板的短直角边为DF,长直角边为DE),将三角板DEF绕D点按逆时针方向旋转.(1)在如图所见中,DE交AB于M,DF交BC于N,证明DM=DN;(2)继续旋转至如图所见,延长AB交DE于M,延长BC交DF于N,证明DM=DN.15.(2019·江西·南昌市第十九中学九年级阶段练习)一位同学拿了两块45°三角尺ΔMNK,ΔACB做了一个探究活动:将ΔMNK的直角顶点M放在ΔACB的斜边AB的中点处,设AC=BC=4.(1)如图1所示,两三角尺的重叠部分为ΔACM ,则重叠部分的面积为______,周长为______.(2)将如图1所示中的ΔMNK 绕顶点M 逆时针旋转45°,得到如图2所示,此时重叠部分的面积为______,周长为______.(3)如果将ΔMNK 绕M 旋转到不同于如图1所示和如图2所示的图形,如图3所示,请你猜想此时重叠部分的面积为______.(4)在如图3所示情况下,若AD =1,求出重叠部分图形的周长.16.(2019·江苏常州·一模)我们定义:有一组对角为直角的四边形叫做“对直角四边形”.(1)如图①,四边形ABCD 为对直角四边形,∠B=90°,若AB 2-AD 2=4,求CD 2-BC 2的值;(2)如图②,四边形ABCD 中,∠ABC=90°,AB=BC,若BD 平分∠ADC,求证:四边形ABCD 为对直角四边形;(3)在(2)的条件下,如图③,连结AC,若S △ACDS △ABC =35,求tan ∠ACD 的值.17.(2021·全国·九年级专题练习)阅读下面材料:小炎遇到这样一个问题:如图1,点E 、F 分别在正方形ABCD 的边BC,CD 上,∠EAF=45°,连结EF,则EF=BE+DF,试说明理由.小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中.她先后尝试了翻折、旋转、平移的方法,最后发现线段AB,AD是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE 绕着点A逆时针旋转90°得到△ADG,再利用全等的知识解决了这个问题(如图2).参考小炎同学思考问题的方法,解决下列问题:(1)如图3,四边形ABCD中,AB=AD,∠BAD=90°点E,F分别在边BC,CD上,∠EAF=45°.若∠B,∠D都不是直角,则当∠B与∠D满足_ 关系时,仍有EF=BE+DF;(2)如图4,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,若BD=1, EC=2,求DE 的长.18.(2021·全国·八年级专题练习)已知:∠ABC=∠ADC=90°,AD=DC,求证:BC+AB=√2BD.【例1】.(2021·全国·九年级专题练习)如图1,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,点E,F分别在四边形ABCD的边BC,CD上,∠EAF=12∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系.(1)思路梳理将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合,由∠B+∠ADC=180°,得∠FDG=180°,即点F,D,G三点共线,易证△AFG≌△AFE,故EF,BE,DF之间的数量关系为__;(2)类比引申如图2,在图1的条件下,若点E,F由原来的位置分别变到四边形ABCD的边CB,DC延长线上,∠EAF=12∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系,并给出证明.(3)联想拓展如图3,在△ABC中,∠点D,E均在边BC上,且∠DAE=45°,若BD=1,EC=2,直接写出DE的长为________________.【答案】(1)EF=BE+DF;(2)EF=DF−BE;证明见解析;(3)√5.【分析】(1)将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合,首先证明F,D,G三点共线,求出∠EAF=∠GAF,然后证明△AFG≌△AFE,根据全等三角形的性质解答;(2)将△ABE绕点A逆时针旋转,使AB与AD重合,得到△ADE',首先证明E',D,F三点共线,求出∠EAF=∠E'AF,然后证明△AFE≌△AFE',根据全等三角形的性质解答;(3)将△ABD绕点A逆时针旋转至△ACD',使AB与AC重合,连接ED',同(1)可证△AED≌AED',求出∠ECD'=90°,再根据勾股定理计算即可.【详解】解:(1)将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合,∵∠B+∠ADC=180°,∴∠FDG=180°,即点F,D,G三点共线,∵∠BAE=∠DAG,∠EAF=12∠BAD,∴∠EAF=∠GAF,在△AFG和△AFE中,{AE=AG∠EAF=∠GAFAF=AF,∴△AFG≌△AFE,∴EF=FG=DG+DF=BE+DF;(2)EF=DF−BE;证明:将△ABE绕点A逆时针旋转,使AB与AD重合,得到△ADE',则△ABE≌ADE',∴∠DAE'=∠BAE,AE'=AE,DE'=BE,∠ADE'=∠ABE,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∴∠ADE'=∠ADC,即E',D,F三点共线,∵∠EAF=12∠BAD,∴∠E'AF=∠BAD−(∠BAF+∠DAE')=∠BAD−(∠BAF+∠BAE)=∠BAD−∠EAF=12∠BAD,∴∠EAF=∠E'AF,在△AEF和△AE'F中,{AE=AE′∠EAF=∠E′AFAF=AF,∴△AFE≌△AFE'(SAS),∴FE=FE',又∵FE'=DF−DE',∴EF=DF−BE;(3)将△ABD绕点A逆时针旋转至△ACD',使AB与AC重合,连接ED',同(1)可证△AED≌AED',∴DE=D'E.∵∠ACB=∠B=∠ACD'=45°,∴∠ECD'=90°,在Rt△ECD'中,ED'=√EC2+D′C2=√EC2+BD2=√5,即DE=√5,故答案为:√5.【点睛】本题考查的是旋转变换的性质、全等三角形的判定和性质以及勾股定理等知识,灵活运用利用旋转变换作图、掌握全等三角形的判定定理和性质定理是解题的关键.【例2】.(2019·山东枣庄·中考真题)在ΔABC中,∠BAC=90°,AB=AC,AD⊥BC于点D,(1)如图1,点M,N分别在AD,AB上,且∠BMN=90°,当∠AMN=30°,AB=2时,求线段AM的长;(2)如图2,点E,F分别在AB,AC上,且∠EDF=90°,求证:BE=AF;(3)如图3,点M在AD的延长线上N在AC上,且∠BMN=90°,求证:AB+AN=√2AM;;(2)见解析;(3)见解析.【答案】(1) AM=√2−2√33【分析】(1)根据等腰三角形的性质、直角三角形的性质得到AD=BD=DC=√2,求出∠MBD=30°,根据勾股定理计算即可;(2)证明△BDE≌△ADF,根据全等三角形的性质证明;(3)过点M作ME∥BC交AB的延长线于E,证明△BME≌△AMN,根据全等三角形的性质得到BE=AN,根据等腰直角三角形的性质、勾股定理证明结论.【详解】(1)解:∵∠BAC=90°,AB=AC,AD⊥BC,【点睛】本题考查的是等腰直角三角形的性质、全等三角形的判定和性质、直角三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键.【例3】.(2022·江苏·八年级课时练习)(1)如图①,在四边形ABCD中,AB=AD,∠B=∠D=90°,E,F分别是∠BAD.请直接写出线段EF,BE,FD之间的数量关系:__________;边BC,CD上的点,且∠EAF=12∠BAD,(2)如图②,在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是边BC,CD上的点,且∠EAF=12(1(3)在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是边BC,CD所在直线上的点,且∠EAF=1∠BAD.请画出图形(除图②外),并直接写出线段EF,BE,FD之间的数量关系.2【答案】(1)EF=BE+FD;(2)成立,理由见解析;(3)图形见解析,EF=BE−FD【分析】(1)延长EB到G,使BG=DF,连接AG.证明△AGE和△AEF全等,则EF=GE,则EF=BE+DF,证明△ABE和△AEF中全等,那么AG=AF,∠1=∠2,∠1+∠3=∠2+∠3=∠EAF=1∠BAD.从而得出EF=GE;2(2)思路和作辅助线的方法同(1);(3)根据(1)的证法,我们可得出DF=BG,GE=EF,那么EF=GE=BE-BG=BE-DF.【详解】(1)延长EB至G,使BG=DF,连接AG,∵∠ABG=∠ABC=∠D=90°,AB=AD,∴△ABG≌△ADF,∴AG=AF,∠1=∠2,∴∠1+∠3=∠2+∠3=∠EAF=12∠BAD,∴∠GAE=∠EAF,在△GAE和△FAE中,∵{AG=AF∠GAE=∠EAFAE=AE,∴△GAE≌△FAE(SAS),∴EG=EF,∵EG=BE+BG,∴EF=BE+FD.故答案为:EF=BE+FD(2)(1)中的结论仍成立,证明:延长CB至M,使BM=DF,∵∠ABC+∠D=180°,∠1+∠ABC=180°,∴∠1=∠D,在△ABM和△ADF中,{AB=AD ∠1=∠D BM=DF,∴△ABM≌△ADF(SAS),∴AF=AM,∠2=∠3,∵∠EAF=12∠BAD,∴∠2+∠4=12∠BAD=∠EAF,∴∠3+∠4=∠EAF即∠MAE=∠EAF,在△AME和△AFE中,{AM=AF∠MAE=∠EAFAB=AE,∴△AME≌△AFE(SAS),∴EF=ME,即EF=BE+BM.(3)EF=BE−FD,证明:在BE上截取BG使BG=DF,连接AG,∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF,∵在△ABG和△ADF中,{AB=AD∠ABG=∠ADFBG=DF,∴△ABG≌△ADF(SAS),∴∠BAG=∠DAF,AG=AF,∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF=12∠BAD,∴∠GAE=∠EAF,在△AEG和△AEF中,{AG=AF∠GAE=∠EAFAE=AE,∴△AEG≌△AEF(SAS),∴EG=EF,∵EG=BE−BG,∴EF=BE−FD.【点睛】此题主要考查了三角形全等的判定与性质,通过全等三角形来实现线段的转换是解题关键,没有明确的全等三角形时,要通过辅助线来构建与已知和所求条件相关联的全等三角形.【例4】.(2022·全国·八年级课时练习)四边形ABCD是由等边ΔABC和顶角为120°的等腰ΔABD排成,将一个60°角顶点放在D处,将60°角绕D,该60°交两边分别交直线BC、AC于M、N,交直线AB于E、F两点.(1)当E、F都在线段AB上时(如图1),请证明:BM+AN=MN;(2)当点E在边BA的延长线上时(如图2),请你写出线段MB,AN和MN之间的数量关系,并证明你的结论;(3)在(1)的条件下,若AC=7,AE=2.1,请直接写出MB的长为.【答案】(1)证明见解析;(2)MB=MN+AN.证明见解析;(3)2.8.【分析】(1)把△DBM绕点D逆时针旋转120°得到△DAQ,根据旋转的性质可得DM=DQ,AQ=BM,∠ADQ=∠BDM,然后求出∠QDN=∠MDN,利用“边角边”证明△MND和△QND全等,根据全等三角形对应边相等可得MN=QN,再根据AQ+AN=QN整理即可得证;(2)把△DAN绕点D顺时针旋转120°得到△DBP,根据旋转的性质可得DN=DP,AN=BP,根据∠DAN=∠DBP=90°可知点P在BM上,然后求出∠MDP=60°,然后利用“边角边”证明△MND和△MPD全等,根据全等三角形对应边相等可得MN=MP,从而得证;(3)过点M作MH∥AC交AB于G,交DN于H,可以证明△BMG是等边三角形,根据等边三角形的性质可得BM=MG=BG,根据全等三角形对应角相等可得∠QND=∠MND,再根据两直线平行,内错角相等可得∠QND=∠MHN,然后求出∠MND=∠MHN,根据等角对等边可得MN=MH,然后求出AN=GH,再利用“角角边”证明△ANE和△GHE全等,根据全等三角形对应边相等可得AE=GE,再根据BG=AB-AE-GE代入数据进行计算即可求出BG,从而得到BM的长.【详解】解:(1)证明:把△DBM绕点D逆时针旋转120°得到△DAQ,则DM=DQ,AQ=BM,∠ADQ=∠BDM,∠QAD=∠CBD=90°,∴点Q在直线CA上,∵∠QDN=∠ADQ+∠ADN=∠BDM+∠ADN=∠ABD-∠MDN=120°-60°=60°,∴∠QDN=∠MDN=60°,∵在△MND和△QND中,{DM=DQ∠QDN=∠MDNDN=DN,∴△MND≌△QND(SAS),∴MN=QN,∵QN=AQ+AN=BM+AN,∴BM+AN=MN;(2):MB=MN+AN.理由如下:如图,把△DAN绕点D顺时针旋转120°得到△DBP,则DN=DP,AN=BP,∵∠DAN=∠DBP=90°,∴点P在BM上,∵∠MDP=∠ADB-∠ADM-∠BDP=120°-∠ADM-∠ADN=120°-∠MDN=120°-60°=60°,∴∠MDP=∠MDN=60°,∵在△MND和△MPD中,{DN=DP∠MDP=∠MDNDM=DM,∴△MND≌△MPD(SAS),∴MN=MP,∵BM=MP+BP,∴MN+AN=BM;(3)如图,过点M作MH∥AC交AB于G,交DN于H,∵△ABC 是等边三角形,∴△BMG 是等边三角形,∴BM =MG =BG ,根据(1)△MND ≌△QND 可得∠QND =∠MND ,根据MH ∥AC 可得∠QND =∠MHN ,∴∠MND =∠MHN ,∴MN =MH ,∴GH =MH -MG =MN -BM =AN ,即AN =GH ,∵在△ANE 和△GHE 中,{∠QND =∠MHN∠AEN =∠GEH AN =GH,∴△ANE ≌△GHE (AAS ),∴AE =EG =2.1,∵AC =7,∴AB =AC =7,∴BG =AB -AE -EG =7-2.1-2.1=2.8,∴BM =BG =2.8.故答案为:2.8【点睛】本题考查了全等三角形的判定与性质及等腰三角形的性质,根据等边三角形的性质,旋转变换的性质作辅助线构造全等三角形是解题的关键,(3)作平行线并求出AN =GH 是解题的关键,也是本题的难点.一、解答题1.(2022·陕西·西安市第三中学七年级期末)回答问题(1)【初步探索】如图1:在四边形ABCD中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF=BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF ≌△AGF,可得出结论,他的结论应是_______________;(2)【灵活运用】如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;(3)【拓展延伸】知在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,若点E在CB的延长线上,点F在CD 的延长线上,如图3所示,仍然满足EF=BE+FD,请直接写出∠EAF与∠DAB的数量关系.【答案】(1)∠BAE+∠F AD=∠EAF;(2)仍成立,理由见解析;(3)∠EAF=180°-12∠DAB【分析】(1)延长FD到点G,使DG=BE,连接AG,可判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF,据此得出结论;(2)延长FD到点G,使DG=BE,连接AG,先判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;(3)在DC延长线上取一点G,使得DG=BE,连接AG,先判定△ADG≌△ABE,再判定△AEF≌△AGF,得出∠F AE=∠F AG,最后根据∠F AE+∠F AG+∠GAE=360°,推导得到2∠F AE+∠DAB=360°,即可得出结论.【详解】解:(1)∠BAE+∠F AD=∠EAF.理由:如图1,延长FD到点G,使DG=BE,连接AG,∵∠B=∠ADF=90°,∠ADG=∠ADF=90°,∴∠B=∠ADG=90°,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;故答案为:∠BAE+∠F AD=∠EAF;(2)仍成立,理由:如图2,延长FD到点G,使DG=BE,连接AG,∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;∠DAB.(3)∠EAF=180°-12证明:如图3,在DC延长线上取一点G,使得DG=BE,连接AG,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∴∠ADC=∠ABE,又∵AB=AD,∴△ADG≌△ABE(SAS),∴AG=AE,∠DAG=∠BAE,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠F AE=∠F AG,∵∠F AE+∠F AG+∠GAE=360°,∴2∠F AE+(∠GAB+∠BAE)=360°,∴2∠F AE+(∠GAB+∠DAG)=360°,即2∠F AE+∠DAB=360°,∴∠EAF=180°-1∠DAB.2【点睛】本题属于三角形综合题,主要考查了全等三角形的判定以及全等三角形的性质的综合应用,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应角相等进行推导变形.解题时注意:同角的补角相等.2.(2021·陕西·交大附中分校八年级开学考试)问题探究((1)如图①,已知∠A=45°,∠ABC=30°,∠ADC=40°,则∠BCD的大小为___________;(2)如图②,在四边形ABCD中,AB=BC,∠ABC=∠ADC=90°,对角线BD=6.求四边形ABCD的面积;小明这样来计算.延长DC,使得CE=AD,连接BE,通过证明△ABD≌△CBE,从而可以计算四边形ABCD的面积.请你将小明的方法完善.并计算四边形ABCD的面积;问题解决(3)如图③,四边形ABCD是正在建设的城市花园,其中AB=BC,∠ABC=60°,∠ADC=30°,DC=40米,AD=30米.请计算出对角线BD的长度.在四边形ABCD中,∠ABC=∠ADC=90°,∴∠A+∠BCD=180°,∵∠BCE+∠BCD=180°,∴∠A=∠BCE,在△ABD和△CBE中,{AB=BC ∠A=∠BCE AD=CE,∴△ABD≌△CBE,∴BE=BD,∠ABD=∠CBE,S△ABD=S△CBE,∵∠ABC=90°,即∠ABD+∠DBC=90°,∴∠CBE+∠DBC=90°,即∠DBE=90°,∵BD=BE=6,∠DBE=90°,∴S△BDE=12×BE×BD=18,∴S△BDE=S△CBE+S△DBC=S△ABD+S△DBC=S四边形ABCD=18;(4)如图,将△BCD绕点B逆时针旋转60°,得到△BAF,连接FD,∴△BCD≌△BAF,∠FBD=60°,∴BF=BD,AF=CD=40,∠BDC=∠BF A,∴△BFD是等边三角形,∴BF=BD=DF,∵∠ADC=30°,∴∠ADB+∠BDC=30°,∴∠BF A+∠ADB=30°,∵∠FBD+∠BF A+∠BDA+∠AFD+∠ADF=180°,∴60°+30°+∠AFD+∠ADF=180°,∴∠AFD+∠ADF=90°,∴∠F AD=90°,∴DF=√AF2+AD2=√402+302=50,∴BD=50(米).答:对角线BD的长度为50米.【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等边三角形的判定和性质,勾股定理等知识,添加辅助线构造全等三角形是本题的关键.3.(2021·福建三明·八年级期中)感知:如图①,AD平分∠BAC,∠B+∠C=180°,∠B=90°.判断DB与DC的大小关系并证明.探究:如图②,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,DB与DC的大小关系变吗?请说明理由.应用:如图③,四边形ABDC中,∠B=45°,∠C=135°,DB=DC=m,则AB与AC差是多少(用含m的代数式表示)【答案】感知:DB=DC,证明见详解;探究:DB与DC的大小关系不变,理由见详解;应用:AB与AC差是与BD不垂直),点G是线段EF的中点,过点G作GH⊥EF交线段BD于点H.(1)猜想GH与EF的数量关系,并证明;(2)探索AE,CF,DH之间的数量关系,并证明;(3)如图2,若点E在AB的延长线上,点F在BC的延长线上,其他条件不变,请直接写出AE,CF,DH之间的数量关系.∴HI=HJ,∵HG垂直平分EF,∴HE=HF,∵∠HIE=∠HJF=90°,∴△HIE≌△HJF(HL),∴∠IHE=∠JHF,又∵∠IHJ=∠IHE+∠EHJ=90°,∴∠EHF=∠JHF+EHJ=90°,∴△HEF为等腰直角三角形,∵G为斜边的中点,∴GH=1EF.2(2)AE+CF=√2DH,理由如下:由(1)中△HIE≌△HJF(HL),∴EI=FJ,由下图:∠A=∠AIH=∠AKH=90°,∴四边形AIHK为矩形,∴AI=KH,在△DHK中,由正方形的性质知,∠HDK=45°,∵∠HKD=90°,∴∠DHK=90°−45°=45°∴△DKH为等腰直角三角形,又∴∠D=∠HKD=∠HLD=90°,∴四边形HKDL为正方形,∴HL=KH,同理四边形HLCJ为矩形,∴HL=JC∴AI=KH=HL=JC,AE=AI+EI,CF=JC−FJ,∴AE+CF=AI+JC=2AI=2KH,在△DHK中,由正方形的性质知,∠HDK=45°,∵∠HKD=90°,∴∠DHK=90°−45°=45°∴△DKH为等腰直角三角形,∴DH=√2KH,∴AE+CF=√2DH.(3)AE−CF=√2DH,理由如下:过点H作AB,BC垂线,分别交AB,BC,CD,AD于I,J,L,K,连接HE,HF,∵HI=HJ,HE=HF,∠HIE=∠HJF=90°,∴△HIE≌△HJF,∴EI=FJ,由(2)得AI=KH=HL=JC,CF=FJ−JC,AE=AI+EI,∴AE−CF=AI+JC=2AI=2KH,由(2)可得:DH=√2KH,△DKH为等腰直角三角形,∴AE−CF=√2DH.【点睛】本题考查了正方形的性质、三角形全等的判定及性质、等腰直角三角形、解题的关键是添加适当的辅助线,掌握相关的知识点,通过等量代换的思想进行求解.5.(2020·河南洛阳·八年级期中)在∠MAN内有一点D,过点D分别作DB⊥AM,DC⊥AN,垂足分别为B,C.且BD=CD,点E,F分别在边AM和AN上.(1)如图1,若∠BED=∠CFD,请说明DE=DF;(2)如图2,若∠BDC=120°,∠EDF=60°,猜想EF,BE,CF具有的数量关系,并说明你的结论成立的理由.理由:过点D作∠CDG=∠BDE,交AN于点G,在ΔBDE和ΔCDG中,{∠EBD=∠GCDBD=CD∠BDE=∠CDG,∴ΔBDE≅ΔCDG(ASA),∴DE=DG,BE=CG.∵∠BDC=120°,∠EDF=60°,∴∠BDE+∠CDF=60°.∴∠FDG=∠CDG+∠CDF=60°,∴∠EDF=∠GDF.在ΔEDF和ΔGDF中,{DE=DG∠EDF=∠GDFDF=DF,∴ΔEDF≅ΔGDF(SAS).∴EF=GF,∴EF=FC+CG=FC+BE.【点睛】本题考查全等三角形的判定、解答本题的关键是明确题意,利用数形结合的思想解答.6.(2020·江西萍乡·八年级期末)【课题研究】旋转图形中对应线段所在直线的夹角(小于等于90°的角)与旋转角的关系.【问题初探】线段AB绕点O顺时针旋转得到线段CD,其中点A与点C对应,点B与点D对应,旋转角的度数为α,且0°<α<180°.(1)如图①,当α=60°时,线段AB、CD所在直线夹角(锐角)为;(2)如图②,当90°<α<180°时,直线AB与直线CD所夹锐角与旋转角α存在怎样的数量关系?请说明理由;【形成结论】旋转图形中,当旋转角小于平角时,对应线段所在直线的夹角与旋转角.【运用拓广】运用所形成的结论解决问题:(3)如图③,四边形ABCD中,∠ABC=60°,∠ADC=30°,AB=BC,CD=3,BD=√19,求AD的长.【答案】(1)60°;(2)互补,理由见解析;【形成结论】相等或互补;(3)√10【分析】(1)由旋转的性质可得AB=CD,OA=OC,BO=DO,可证ΔAOB≅ΔCOD(SSS),可得∠B=∠D,由三角形内角和定理可求解;(2)由旋转的性质可得AB=CD,OA=OC,BO=DO,可证ΔAOB≅ΔCOD(SSS),可得∠B=∠D,由平角的定义和四边形内角和定理可求解;【形成结论】由(1)(2)可知对应线段所在直线的所夹锐角角与旋转角:相等或互补;【运用拓广】(3)将ΔBCD绕点B顺时针旋转60°,得到ΔBAF,连接FD,由旋转的性质可得BF=BD,AF=CD=3,由三角形内角和定理可求∠FAD=90°,由勾股定理可求解.【详解】解:(1)如图1,延长DC交AB于F,交BO于E,∵α=60°,∴∠BOD=60°,∵线段AB绕点O顺时针旋转得线段CD,∴AB=CD,OA=OC,BO=DO,∴ΔAOB≅ΔCOD(SSS),∴∠B=∠D,∵∠B=∠D,∠OED=∠BEF,∴∠BFE=∠EOD=60°,故答案为:60°;(2)直线AB与直线CD所夹锐角角与旋转角α互补,理由如下:如图2,延长AB,DC交于点E,∵线段AB绕点O顺时针旋转得线段CD,∴AB=CD,OA=OC,BO=DO,∴ΔAOB≅ΔCOD(SSS),∴∠ABO=∠D,∵∠ABO+∠EBO=180°,∴∠D+∠EBO=180°,∵∠EBO+∠E+∠D+∠BOD=360°,∴∠E+∠BOD=180°,∴直线AB与直线CD所夹锐角角与旋转角α互补.形成结论由(1)(2)(3)可知:旋转图形中,当旋转角小于平角时,对应线段所在直线的所夹锐角角与旋转角:相等或互补.故答案为:相等或互补.运用拓广(3)如图3,将ΔBCD绕点B顺时针旋转60°,得到ΔBAF,连接FD,延长FA,DC交于点E,∴旋转角∠ABC=60°,∵ΔBCD≅ΔBAF,∴∠AED=∠ABC=60°,AF=CD=3,BD=BF,∵∠ADC=30°,∴∠FAD=∠AED+∠ADC=90°,又∵∠FBD=∠ABC=60°,BF=BD,∴ΔBFD是等边三角形,∴BF=BD=DF,∴在RtΔDAF中,AD=√DF2−AF2=√19−9=√10.【点睛】本题是几何变换综合题,考查了旋转的性质,全等三角形的判定和性质,等边三角形的判定和性质等知识,添加辅助线构造全等三角形是本题的关键.7.(2021··九年级专题练习)如图,在△ABC中,∠ACB=120°,BC>AC,点E在BC上,点D在AB上,CE=CA,连接DE,∠ACB+∠ADE=180°,CH⊥AB,垂足为H.证明:DE+AD=2√3CH.【答案】见解析【分析】如图,延长BA到点F,使AF=DE,连接CF、CD,根据四边形的内角和和邻补角互补可得∠CAF=∠CED,进而可根据SAS证明△AFC≌△EDC,可得CF=CD,∠ACF=∠ECD,进一步即可求得∠FCD=120°,然后利用等腰三角形的性质和解直角三角形的知识即可证得结论.【详解】证明:如图,延长BA到点F,使AF=DE,连接CF、CD,∵∠ACB+∠ADE=180°,∴∠CAD+∠CED=360°−180°=180°,∵∠CAD+∠CAF=180°,∴∠CAF=∠CED,∵AC=EC,AF=ED,∴△AFC≌△EDC,。
中考数学最难压轴题中考数学最难压轴题:一、联立方程1、将给定方程联立,求解x和y的值:(1)2x + 3y = 10(2)4x - y = 9解:(1)把2x + 3y = 10两边同乘2,得到:4x + 6y = 20;(2)把4x - y = 9两边同加y,得到:4x = 9 + y;结合(1),(2)式子,把“y”用(2)式替换,得到:4x + 6(9+y)= 20;把y提到一边,得到:4x+ 54 = 20;减去54两边,得到:4x = -34;除以4两边,得到:x = -8.5;再把x= -8.5带入(2)式,得到:-8.5 - y = 9;加上y两边,得到:y = -8.5 + 9;因此,x=-8.5,y=0.5是此方程的解。
二、多项式1、求x3-2x2-5x+6的因式分解。
解:令x3-2x2-5x+6 = (x - a)(x2 + bx + c),联立x3-2x2-5x+6=0,a=2,两边同加2,x3=2x2+5x+6.再令二次项系数=b,得到:2x2+5x+bx+6=2x2+6x+6;减去2x2两边,得到:bx+5x+6=6x;减去5x两边,得到:bx+6=6x;减去6x两边,得到:b=-6;再令常数项系数=c,两边同加6,得到:2x2+5x-6x+12=2x2+6x+6;减去2x2两边,得到:5x-6x+12=6x;减去5x两边,得到:-6x+12=6x;减去6x两边,得到:c=12。
综上,x3-2x2-5x+6=(x - 2)(x2 - 6x + 12)=x2(x - 2)-6(x - 2)=(x - 2)(x2 - 6x + 12),即x3-2x2-5x+6的因式分解式子为:(x - 2)(x2 - 6x + 12)。
三、等比数列1、已知等比数列{an}的前7项为24,8,4,2,1,0.5,0.25,求a8的值。
解:由等比数列的性质知,{an}由公比q构成,即a7/a6=q,a6/a5=q,…,a2/a1=q。
辽宁省各市2012年中考数学试题分类解析汇编 专题12:押轴题 一、选择题 1. (2012辽宁鞍山3分)如图,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=BC=4,DE⊥BC于点E,且E是BC中点;动点P从点E出发沿路径ED→DA→AB以每秒1个单位长度的速度向终点B运动;设点P的运动时间为t秒,△PBC的面积为S,则下列能反映S与t的函数关系的图象是【 】
A. B. C. D. 【答案】B。
【考点】动点问题的函数图象。 【分析】分别求出点P在DE、AD、AB上运动时,S与t的函数关系式,结合选项即可得出答案: 根据题意得:当点P在ED上运动时,S=12BC•PE=2t;
当点P在DA上运动时,此时S=8; 当点P在线段AB上运动时,S=12BC(AB+AD+DE-t)=5-12t。 结合选项所给的函数图象,可得B选项符合。故选B。 2. (2012辽宁本溪3分)如图,已知点A在反比例函数4y=x图象上,点B在反比例函数ky=x (k≠0)的图象上,AB∥x轴,分别过点A、B向x轴作垂线,垂足分别为C、D,若OC=13OD,
则k的值为【 】 A、10 B、12 C、14 D、16 【答案】B。 【考点】反比例函数的图象和性质。 【分析】由已知,设点A(x,4x),∵OC=13OD,∴B(3x,k3x)。 ∴4k=x3x,解得k=12。故选B。 3. (2012辽宁朝阳3分)如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平
行于坐标轴,点C在反比例函数2k+4k+1y=x的图象上,若点A 的坐标为(-2,-3),则k的值为【 】
A.1 B. -5 C. 4 D. 1或-5 【答案】D。 【考点】矩形的性质,反比例函数图象上点的坐标特征。 【分析】如图:∵四边形ABCD、HBEO、OECF、GOFD为矩形, 又∵BO为四边形HBEO的对角线,OD为四边形OGDF的对角线, ∴BEOBHOOFDOGDCBDADBSSSSSS,,。 ∴CBDBEOOFDADBBHOOGDSSSSSS。 ∴CEOFHAGOSS236四形四形边边。 ∴xy=k2+4k+1=6,解得,k=1或k=-5。故选D。 4. (2012辽宁大连3分)如图,一条抛物线与x轴相交于A、B两点,其顶点P在折线C-D-E上移动,若点C、D、E的坐标分别为(-1,4)、(3,4)、(3,1),点B的横坐标的最小值为1,则点A的横坐标的最大值为【 】
A.1 B.2 C.3 D.4 【答案】B。 【考点】二次函数综合题,待定系数法,曲线上点的坐标与方程的关系,平移的性质,二次函数的性质。 【分析】∵抛物线的点P在折线C-D-E上移动,且点B的横坐标的最小值为1, ∴观察可知,当点B的横坐标的最小时,点P与点C重合。 ∵C(-1,4),∴设当点B的横坐标的最小时抛物线的解析式为2y=ax+1+4。 ∵B(1,0),∴20=a1+1+4,解得a=-1。 ∴当点B的横坐标的最小时抛物线的解析式为2y=x+1+4。 ∵观察可知,当点A的横坐标的最大时,点P与点E重合,E(3,1), ∴当点A的横坐标的最大时抛物线的解析式为2y=x3+1。 令y=0,即2x3+1=0,解得x=2或x=4。 ∵点A在点B的左侧,∴此时点A横坐标为2。故选B。 ∴点A的横坐标的最大值为2。 5. (2012辽宁丹东3分)如图,已知正方形ABCD的边长为4,点E、F分别在边AB、BC上,且AE=BF=1,CE、DF交于点O.
下列结论: ①∠DOC=90° , ②OC=OE, ③tan∠OCD =43 ,④ODCBEOFSS四边形 中,正确的有【 】 A.1个 B.2个 C.3个 D.4个 【答案】C。 【考点】正方形的性质,全等三角形的判定和性质,三角形内角和定理,反证法,线段垂直平分线的性质,三角形边角关系,锐角三角函数定义。 【分析】∵正方形ABCD的边长为4,∴BC=CD=4,∠B=∠DCF=90°。 ∵AE=BF=1,∴BE=CF=4-1=3。 在△EBC和△FCD中,∵BC=CD,∠B=∠DCF,BE=CF,∴△EBC≌△FCD(SAS)。 ∴∠CFD=∠BEC。∴∠BCE+∠BEC=∠BCE+∠CFD=90°。 ∴∠DOC=90°。故①正确。 如图,若OC=OE,∵DF⊥EC,∴CD=DE。 ∵CD=AD<DE(矛盾),故②错误。 ∵∠OCD+∠CDF=90°,∠CDF+∠DFC=90°,∴∠OCD=∠DFC。 ∴tan∠OCD=tan∠DFC=DC4=FC3。故③正确。 ∵△EBC≌△FCD,∴S△EBC=S△FCD。 ∴S△EBC-S△FOC=S△FCD-S-,即S△ODC=S四边形BEOF。故④正确。故选C。 6. (2012辽宁阜新3分)如图,四边形ABCD是平行四边形,BE平分∠ABC,CF平分∠BCD,BE、CF交于点G.若使EFD14A,那么平行四边形ABCD应满足的条件是【 】
A.∠ABC=60° B.AB:BC=1:4 C.AB:BC=5:2 D.AB:BC=5:8 【答案】D。 【考点】平行四边形的性质,平行的性质,等腰三角形的判定。 【分析】∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC。∴∠AEB=∠EBC。 又BE平分∠ABC,∴∠ABE=∠EBC。∴∠ABE=∠AEB。∴AB=AE。 同理可得:DC=DF。 ∴AE=DF。∴AE-EF=DE-EF,即AF=DE。 当1EFAD4时,设EF=x,则AD=BC=4x。 ∴AF=DE=14(AD-EF)=1.5x。∴AE=AB=AF+EF=2.5x。 ∴AB:BC=2.5:4=5:8。 ∵以上各步可逆,∴当AB:BC=2.5:4=5:8时,1EFAD4。故选D。 7. (2012辽宁锦州3分)如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°.把△ABC绕点A按顺时针方 向旋转60°后得到△AB'C ',若AB=4,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是 【 】
A. 32π B. 35π C. 2π D. 4π 【答案】C。 【考点】旋转的性质,锐角三角函数定义,特殊角的三角函数值,扇形面积的计算。 【分析】∵∠ACB=90°,∠BAC=60°,AB=4,∴AC=ABcos∠BAC=2,∠CA C′=60°。 ∵△ABC绕点A按顺时针方向旋转60°后得到△AB′C′,∴ABCABCS S。 ∴ABCABCABBACCABBACCSSSSSSS扇形扇形扇形扇形影部分阴 =226046022360360。 故选C。 8. (2012辽宁沈阳3分)如图,正方形ABCD中,对角线AC,BD相交于点O,则图中的等腰直角三角形有【 】 A.4个 B.6个 C.8个 D.10个 【答案】C。 【考点】等腰直角三角形的判定,正方形的性质。 【分析】∵正方形ABCD中,对角线AC、BD相交于点O, ∴AB=BC=CD=AD,OA=OB=OC=OD,四个角都是直角,AC⊥BD。 ∴图中的等腰直角三角形有△AOB、△AOD、△COD、△BOC、△ABC、△BCD、△ACD、△BDA八个。故选C。 9. (2012辽宁铁岭3分)如图,□ABCD的AD边长为8,面积为32,四个全等的小平行四边形对称中心分别在□ABCD的顶点上,它们的各边与□ABCD的各边分别平行,且与□ABCD相似.若小平行四边形的一边长为x,且0<x≤8,阴影部分的面积的和为y,则y与x之间的函数关系的大致图象是【 】
A. B. C. D. 【答案】D。 【考点】动点问题的函数图象,平行四边形的性质,相似多边形的性质。 【分析】∵四个全等的小平行四边形对称中心分别在□ABCD的顶点上, ∴阴影部分的面积的和等于一个小平行四边形的面积。 ∵□ABCD的AD边长为8,面积为32,小平行四边形的一边长为x,阴影部分的面积的和为y,且小平行四边形与□ABCD相似,
∴2yx=328,即21y=x2。 又∵0<x≤8,∴纵观各选项,只有D选项图象符合y与x之间的函数关系的大致图
x象。故选D。 10. (2012辽宁营口3分)如图,菱形ABCD的边长为2,∠B=30.动点P从点B出发,沿B-C-D的路线向点D运动.设△ABP的面积为y(B、P两点重合时,△ABP的面积可以看做0),点P运动的路程为x,则y与x之间函数关系的图像大致为【 】
【答案】C。 【考点】动点问题的函数图象,菱形的性质,锐角三角函数定义,特殊角的三角函数值。 【分析】当点P在BC上运动时,如图,△ABP的高PE=BPsin∠B=01si302xxn=, ∴△ABP的面积1111ABPE=22222yxx。 当点P在BC上运动时,如图,△ABP的高PF=BCsin∠B=1, ∴△ABP的面积11ABCF=21122y。 因此,观察所给选项,只有C符合。故选C。 二、填空题 1. (2012辽宁鞍山3分)如图,在△ABC中,∠ACB=90°,∠A=60°,AC=a,作斜边AB边中线CD,得到第一个三角形ACD;DE⊥BC于点E,作Rt△BDE斜边DB上中线EF,得到第二个三角形DEF;依此作下去…则第n个三角形的面积等于 ▲ .