大话通信之LET-Advanced
- 格式:docx
- 大小:16.99 KB
- 文档页数:2
深圳市潮流网络技术有限公司GXW450X服务器1,2或4个T1/E1/J1接口数字VoIP网关用户手册技术支持深圳市潮流网络技术有限公司为客户提供全方位的技术支持。
您可以与本地代理商或服务提供商联系,也可以与公司总部直接联系。
地址:深圳市南山区科技园本区新西路16号彩虹科技大4楼邮编:518057网址:客服电话:0755-********客服传真:0755-********技术支持热线:4008755751技术支持论坛:/forums网上问题提交系统:/support/submit-a-ticket商标注明和其他潮流网络商标均为潮流网络技术有限公司的商标。
本文档提及的其他所有商标或注册商标,由各自的所有人拥有。
注意由于产品版本升级或其他原因,本文档内容会不定期进行更新。
除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。
警告未经潮流网络明确批准对本产品进行更改或修改,或以本指南详述的任何方式操作本产品,可能会使您的制造商保修失效。
安全合规性GXW450X适配器符合FCC/CE和各种安全标准。
GXW450X电源适配器符合UL标准。
仅使用GXW450X包装随附的通用电源适配器。
制造商的保修不包括由不支持的电源适配器引起的设备损坏修订日志 (13)固件版本1.0.0.6 (13)欢迎 (14)GXW450X网关概述 (15)特色亮点 (15)GXW450X技术规格 (15)入门 (18)设备包装 (18)连接GXW450X (18)使用GXW450X键盘菜单 (19)使用LED指示灯 (21)通过Web GUI配置GXW450X (22)Web GUI访问 (22)Web GUI配置 (23)Web GUI语言 (24)保存并应用更改 (24)系统状态 (25)仪表板 (25)空间使用 (25)资源使用 (26)磁盘容量 (27)PBX状态 (28)接口状态 (29)中继 (29)系统信息 (30)常规 (30)网络 (31)网络状态 (33)系统设置 (34)HTTP服务器 (34)网络设置 (35)基本设置 (35)802.1X设置 (36)静态路由 (38)OpenVPN® (39)DDNS设置 (40)安全设置 (42)静态防御 (42)动态防御 (46)Fail2Ban (47)SSH访问 (49)时间设置 (50)自动日期和时间 (50)设置日期和时间 (52)NTP服务器 (53)办公时间 (53)假期 (55)邮箱设置 (56)邮箱设置 (56)电邮模板 (59)电子邮件发送日志 (60)中继 (62)数字中继 (62)数字硬件配置 (62)数字中继配置 (74)数字中继故障排除 (75)VoIP中继 (76)出局路由 (80)入局路由配置 (83)入局路由:导入/导出入局路由 (84)PBX设置 (86)SIP设置 (86)常规 (86)其他 (86)会话计时 (86)TCP和TLS (87)NAT (88)ToS (89)RTP设置 (90)RTP设置 (90)Payload类型设置 (90)语音提示音 (91)下载并安装语音提示包 (91)手动上传提示包 (93)抖动缓冲 (93)系统管理 (95)用户管理 (95)修改登录信息 (96)修改登录密码 (96)更改绑定电子邮件 (98)登录设置 (98)操作日志 (99)系统日志 (101)系统事件 (102)警报日志 (102)警报事件列表 (103)通知方式 (105)固件升级 (106)升级方式 (106)通过本地上传升级 (108)通过本地服务器升级 (109)没有本地固件服务器 (110)备份 (110)备份/恢复 (111)数据同步 (113)从备份文件还原配置 (115)系统清理/恢复 (116)恢复出厂设置&重启 (116)清理 (117)USB/SD卡文件清理 (119)网络诊断 (119)网络抓包 (119)IP Ping (120)路由跟踪 (121)服务检测 (122)CDR(CALL DETAIL RECORD) (123)CDR过滤器 (123)CDR报告操作 (125)自动下载 (126)CDR记录数据字段 (126)体验GXW450X系列数字网关 (129)表表1GXW450X功能亮点 (15)表2GXW450X技术规格 (15)表3GXW450X连接器的定义 (19)表4LCD菜单选项 (20)表5GXW450X LED指示灯 (22)表6系统信息常规 (30)表7GXW450X网络设置→基本设置 (35)表8GXW450X网络设置→802.1X (37)表9GXW450X网络设置→静态路由 (38)表10GXW450X系统设置→网络设置→OpenVPN® (39)表11GXW450X静态防御当前服务 (43)表12防火墙规则设置 (44)表13防火墙规则设置 (45)表14GXW450X防火墙动态防御 (46)表15Fail2Ban设置 (48)表16自动日期和时间设置 (51)表17日期和时间手动设置 (52)表18办公时间设置 (54)表19假日设置 (55)表20电子邮件设置 (57)表21电子邮件日志过滤器 (61)表22数字硬件配置参数:E1-PRI_NET/PRI_CPE (63)表23数字硬件配置参数:E1-SS7 (66)表24数字硬件配置参数:E1-MFC/R2 (68)表25数字硬件配置参数:T1/J1-PRI_NET/PRI_CPE (70)表26数字硬件配置参数:T1/J1-SS7 (72)表27数字中继配置参数 (74)表28创建新的SIP中继 (77)表29SIP中继配置参数 (78)表30入站规则配置参数 (83)表31SIP设置/会话计时器 (86)表32SIP设置/TCP和TLS (87)表33NAT设置 (88)表34:ToS Settings (89)表35RTP设置 (90)表36有效负载类型配置 (90)表37抖动缓冲设置 (93)表38创建新用户信息 (96)表39更改密码参数 (97)表40操作日志列标题 (100)表41固件升级配置 (107)表42数据同步配置 (114)表43清理配置 (118)表44网络抓包参数 (120)表45CDR滤波器参数 (123)图图1GXW450X封装内容 (18)图2GXW4504后面板和前面板的示意图 (19)图3GXW450X Web Gui登录页面 (22)图4GXW450X设置向导 (23)图5GXW450X Web GUI语言 (24)图6GXW450X仪表板 (25)图7空间使用情况 (26)图8资源使用率 (27)图9设备存储容量 (28)图10PBX状态 (28)图11接口状态 (29)图12中继状态 (29)图13数字中继信道状态 (30)图14系统信息→常规 (31)图15系统信息→网络 (32)图16当前通话 (32)图17有源TCP连接 (33)图18有源Unix套域接口 (33)图19GXW450X使用802.1X作为客户端 (37)图20使用802.1X EAP-MD5的GXW450X (37)图21GXW450X上的OpenVPN®功能 (40)图22在上注册域名 (41)图23GXW450X DDNS设置 (41)图24使用域名连接到GXW450X (42)图25创建新的防火墙规则 (44)图26动态防御配置 (47)图27Fail2Ban设置 (48)图28SSH访问 (50)图29自动日期和时间设置 (50)图30手动配置的日期和时间 (52)图31GXW450X NTP服务器 (53)图32添加新的办公时间 (54)图33时间设置→办公时间 (55)图34添加假日 (55)图35时间设置→节日 (56)图36电子邮件设置 (58)图37电子邮件模板 (59)图38警报事件模板 (60)图39电子邮件发送日志 (61)图40数字硬件配置 (62)图41数字端口配置 (63)图42数字中继故障排除 (76)图43创建出局路由 (80)图44创建入局路由 (83)图45导入/导出入局路由 (85)图46SIP设置/常规 (86)图47SIP设置/其他 (86)图48语音提示的语言设置 (92)图49语音提示包列表 (92)图50添加了新的语音提示语言 (93)图51上传语音提示包 (93)图52:用户管理页面显示 (95)图53创建新用户 (96)图54更改密码 (97)图55更改绑定电子邮件 (98)图56登录超时设置 (99)图57操作日志 (99)图58操作日志过滤器 (100)图59Syslog设置 (101)图60系统事件→告警日志 (102)图61警报日志过滤器 (103)图62系统事件→警报事件列表:磁盘使用情况 (104)图63系统事件→警报事件列表:扩展磁盘使用率 (104)图64系统事件→警报事件列表:内存使用率 (105)图65系统事件→预警事件列表:系统崩溃 (105)图66通知联系人 (106)图67固件升级 (107)图68升级固件文件 (109)图69创建新备份 (111)图70备份/恢复 (112)图71定期备份 (113)图72数据同步 (114)图73从备份文件恢复GXW450X (115)图74重置和重启 (117)图75清理 (118)图76SB/SD卡文件清理 (119)图77网络抓包 (120)图78IP Ping (121)图79路由跟踪 (122)图80服务检测 (122)图81CDR过滤器 (123)图82呼叫记录 (124)图83CDR自动下载 (126)GNU GPL信息GXW450X固件包含根据GNU通用公共许可证(GPL)许可的第三方软件。
大话通信(第2版)一、简介大话通信(第2版)是一款由中国电信推出的国内领先的移动通信软件,它能够帮助用户实现移动通信,让用户可以随时随地接收和发送信息。
大话通信(第2版)拥有高效稳定的网络,可以支持多种类型的设备,支持多种类型的网络,支持多种类型的文件传输,支持多种类型的聊天服务,支持多种类型的社交网络,支持多种类型的支付方式,支持多种类型的安全机制,支持多种类型的设备管理,支持多种类型的网络服务,支持多种类型的网络管理,支持多种类型的网络安全,支持多种类型的网络维护,支持多种类型的网络优化,支持多种类型的网络调试,支持多种类型的网络管理,支持多种类型的网络安全,支持多种类型的网络优化,支持多种类型的网络调试,支持多种类型的网络管理,支持多种类型的网络安全,支持多种类型的网络优化,支持多种类型的网络调试,支持多种类型的网络管理,支持多种类型的网络安全,支持多种类型的网络优化,支持多种类型的网络调试,支持多种类型的网络管理,支持多种类型的网络安全,支持多种类型的网络优化,支持多种类型的网络调试,支持多种类型的网络管理,支持多种类型的多种类型的网络调试,支持多种类型的网络管理,支持多种类型的网络安全,支持多种类型的网络优化,支持多种类型的网络调试,支持多种类型的网络管理,支持多种类型的网络安全,支持多种类型的网络优化,支持多种类型的网络调试,支持多种类型的网络管理,支持多种类型的网络安全,支持多种类型的网络优化,支持多种类型的网络调试,支持多种类型的网络管理,支持多种类型的网络安全,支持多种类型的网络优化,支持多种类型的网络调试,支持多种类型的网络管理,支持多种类型的网络安全,支持多种类型的网络优化,支持多种类型的网络调试,支持多种类型的网络管理,支持多种类型的多种类型的网络调试,支持多种类型的网络管理,支持多种类型的网络安全,支持多种类型的网络优化,支持多种类型的网络调试,支持多种类型的网络管理,支持多种类型的网络安全,支持多种类型的网络优化,支持多种类型的网络调试,支持多种类型的网络管理,支持多种类型的网络安全,支持多种类型的网络优化,支持多种类型的网络调试,支持多种类型的网络管理,支持多种类型的网络安全,支持多种类型的网络优化,支持多种类型的网络调试,支持多种类型的网络管理,支持多种类型的网络安全,支持多种类型的网络优化,支持多种类型的网络调试,支持多种类型的网络管理,支持多种类型的多种类型的网络调试,支持多种类型的网络管理,支持多种类型的网络安全,支持多种类型的网络优化,支持多种类型的网络调试,支持多种类型的网络管理,支持多种类型的网络安全,支持多种类型的网络优化,支持多种类型的网络调试,支持多种类型的网络管理,支持多种类型的网络安全,支持多种类型的网络优化,支持多种类型的网络调试。
Basic GTS Enterprise Device Communication Server Xirgo TechnologiesXT-2000-G-X001Copyright © 2007-2011 GeoTelematic Solutions, Inc.All rights reserved*************************Device Communication Server – XirgoContents:1 Introduction2 Configuring the Server2.1 Changing the Server "Listen" Ports2.2 Setting the "Unique-ID" Prefix Characters2.3 Setting the Xirgo Properties2.4 Changing the Default Alarm Code to StatusCode Mapping3 Running the Server3.1 Manually Starting the Server3.2 Automatically Starting the Server on System Reboot3.3 Monitoring the Log File4 Adding Devices to an Account4.1 Creating a New Device Record4.2 The "Server ID" Field.5 Testing a New Configured Device5.1 Monitoring the Log Files5.2 Viewing the Unassigned Devices ReportAppendix:A) Troubleshooting Device Connection Issues1) IntroductionThis manual describes how to configure and run the GTS Enterprise device communication server (DCS) for the Xirgo Technologies hardware GPS tracking/telematic devices. This server supports the following devices:–XT-2000-G-X001The following features are supported for the Xirgo DCS:–Receive incoming data packets via UDP/TCP.–Estimated GPS-based Odometer.–Simulated Geozone Arrival/Departure.2) Configuring the ServerThe following section refers to the runtime configuration file for the Xirgo device communication server, which can be found in the GTS Installation directory at "dcservers/dcserver_xirgo.xml".2.1) Changing the Server "Listen" Ports.The ports on which the Xirgo DCS listens for incoming data packets is specified on the "ListenPorts" tag:<ListenPortstcpPort="37690"udpPort="37690"/>If required, the "listen" port can be changed to fit the requirements of your runtime environment. The script programmed into the Xirgo device will also need to be configured to transmit data to the same port as the server used to listen for incoming data packets.The "listen" ports must be open through the firewall in order for the remote device to send data to the Xirgo server.If packet acknowledgment is required, any acknowledgments sent by the server back to the remote device must be sent from the same IP address to which the remote device sent it's data packet. If your server responds to more than one IP address, then the Xirgo server listener must be bound to the same IP address/interface used by the remote tracking devices. This is set in the top-level "dcservers.xml" file, on the "DCServerConfig" tag, "bindAddress" attribute.2.2) Setting the "Unique-ID" Prefix Characters.The Unique-ID prefix characters can be set in the "UniqueIDPrefix" tag section:<UniqueIDPrefix><![CDATA[xg_xirgo_imei_*]]></UniqueIDPrefix>These prefix characters are used to 'prepend' to the IMEI number, or other custom ID, as reported by the device to look-up the owning Account/Device record for this device. For instance, if the Xirgo ID number is "123456789012345", then the system will search for the owning Device using the following Unique-ID keys, in the order specified:xg_123456789012345xirgo_123456789012345imei_123456789012345123456789012345Note that the '*' character by itself indicates that the system should look up the Xirgo ID number without any prefixing characters.To bind a Xirgo device to a specified Account/Device record, set the "Unique ID:" field on the Device Admin page to the appropriate prefixed unique-id value. For example:Unique ID: xirgo_1234567890123452.3) Setting the Xirgo PropertiesProperties which effect the behavior of the server are set in the "Properties" tag section. The following properties may be set:<Property key="minimumSpeedKPH">3.0</Property>This is the minimum acceptable speed value, below which the device will considered not moving, and the speed will be explicityly set to "0.0".<Property key="statusLocationInMotion">true</Property>If "true", the DCS will replace an event which otherwise is defined to be a general STATUS_LOCATION status code instead with a STATUS_MOTION_IN_MOTION status code, if the indicated speed of the vehicle is greater than zero.<Property key="minimumMovedMeters">0</Property>If the specified value is greater than '0', then subsequent received events will be omitted if they are within the specified number of meters to the previous event. Useful for eliminating multiple events at the same location, when the device continues to periodically report a location even if the device is stopped.<Property key="estimateOdometer">true</Property>If "true", the DCS will calculate the current event odometer based on the distance traveled since the last valid GPS location.<Property key="simulateGeozones">true</Property>If "true", the DCS will check for geozone arrivals/departures and insert the appropriate arrive/depart events.2.4) Changing the Default Alarm Code to StatusCode Mapping.The Alarm Code to StatusCode mapping is specified in the "EventCodeMap" and "Code" tag sections:<EventCodeMap enabled="true"><!-- default generated status codes --><Code key="4001">0xF020</Code> <!-- STATUS_LOCATION --></EventCodeMap>The "key" attribute represents the default status code generated by the Xirgo server for the indicated Alarm Code. The hex value indicated within the commented section following the "Code" definition is the value of the actual received Alarm Code.The text value of the "Code" tag should be the status-code to which the Alarm Code should be mapped. The special value "ignore" can be used to cause events which specify this Alarm Code to be ignored. The special value "default" indicates that the status code on the generated event will be STATUS_LOCATION if the vehicle is not moving, and STATUS_MOTION_IN_MOTION if the vehicle is moving. The numeric values, specified as either decimal or hexidecimal will be used as the status code on the generated event.If an event arrives with a Alarm Code which is not specified in the "EventCodeMap" tag section, then it will be used unchanged as the status-code for the generated event.Refer to the "Status Codes and Description" documentation for a list of currently defined status codes.3) Running the ServerTo begin listening for incoming events the server must be started. This section describes the process for manually starting the Xirgo server, and how to set up the system to have is automatically start the Xirgo server on system reboot.3.1) Manually Starting the ServerThe command for manually starting the Xirgo server is as follows:> cd $GTS_HOME> bin/runserver.pl -s xirgoTo start the Xirgo server with debug logging (useful when testing or debugging), the option "-debug" may be added to the command line.The server will start, and logging information will be sent to the file "$GTS_HOME/logs/xirgo.log".For debug purposes, it is sometimes useful to have the logging output sent directly to the console, instead of the log file. In this case the option "-i" can also be added to the command-line. When logging to the console, hit control-C to stop the server.To view the running server, you can use the "bin/psjava" command:> $GTS_HOME/bin/psjavaPID Parent L User Java class/jar------ ------ - -------- --------------------------------------------------54639( 1) 1 opengts org.apache.catalina.startup.Bootstrap68936( 1) 1 opengts /usr/local/GTS_2.2.4-B23/build/lib/xirgo.jarTo stop the running Xirgo server, enter the following command:> cd $GTS_HOME> bin/runserver.pl -s xirgo -killThis will stop the running Xirgo server.3.2) Automatically Starting the Server on System RebootThe auto-start script for Fedora is located at "$GTS_HOME/bin/onboot/fedora/opengts", and should have been installed into the system directory "/etc/init.d" when the GTS was installed.This startup script uses the configuration specified in the file "$GTS_HOME/bin/serverList" to determine which device communication servers to start up when the system is rebooted. The line in this file that refers to the Xirgo DCS should appear similar to the following:execServer "Xirgo" "xirgo" "${option}" ""The first quoted string contains the DCS description. The second quoted string contains the ID of the device communication server and must match a library jar file with the same name at"$GTS_HOME/build/lib/xirgo.jar". The third quoted string must contain the exact value "${option}", which is used within the startup script to pass command-line arguments to the DCS startup code. The forth quoted string is used to pass other optional default or constant arguments to the DCS startup code.3.3) Monitoring the Log FilesWhen started, the Xirgo DCS will create the following output log files:$GTS_HOME/logs/xirgo.pidThis file contains the process-id (PID) of the Xirgo DCS execution process. This PID is used by the "-kill" option to terminate the running Xirgo DCS.$GTS_HOME/logs/xirgo.logThis log file is where all other logging information is placed regarding the receipt and parsing of data from the remote Xirgo tracking devices. As this file grows, it will be "rotated" into other log files timestamped as follows:xirgo.log.YYYYMMDDHHMMSS.logWhere "YYYYMMDDHHMMSS" represents the Year/Month/Day/Hour/Minutes/Seconds time that the file was trimmed and rotated.The "xirgo.log" file will reflect any current connection attempts from remote Xirgo tracking devices. As devices send their data to the server, the receipt of the incoming data packets, along with parsing results, will be displayed in this log file.4) Adding Devices to an AccountWhen data is received from a remote Xirgo tracking device, the Xirgo server looks up the IMEI number in the Device table to determine which Account/Device owns this device. This section describes how to create a Device record and associate an Xirgo tracking device with the Device record.4.1) Creating a New Device RecordUsing the web-interface, log in to the appropriate Account which should own the Xirgo tracking device, then traverse to the "Device Admin" page (or "Vehicle Admin", etc, if so named). Create a new Device as indicated in the GTS Enterprise Tutorial documentation, then "Edit" the newly created Device record.On the Edit page, there will be a field described as follows:Unique ID: [ ]In this field enter the value "xirgo_<IMEI_Number>", replacing "<IMEI_Number>" with the device IMEI number. For instance, if the IMEI number is "123456789012345", then enter the value "xirgo_123456789012345" in this "Unique ID:" field.After making changes to the Device record, click the "Change" button.4.2) The "Server ID" FieldThe "Server ID" field displayed as a column title on the Device list page, and as a read-only field on the Device Edit page, is assigned a value when the Xirgo device sends its first data packet to the server. Until then, this value will remain blank.When viewing a list of created Device records with assigned Xirgo devices, records which still have blank "Server ID" fields indicate that no incoming data packet has been received for this particular Device.5) Testing a New Configured DeviceThis section describes the process for monitoring newly configured Xirgo devices that have been assigned to an Account/Device record.5.1) Monitoring for Incoming ConnectionsThe Account report "Last Known Device Location" can be used to display the last know location of a given device, which can also be used to determine whether any events have been received from a specific Xirgo device.The "Server ID" field on the Device record will also indicate if a data packet has arrived from a specific Xirgo device and successfully assigned to the Device record.If no indication on the Device reports, or "Server ID" field is evident, then the log file itself can be consulted for indications of incoming data packets from the Xirgo device. The information in the log file can indicate whether an IMEI number may not have been properly assigned, so the Xirgo DCS is unable to determine whichAccount/Device the incoming data packet belongs to.5.2) Viewing the Unassigned Device ReportIn the case where an Xirgo device is put into service without having been assigned to an Account/Device record, or where the IMEI number was incorrectly entered in to the Device record, the Xirgo DCS may not know to which Account/Device the incoming data packet belongs.When the Xirgo DCS cannot determine the ownership of an incoming data packet, it will place the IMEI and currently GPS location into the "UnassignedDevices" table. The "Unassigned Devices" report can be selected from the System Administrator login panel ("System Admin" tab, "SysAdmin Reports" menu option, "Unassigned Devices" report). This report will show the "Server ID" (Xirgo), "Unique ID" (IMEI number), and the last time data was received from this device. This information can be used to determine whether an IMEI number was ever assigned to an Account/Device record, or if an IMEI number was incorrection assigned to an Account/Device (ie. transposed digits, etc).Appendix)A) Troubleshooting Device Connection IssuesThe following are fequently-asked-questions regarding commonly occurring connection issues.Q: I've configured an Xirgo device to send data to the server, but have not received any data.A: Monitor the "xirgo.log" file for possible incoming connections from the device. If there is no indication that the server is receiving any communication from the remote device, the most common reasons to check include:• Make sure device has a valid/active SIM card.• Make sure the device has been programmed with the proper APN ("Access Point Name") configuration as specified by your wireless service provider.• Make sure the device has been programmed with the proper host and port of your server.• Make sure the server firewall allows incoming UDP/TCP connections on the specified port. If the server itself provides its own firewall, then check the firewall settings. On Linux, this is usually controlled by "iptables".The command to display the current iptables configuration is "iptables-save" (must be run as "root").See "/docs/iptables/iptables-save.html" for more information.Q: I see data arriving for my device in the "xirgo.log" file, but it is always the same event that is being sent over and over.A: If this occurs for all configured/connected Xirgo devices, the problem is likely that returned UDP acknowledgments are not being returned properly to the device. The most likely reason for this is that your computer responds to more than one IP address, and the returned UDP packets are being sent from a different IP address than the one that the device is configured to send data to. This can be fixed by setting the "bindAddress" attribute in the "dcservers.xml" file in the GTS installation directory (then restart the Xirgo DCS). In some cases, the SIM card wireless service provider does not allow returned UDP packets to be sent from the server back to a device. In this case, it may be necessary to program the Xirgo devices to not require a return acknowledgment.A: If this occurs for only one device (ie. other devices are reporting as expected), this this is likely due to the GPS receiver's inability to obtain a new GPS fix, and the previous GPS fix is being resent. This usually means that the device is simply in an area where the GPS satellites cannot be seen (ie. Indoors, etc). On rare occasions, this can mean that the GPS antenna has become unplugged, or has been damaged.Q: The received events have a valid latitude/longitude, but do not have an odometer value.A: The Xirgo DCS property "estimateOdometer" allows enabling a calculated odometer value, based on the distance traveled between successive GPS points. To enable a calculated estimated odometer value, make sure this property is set to "true".。
.SNNOISERuns periodic AC noise analysis on nonautonomous circuits in a large-signal periodic steady state..SNNOISE output insrc frequency_sweep [N1, +/-1]+ [LISTFREQ=(freq1 [freq2 ... freqN ]|none|all]) [LISTCOUNT=num ]+ [LISTFLOOR=val ] [LISTSOURCES=on|off].HBAC / .SNACRuns periodic AC analysis on circuits operating in a large-signal periodic steady state..HBAC frequency_sweep .SNAC frequency_sweep.HBXF / .SNXFCalculates transfer function from the given source in the circuit to the designated output..HBXF out_var frequency_sweep .SNXF out_var frequency_sweep.PTDNOISECalculates the noise spectrum and total noise at a point in time..PTDNOISE output TIME=[val |meas |sweep ] +[TDELTA=time_delta ] frequency_sweep+[listfreq=(freq1 [freq2 ... freqN ]|none|all)] [listcount=num ]+[listfloor=val ] [listsources=on|off]RF OptionsSIM_ACCURACY=x Sets and modifies the size of the time steps. The higher the value, thegreater the accuracy; the lower the value, the faster the simulation runtime. Default is 1.TRANFORHB=n 1 Forces HB analysis to recognize or ignore specific V/I sources, 0 (default) ignores transient descriptions of V/I sources.HBCONTINUE=n Specifies whether to use the sweep solution from the previous simulation as the initial guess for the present simulation. 0 restarts each simulation in a sweep from the DC solution, 1 (default) uses the previous sweep solution as the initial guess.HBSOLVER=n Specifies a preconditioner for solving nonlinear circuits. 0 invokes the direct solver. 1 (default) invokes the- matrix-free Krylov solver. 2 invokes the two-level hybrid time-frequency domain solver.SNACCURACY=n Sets and modifies the size of the time steps. The higher the value, the greater the accuracy; the lower the value, the faster the simulation runtime. Default is 10.SAVESNINIT=”filename ” Saves the operating point at the end of SN initialization.LOADSNINIT=”filename ” Loads the operating point saved at end of SN initialization.Output Commands.BIASCHK .MEASURE .PRINT .PROBEFor details about all commands and options, see the HSPICE ® Reference Manual: Commands and Control Options.Synopsys Technical Publications 690 East Middlefield Road Mountain View, CA 94043Phone (650) 584-5000 or (800) Copyright ©2017 Synopsys, Inc. All rights reserved.Signal Integrity Commands.LINCalculates linear transfer and noise parameters for a general multi-port network..LIN [sparcalc [=1|0]] [modelname=modelname ] [filename=filename ]+ [format=selem|citi|touchstone|touchstone2] [noisecalc [=1|0]]+ [gdcalc [=1|0]] [dataformat=ri|ma|db]+ [listfreq=(freq1 [freq2 ... freqN ]|none|all)] [listcount=num ]+ [listfloor=val ] [listsources=1|0|yes|no].STATEYEPerforms Statistical Eye Diagram analysis..STATEYE T=time_interval Trf=rise_fall_time [Tr=rise_time ] + [Tf=fall_time ] Incident_port=idx1[, idx2, … idxN ]+ Probe_port=idx1[, idx2, … idxN ] [Tran_init=n_periods ] + [V_low=val ] [V_high=val ] [TD_In=val ] [TD_PROBE=val ]+ [T_resolution=n ] [V_resolution=n ] [VD_range=val ]+ [EDGE=1|2|4|8] [MAX_PATTERN=n ] [PATTERN_REPEAT=n ] + [SAVE_TR=ascii] [LOAD_TR=ascii] [SAVE_DIR=string ]+ [IGNORE_Bits=n ] [Tran_Bit_Seg=n ]+ [MODE=EDGE|CONV|TRAN] [XTALK_TYPE = SYNC|ASYNC|DDP|NO|ONLY]+ [Unfold_Length=n ] [TXJITTER_MODE = 1|2]RF Analysis Commands.ACPHASENOISEHelps interpret signal and noise quantities as phase variables for accumulated jitter for closed-loop PLL analysis..ACPHASENOISE output input [interval ] carrier=freq+ [listfreq=(freq1 [freq2 ... freqN ]|none|all)][listcount=num ]+ [listfloor=val ] [listsources=1|0].HBRuns periodic steady state analysis with the single and multitone Harmonic Balance algorithm..HB TONES=F1[,F2,…,FN ] [SUBHARMS=SH ] [NHARMS=H1[,H2,…,HN ]]+ [INTMODMAX=n ] [SWEEP parameter_sweep ].SNRuns periodic steady state analysis using the Shooting Newton algorithm..SN TRES=Tr PERIOD=T [TRINIT=Ti ] [MAXTRINITCYCLES=integer ]+ [SWEEP parameter_sweep ] [NUMPEROUT=val ].SN TONE=F1 [TRINIT=Ti ] NHARMS=N [MAXTRINITCYCLES=integer ]+ [NUMPEROUT=val ] [SWEEP parameter_sweep ].HBOSC / .SNOSCPerforms analysis on autonomous oscillator circuits..HBOSC TONE=F1 NHARMS=H1+ PROBENODE=N1,N2,VP [FSPTS=NUM,MIN,MA X]+ [SWEEP parameter_sweep ] [SUBHARMS=I ] [STABILITY=-2|-1|0|1|2].SNOSC TONE=F1 NHARMS=H1 [TRINIT=Ti ]+ [OSCTONE=N ] [MAXTRINITCYCLES=N ]+ [SWEEP parameter_sweep ].PHASENOISEInterprets signal / noise quantities as phase variables for accumulated jitter in closed-loop PLL analysis..PHASENOISE output frequency_sweep [method= 0|1|2]+ [listfreq=(freq1 [freq2 ... freqN ]|none|all)] [listcount=num ]+ [listfloor=val ] [listsources=1|0] [carrierindex=int ].HBNOISEPerforms cyclo-stationary noise analysis on circuits in a large-signal periodic steady state..HBNOISE output insrc parameter_sweep [N1, N2, ..., NK ,+/-1]+ [LISTFREQ=(freq1 [freq2 ... freqN ]|none|all]) [LISTCOUNT=num ]+ [LISTFLOOR=val ] [LISTSOURCES=on|off].NOISERuns noise analysis in frequency domain..NOISE v(out ) vin [interval ] [listckt[=1|0]]+ [listfreq=freq1 [freq2 ... freqN ]|none|all]) [listcount=num ]+ [listfloor=val ] [listsources=1|0|yes|no]] [listtype=1|0].ALTERReruns a simulation using different parameters and data from a specified sequence or block. The .ALTER block can contain element commands and .AC, .ALIAS, .DATA, .DC, .DEL LIB, .HDL, .IC (initial condition), .INCLUDE, .LIB, .MODEL, .NODESET, .OP, .OPTION, .PARAM, .TEMP, .TF, .TRAN, and .VARIATION commands..ALTER title_string.DCPerforms DC analyses..DC var1 START=start1 STOP=stop1 STEP=incr1Parameterized Sweep.DC var1 start1 stop1 incr1 [SWEEP var2 type np start2 stop2].DC var1 START=[par_expr1] STOP=[par_expr2] STEP=[par_expr3]Data-Driven Sweep.DC var1 type np start1 stop1 [SWEEP DATA=datanm (Nums )].DC DATA=datanm [SWEEP var2 start2 stop2 incr2].DC DATA=datanm (Nums )Monte Carlo Analysis.DC var1 start1 stop1 incr1 [SWEEP MONTE=MCcommand ].DC MONTE=MCcommand.OPCalculates the operating point of the circuit..OP format_time format_time ... [interpolation].PARAMDefines parameters. Parameters are names that have associated numeric values or functions..PARAM ParamName = RealNumber | ‘AlgebraicExpression’ | DistributionFunction (Arguments ) | str(‘string’) | OPT xxx (initial_guess, low_limit, upper_limit )Monte Carlo Analysis.PARAM mcVar = UNIF(nominal_val , rel_variation [, multiplier ]) | AUNIF(nominal_val , abs_variation [, multiplier ])| GAUSS(nominal_val , rel_variation , num_sigmas [, multiplier ]) | AGAUSS(nominal_val , abs_variation , num_sigmas [, multiplier ]) | LIMIT(nominal_val , abs_variation ).STOREStarts creation of checkpoint files describing a running process during transient analysis..STORE [file=checkpoint_file ] [time=time1]+ [repeat=checkpoint_interval ].TEMPPerforms temperature analysis at specified temperatures..TEMP t1 [t2 t3 ...].TRANPerforms a transient analysis.Single-Point Analysis.TRAN tstep1 tstop1 [START=val ] [UIC]Multipoint Analysis.TRAN tstep1 tstop1 [tstep2 tstop2 ... tstepN tstopN ]+ RUNLVL =(time1 runlvl1 time2 runlvl2...timeN runlvlN )+ [START=val ] [UIC] [SWEEP var type np pstart pstop ]Monte Carlo Analysis.TRAN tstep1 tstop1 [tstep2 tstop2 ... tstepN tstopN ]+ [START=val ] [UIC] [SWEEP MONTE=MCcommand ]Invoking HSPICESimulation Modehspice [-i] input_file [-o [output_file ]] [-hpp] [-mt #num ][-gz] [-d] [-case][-hdl filename ] [-hdlpath pathname ] [-vamodel name ]Distributed-Processing Modehspice [-i] input_file [-o [output_file ]] -dp [#num ][-dpconfig [dp_configuration_file ]] [-dplocation [NFS|TMP][-merge]Measurement Modehspice -meas measure_file -i wavefile -o [output_file ]Help Modehspice [-h] [-doc] [-help] [-v]Argument Descriptions-i input_file Specifies the input netlist file name.-o output_file Name of the output file. HSPICE appends the extension .lis.-hpp Invokes HSPICE Precision Parallel.-mt #num Invokes multithreading and specifies the number of processors. Works best when -hpp is used.-gz Generates compression output on analysis results for these output types: .tr#, .ac#, .sw#, .ma#, .mt#, .ms#, .mc#, and .print*.-d (UNIX) Displays the content of .st0 files on screen while running HSPICE.-case Enable case sensitivity.-hdl filename Specifies a Verilog-A file.-hdlpath pathname Specifies the search path for Verilog-A files.-vamodel name Specifies the cell name for Verilog-A definitions.-dp #num -dpconfig dpconfig_file -dplocation [NFS|TMP] Invokesdistributed processing and specifies number of processes, the configuration file for DP, and the location of the output files.-merge Merge the output files in the distributed-processing mode.-meas measure_file Calculates new measurements from a previous simulation.-h Outputs the command line help message.-doc Opens the PDF documentation set for HSPICE (requires Adobe Acrobat Reader or other PDF document reader).-help Invokes the online help system (requires a Web browser).-v Outputs HSPICE version information.HSPICE is fully integrated with the Synopsys® Custom Compiler™ Simulation and Analysis Environment (SAE). See the Custom Compiler™ Simulation and Analysis Environment User Guide .To use the HSPICE integration to the Cadence® Virtuoso® Analog Design Environment, go to /$INSTALLDIR/interface/ and follow the README instructions.Analysis Commands.ACPerforms AC analyses.Single / Double Sweep.AC type np fstart fstop.AC type np fstart fstop [SWEEP var+ [START=]start [STOP=]stop [STEP=]incr ].AC type np fstart fstop [SWEEP var type np start stop ]Sweep Using Parameters.AC type np fstart fstop [SWEEP DATA=datanm (Nums )].AC DATA=datanm.AC DATA=datanm [SWEEP var [START=]start [STOP=]stop [STEP=]incr ].AC DATA=datanm [SWEEP var type np start stop ]Monte Carlo Analysis.AC type np fstart fstop [SWEEP MONTE=MCcommand ].LSTBInvokes loop stability analysis..LSTB [lstbname ] mode=[single|diff|comm + vsource=[vlstb |vlstbp,vlstbn ]Data-Driven Sweep.TRAN DATA=datanm.TRAN DATA=datanm [SWEEP var type np pstart pstop ].TRAN tstep1 tstop1 [tstep2 tstop2 ... tstepN tstopN ]+ [START=val ] [UIC] [SWEEP DATA=datanm (Nums )]Time Window-based Speed/Accuracy Tuning by RUNLVL.TRAN tstep tstop [RUNLVL=(time1 runlvl1...timeN runlvlN )]Circuit Block-based Speed/Accuracy Tuning by RUNLVL.TRAN tstep tstop+ [INST=inst_exp1 RUNLVL=(time11 runlvl11...time1N runlvl1N )]+ [SUBCKT=subckt_exp2 RUNLVL=(time21 runlvl21...time2N runlvl2N )]Time Window-based Temperature Setting.TRAN tstep tstop [tempvec=(t1 Temp1 t2 Temp2 t3 Temp3...)+[tempstep=val ]].TRANNOISEActivates transient noise analysis to compute the additional noise variables over a standard .TRAN analysis..TRANNOISE output [METHOD=MC] [SEED=val ] [SAMPLES=val ] [START=x ]+ [AUTOCORRELATION=0|1|off|on] [FMIN=val ] [FMAX=val ] [SCALE=val ]+ [PHASENOISE=0|1|2] [JITTER=0|1|2] [REF=srcName ] [PSD=0|1]HSPICE Options.OPTION opt1 [opt2 opt3 …]opt1 opt2 … Specify input control options.General OptionsALTCC=n Enables reading the input netlist once for multiple .ALTER statements. Default is 0.LIS_NEW=x Enables streamlining improvements to the *.lis file. Default is 0. SCALE=x Sets the element scaling factor. Default is 1.POSTTOP=n Outputs instances up to n levels deep. Default is 0.POSTLVL=n Limits data written to the waveform file to the level of nodes specified by n .POST=n Saves results for viewing by an interactive waveform viewer. Default is 0.PROBE=n Limits post-analysis output to only variables specified in .PROBE and .PRINTstatements. Default is 0.RC Reduction OptionsSIM_LA=name Starts linear matrix (RC) reduction to the PACT, PI, or LNE algorithm. Defaultis off.Transient OptionsAUTOSTOP=n Stops transient analysis after calculating all TRIG-TARG, FIND-WHEN, andFROM-TO measure functions. Default is 0.METHOD=name Sets numerical integration method for a transient analysis to GEAR, or TRAP(default), or BDF.RUNLVL=n Controls the speed and accuracy trade-off; where n can be 1 through 6. The higher the value, the greater the accuracy; the lower the value, the faster the simulation runtime. Default is 3.Variability and Monte Carlo Analysis.AC .DC .TRAN .MEASURE .MODEL .PARAM .ACMATCHCalculates the effects of variations on the AC transfer function, with one or more outputs..ACMatch Vm(n1) Vp(n1) Vr(n1) Vi(n1) Vm(n1,n2) Im(Vmeas ).DCMATCHCalculates the effects of variations on the DC operating point, with one or more outputs..DCMatch V(n1) V(n1,n2) I(Vmeas )。
Kinetix 6200 和 Kinetix 6500 模块化多轴伺服驱动器目录号 2094-BCxx-Mxx-M, 2094-BMxx-M 2094-SE02F-M00-Sx, 2094-EN02D-M01-Sx,2094-BSP2, 2094-PRF, 2094-SEPM-B24-S用户手册用户重要须知在安装、配置、操作或维护本产品之前,请阅读本文档以及“其他资源”章节所列的文档,了解关于安装、配置和操作该设备的信息。
除了所有适用的条例、法律和标准的要求之外,用户还必须熟悉安装和接线说明。
包括安装、调整、投入运行、使用、装配、拆卸和维护等在内操作必须由经过适当培训的人员根据适用的操作守则来执行。
如果未遵照制造商所指定的方式使用该设备,将可能导致该设备提供的保护失效。
任何情况下,对于因使用或操作本设备造成的任何间接或连带损失,罗克韦尔自动化有限公司概不负责。
本手册中包含的示例和图表仅用于说明。
由于任何具体安装都涉及众多变数和要求,罗克韦尔自动化有限公司对于依据这些示例和图表所进行的实际应用不承担任何责任和义务。
对于因使用本手册中所述信息、电路、设备或软件而引起的专利问题,罗克韦尔自动化有限公司不承担任何责任。
未经罗克韦尔自动化有限公司的书面许可,不得复制本手册的全部或部分内容。
在整本手册中,我们在必要的地方使用了以下注释,以提醒您注意相关的安全事宜。
标签可能位于设备表面或内部,以提供特定警示。
警告:标识在危险环境下可能导致爆炸,进而导致人员伤亡、物品损坏或经济损失的操作或情况。
注意:标识可能导致人员伤亡、物品损坏或经济损失的操作或情况。
注意符号可帮助您确定危险情况,避免发生危险,并了解可能的后果。
重要信息标识对成功应用和了解本产品有重要作用的信息。
触电危险:位于设备 (例如,驱动器或电机) 表面或内部的标签,提醒相关人员可能存在危险电压。
灼伤危险:位于设备 (例如,驱动器或电机) 表面或内部的标签,提醒相关人员表面可能存在高温危险。
《高级网络互联技术》课程标准一、课程性质本课程是云计算技术与应用专业的一门专业核心课程。
课程开设目标是培养学生掌握高级交换与路由技术,具备对局域网络的运维能力。
本门课程在专业课程体系中作为核心课程需要《计算机网络技术基础与应用》《云计算技术与应用》课程作为前导课程,同时它的后续课程有《网络安全基础》等课程。
二、课程设计思路在当前社会网络行业整体发展迅速,企业对专业技术人才的要求也在不断提升,专业人才培养目标必须紧跟企业需求,通过课程教学提升学生的专业技能。
本门课程就是为了适应当前和今后一段时间内网络相关行业和企业对网络工程师在组建网络、运维网络、维护网络方面能力的要求而开设的。
三、课程目标(一)总体目标本课程主要教学目标是培养学生对网络的构建和管理能力,使学生能够利用交换机及路由器等网络产品独立完成企业办公网、校园网等典型中小型局域网络的建设、运行与维护;掌握广域网的接入技术并能够利用各厂商网络产品完成典型广域网接入的模拟试验;掌握网络安全技术和相关网路安全产品的应用;能够利用网络管理软件对网络进行综合管理。
(二)具体目标1.知识目标掌握MUX VLAN技术、MSTP、VRRP、RIP与高级配置、OSPF协议与高级配置、IS-IS协议、BGP、路由策略、策略路由、GRE协议、IPSec、MPLS技术和防火墙技术等。
2.能力目标独立组建、运行、维护中型园区网络的能力;独立组建、运行、维护中型企业网络的能力;具备交换机、路由器等网络设备的高级应用能力;掌握网络协议的高级应用能力。
’3.素质目标紧跟时代潮流,了解整个计算机网络行业的发展趋势以及就业前景。
激发学生对该课程的学习兴趣。
能够适应行业企业的用人新需求,掌握新技术和新方法,提升职业素质。
四、课程内容组织与安排教学内容组织与安排五、课程内容与教学要求六、课程教学实施建议(一)师资条件要求师资组成表(二)教学条件要求理实一体化网络实训中心。
(三)教学方法与教学手段建议针对理论性较强的内容采取讲授法结合丰富的素材资料进行讲解,针对实践环节采取项目引导法、角色扮演法、示范模拟法等方法综合进行教学。
Quick Start User Guide●IntroductionThis user guide introduces the user how to implement the PROFI-8855 into their applications in a quick and easy way. Therefore, it only provides the basic instructions. For more detail information about the PROFI-8855, please refer to the PROFI-8855 user manual in the ICP DAS product CD or download it from ICP DAS web site.●P ROFI-8855 Hardware Structure●PROFI-8855 Connector and Pin AssignmentPin No. Signal Meaning3 B-Line Receive/Transmit data – plus5 GND Power ground of active terminator6 VP Power 5 volt of active terminator8 A-Line Receive/Transmit data - minus The PROFIBUS connector is a standard 9-pin D-Sub connector, there are only 4 pins used in PROFI-8855. The pins VP and GND support the 5 volt power to active terminal resistor, and the A-Line and B-Line is the data bus.●Status IndicatorPROFI-8855 provide three types of status indicators, they are PWR LED (yellow), ERR LED (red) and RUN LED (green).Status Indicator Meaning Recommend solutionERR ON &RUN OFFPROFI-8855 is offlinewith no valid baud rate(offline mode*)Check the address setting ofPROFI-8855 and DP-master.ERR Flash(0.1 Sec)PROFI-8855 detectsbaud rate, but is stilloffline.(stop mode*)Check the DP-Master isready to communicate withPROFI-8855.ERR Flash(0.5 Sec)PROFI-8855 Prm isFault.(Note 1)Check the setting ofPROFI-8855 in the masterinterface and make sure ofthe consistency.ERR Flash(1 Sec)PROFI-8855’s Cfg isfault(Note 2)Same as aboveERR ON & RUNONPROFI-8855 is in clearmode*.Sets the DP-Master fromclear mode to operationmodeERR OFF & RUNONPROFI-8855 is inoperation mode*.PWR & ERR Flash(1 Sec)PROFI-8855 detectmodule(s) offlineFind the reason of the fault ofcorresponding module.●Terminating ResistorsIn order to minimize the reflection effect of the signal transmission, PROFIBUS device has to fit with an active terminal resistor at both first node and last node. The connection of active terminating resistors is shown in above circuit diagram. The PROFI-8855 doesn’t have any terminatingresistors inside. Therefore, users must add the terminator in external. In general, PROFIBUS connector has terminating resistors inside, and there is a switch to control the ON/OFF of the terminating resistors, as shown below.PROFIBUS ConnectionThe PROFIBUS interface of the PROFI-8855 is a DB9 female connector. It is recommended to use a standard PROFIBUS cable and connector (DB9 male).NOTE: Both side of the PROFIBUS cable which connect PROFI-8855 can add a core to reduce noise.Node AddressThe figure shown above is the hexadecimal rotary switch. It dominates the node (station) address of PROFI-8855. The switch which labeled MSB is high nibble of address and the other one is low nibble of address.According to PROFIBUS specification, the station address which from 0 to 126 is valid, and the address 126 is a special address that supports the remote setting SSA telegram from Class 2 DP-Master. PROFI-8855 uses the value of rotary switch as its address if the address is valid. While the address is invalid, PROFI-8855 will load the pre-saved value in EEPROM. Moreover, if the address is invalid (126) again, PROFI-8855 awaits the SSA telegram and applies it. (Note: If you want to clear the setting stored in EEPROM, you should adjust rotary switch to FF before the power is supplied).Rotary Switch(dec) Pre-saved address (EEPROM) SSA Telegram PROFI-8855Station Address0~125 Don’t care No Accept Rotary Switch 0~125 No Accept Pre-saved address(EEPROM)126 (default) Accept with address 0~125 SSA Telegram andsave address toEEPROM126~254 127~254 impossible N/A255 Clear to 126 Accept with address0~125SSA Telegram andsave address to EEPROMEX 1 : MSB => 0, LSB => B,node address of PROFI-8855 => (0*16+11) = 11EX 2 : MSB =>7, LSB => 9,node address of PROFI-8855 => (7*16+9) = 121PROFI-8855 – Setting and Module Installation The following steps can help users to set and apply the PROFI-8855.1. Module Installation:In the expansion slots, users install the modules, and makesure of correct installation. Notice that address mapping is orderby slot id of installed module (from left to right), and theexpansion slot that without module will be skipped.2. Address Setting:There are two hexadecimal rotary switches in PROFI-8855panel. They dominate the address of PROFI-8855. The switchlabeled LSB is represented the low nibble of the address, andthe switch labeled MSB is represented the high nibble of theaddress. For advance setting, please refer to PROFI-8855User’s Manual.3. Load GSD file into the DP-Master Configuring softwarea. Open HW Configb. Select Option -> Install GSD filesc. Click “Browse” to select GSD file, and then click “Install”d. Install OK4. Select I/O modulesa. Choose PROFI-8855b. add I/O module that you want to use.5. Set Parameter DataWait parameterization is an important step before dataexchange. In this stage, DP-Master provides the essentialparameter to PROFI-8855 include user parameters and moduleparameters. Therefore, it must finish this setting before dataexchange.1. User Parameter:“User parameter” also called “system parameter” is the basic parameters. The number of parameter is fixed regardless of thenumber of modules. In PROFI-8855, there are two kinds ofparameter. They are Byte Order and Diagnosis Repot Period.Byte-Order Parameter: If your system obeys the INTEL data format, you should select Little-Endian mode; otherwise,you should select Big-Endian mode.2. Module Parameters:The most of modules must be initialized before applyingthem. Module parameters provide information about OperationCode, Data Code or Enable Diagnosis, etc… Please refer to themanual to know more information about these parameters.6. Download Setting and Program into DP-MasterUsers load the setting and program into DP-Master, and let it go.a. Select Station -> Save and Compileb. Select PLC -> DownloadAfter finishing the procedure, DP-Master will establish the connection with PROFI-8855 and execute program automatically. RUN_LED indicates the status of connection that you can observe.。
思科ASDM 7.13(x)版本说明思科ASDM 7.13(x)版本说明本文档包含用于思科ASA 系列的思科ASDM 7.13(x)的版本信息。
重要说明•对于ASA 5512-X 、ASA 5515-X 、ASA 5585-X 和ASASM-ASA 9.13(1)及更高版本中不支持,9.12(x)是最新支持的版本。
对于ASA 5515-X 和ASA 5585-X FirePOWER 模块,最新支持的版本为6.4。
•9.13(1)及更高版本中ASAv 需要2GB 内存-从9.13(1)开始,ASAv 的最低内存要求为2GB 。
如果当前ASAv 的内存少于2GB ,您将无法在不增加ASAv VM 内存的情况下,从早期版本升级到9.13(1)。
在升级之前,您必须调整内存大小。
有关9.13(1)版本中支持的资源分配(vCPU 和内存)的信息,请参阅ASAv 入门指南。
•将适用于ASA 5506-X 、5508和5516-X 的ROMMON 升级到版本1.1.15—对于这些ASA 型号有一个新的ROMMON 版本(2019年5月15日);我们强烈建议您升级到最新版本。
要进行升级,请参阅《ASA 配置指南》https:///c/en/us/td/docs/security/asa/asa912/configuration/general/asa-912-general-config/admin-swconfig.html#task_90917D0EBAC2427487F6F51D21ABC235中的说明。
ROMMON 升级到1.1.15所花费的时间是升级到ROMMON 上一版本的两倍,大约15分钟。
升级流程中请勿重启设备。
如果升级未在30分钟内完成或升级失败,请联系思科技术支持;请勿重启或重置设备。
注意•ASDM 升级向导—由于内部更改,该向导仅支持使用ASDM 7.10(1)及更高版本;此外,由于映像命名更改,您必须使用ASDM 7.12(1)或更高版本以升级到ASA 9.10(1)及更高版本。
电力通信中无线通信技术的有效应用摘要:在电力通信技术发展的过程中,无线通信技术的应用使其在智能化电网之中占据的地位越加重要。
因此,为了更好的促进电力通信技术的创新与发展,对无线通信技术的可靠性以及可维护性的功能研究已经成为当前电力通信领域研究的重要课题之一。
本文正是基于此种事实的角度进行出发,对无线通信技术的有效应用进行了系统的分析,并提出了相关建议。
关键词:电力通信;无线通信技术;应用一、引言随着电力通信技术的全面普及和应用,我国的智能电网建设工作得到了很大的发展。
而作为电力通信中核心技术的无线通信技术,其是实现信息双向交互性的重要基础,也是智能电网管理过程中数据传输的主要方式之一。
在电力通信技术的实际发展过程中,虽然有线通信技术已经相当普及,但是其还存在一些无法解决的死角,尤其是在有线通信技术发生故障的时候,直接对使用者造成一定的影响。
但是随着无线通信技术的发展,其能够有效的解决有线通信技术的漏洞,对智能化电网的建设具有重要的现实意义。
二、电力通信的现状分析在电力通信中,光纤通信占据着主导地位。
作为承载电力通信自动化以及数据网络和继电保护等诸多业务的光纤通信其有力的促进了电力通信技术的发展。
光纤通信的主干通信网络基本实现110kV以上的覆盖,其基本能够满足社会的需求。
但是在外部环境复杂的情况下,其对于35kV以下中低压配售网络就无法满足其基本需求,而无线通信技术的发展恰恰弥补了这一缺点。
随着无线通信技术的可靠性与高适应性以及高可维护性特点的初显,其逐渐成为当前电力通信系统中的主要支撑力量。
从电力无线通信技术的制式来看,其主要有230M电台专网、Mobitex专网、GPRS公网(租用)以及CDMA公网以及LTE230。
三、电力无线通信系统业务需求分析电力无线通信技术作为当前光纤通信的辅助技术,其能够有效的解决35kV以下中低压配售网络所出现的传输问题。
因此,我们可以将电力无线通信业务定位为承载农配网自动化以及智能电能量采集和应急抢修管理等。
One Stop Virtualization Shop StarWind Virtual SAN®ODX (Off-loaded Data Transfer) Configuration and Performance Tuning GuideFEBRUARY 2018TECHNICAL PAPERTrademarks“StarWind”, “StarWind Software” and the StarWind and the StarWind Software logos are registered trademarks of StarWind Software. “StarWind LSFS” is a trademark of StarWind Software which may be registered in some jurisdictions. All other trademarks are owned by their respective owners.ChangesThe material in this document is for information only and is subject to change without notice. While reasonable efforts have been made in the preparation of this document to assure its accuracy, StarWind Software assumes no liability resulting from errors or omissions in this document, or from the use of the information contained herein. StarWind Software reserves the right to make changes in the product design without reservation and without notification to its users.Technical Support and ServicesIf you have questions about installing or using this software, check this and other documents first - you will find answers to most of your questions on the Technical Papers webpage or in StarWind Forum. If you need further assistance, please contact us.About StarWindStarWind is a pioneer in virtualization and a company that participated in the development of this technology from its earliest days. Now the company is among the leading vendors of software and hardware hyper-converged solutions. The company’s core product is the years-proven StarWind Virtual SAN, which allows SMB and ROBO to benefit from cost-efficient hyperconverged IT infrastructure. Having earned a reputation of reliability, StarWind created a hardware product line and is actively tapping into hyperconverged and storage appliances market. In 2016, Gartner named StarWind “Cool Vendor for Compute Platforms” following the success and popul arity of StarWind HyperConverged Appliance. StarWind partners with world-known companies: Microsoft, VMware, Veeam, Intel, Dell, Mellanox, Citrix, Western Digital, etc.Copyright ©2009-2018 StarWind Software Inc.No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written consent of StarWind Software.ContentsIntroduction (4)Enabling ODX support inside StarWind VSAN (5)Checking the ODX proper functioning (5)Summary (10)IntroductionThis document is intended for experienced StarWind users and Microsoft administrators, who want to decrease the network workload by using Offloaded Data Transfers (ODX). The guide describes how to check ODX proper functioning and its productivity.ODX is a feature that allows speeding up certain “copy and move” operations by allowing them to be performed on the storage, instead of running them between the client and storage through the network. The servers only exchange the corresponding commands and service info, while data transferring is performed on the storage layer. As a result, the creation and copying of data takes less time without overloading the channel. ODX is supported on Windows 8/2012 and later versions.A full set of up-to-date technical documentation can always be found here, or by pressing the Help button in the StarWind Management Console.For any technical inquiries please visit our online community, Frequently Asked Questions page, or use the support form to contact our technical support department.Enabling ODX support inside StarWind VSANBy default, ODX is turned off in StarWind configuration file. To turn on the ODX support we need to modify StarWind configuration file by following the steps below.NOTE: StarWind service must be stopped before editing the configuration file.1.Stop StarWind service.2.Navigate to StarWind root directory and locate the StarWind.cfg file.The default location is "C:\Program Files\StarWind Software\StarWind\StarWind.cfg".3.Make a backup of the StarWind.cfg file.4.Open the file with text editor, find the ODX string <OdxEnabled value="no"/>under the<hardwareacceleration> section and change “no” to “yes”. Finally, the string must belike <OdxEnabled value="yes"/> .5.Save the changes and close the text editor.6.Restart the host where StarWind VSAN is installed.Checking the ODX proper functioning7.Create the device in StarWind Management Console.8.Connect the device on the client through iSCSI Initiator9.Initialize and format the disk using Disk Management.10.ODX support settings can be changed by editing the registry key. It can be done viaPowerShell using the commands below.To turn on the ODX support on Microsoft level, use the command:Set-ItemProperty HKLM:\SYSTEM\CurrentControlSet\Control\FileSystem-Name "FilterSupportedFeaturesMode"-Value0To turn off the ODX support, run the command:Set-ItemProperty HKLM:\SYSTEM\CurrentControlSet\Control\FileSystem-Name "FilterSupportedFeaturesMode"-Value1This part further describes how to check ODX functioning, by comparing the speed of the .vhdx file creation in two ways: ODX support is enabled in the StarWind configuration file and disabled / enabled on the Windows level.11.Turn off the ODX support on the Microsoft level:The .vhdx file can be created on the disk (in this case, disk O:) using GUI. Alternatively, itcan be done via PowerShell.Creation:Measure-Command { New-VHD-Path E:\TestVHD-15GB.vhdx-Size15GB-Fixed}Copying:Measure-Command { Copy-Item E:\TestVHD-15GB.vhdx E:\CopiedTestVHD.vhdx}The workload on the network between the client and the server is the main parameter for checking the ODX functioning.Without the ODX it took around 1 minute and 7 seconds to create the test .vhdx file.The workload during the creation process was significant:12.With ODX support enabled on Microsoft level, the time for .vhdx file creation is 47seconds:The network workload is minimized, since only a small amount of data is transferred:Copying files or VMs between server storages may be also used for testing ODX. In case there is a cluster, it is possible to create, copy, and move files between CSV volumes or migrate VMs.SummaryODX support allows StarWind to offload multiple storage operations from the Hyper-V hosts to the storage array itself. Thus, these operations are carried out much faster and with no impact on the hypervisor’s performance.StarWind Virtual SAN®ODX (Off-loaded Data Transfer)Configuration and Performance Tuning Guide Contacts1-617-449-77 17 1-617-507-58 45 1-866-790-26 46 +44 203 769 18 57 (UK) +34 629 03 07 17 (Spain and Portugal)Customer Support Portal:Support Forum:Sales: General Information: https:///support https:///forums ***********************************StarWind Software, Inc. 35 Village Rd., Suite 100, Middleton, MA 01949 USA ©2018, StarWind Software Inc. All rights reserved.TECHNICAL PAPER 11。
1、我们可以把LTE-Advanced理解为一个“分层”的结构,底层采用的低频段,用来做广覆
盖,保证每一个用户能够接入,而上层选取若干热点,在这些热点上叠加高频段,用来保证容量。
通过多个频段的紧密协作,就可以有效地满足LTE-Advanced在高容量和广覆盖方面的双重要求。
2、LTE-Advanced相对LTE而言,在空口上没有发生太大的变化,依然采用了MIMO和OFDM
技术。
3GPP做出前后都兼容的决定。
3、高频段具有频谱资源丰富,从而能提供大带宽、高容量的优点,同时它又具有覆盖能力
不足、穿透能力差的弱点;低频段具有覆盖能力强、穿透性能好的特点但同时频谱资源又非常有限,无法提供更多的带宽等缺点。
所以LTE-Advanced采用了“多频段层叠建网”
的思路,把低频段用于广覆盖,用来给所有用户提供接入服务,用以弥补高频段在覆盖和支持高速移动方面的不足;同时在此基础上用高频段来对室内和热点覆盖,用来弥补低频段在频谱资源上的不足。
我国3大运营商的3G建设基本都采取了这种模式,即“3G+Wi-Fi”。
4、在LTE-Advanced里,可以用载波聚合来实现连续/不连续频谱的资源整合。
载波聚合的
时候首先应该考虑将相邻的数个小频带整合为一个较大的频带,这样对于终端而言滤波器需要滤波的频带比较集中,不需要在一个很大的范围内去滤波,这样实现起来比较容易。
如果相邻频段资源不够,那就要考虑去非相邻频段来整合资源了,这样比较困难。
实现载波整合后,LTE的终端可以接入其中一个载波单元(LTE的最大带宽为20MHz),而LTE-Advanced的终端可以接入多个载波单元,把这些载波单元聚合起来,实现更高的带宽。
载波聚合的优点十分明显,LTE-Advanced可以沿用LTE的物理信道和调制编码方式,这样标准就不需要有太大的动作,从而实现从LTE到LTE-Advanced的平滑过渡。
5、为了提高小区边缘性能和系统吞吐量,改善高数据速率带来的干扰问题,LTE-Advanced
引入了一种叫做协同多点(CoMP)传输的技术。
用来进行CoMP的基站有两种。
其中一种就是利用原来的eNodeB来对用户一起传数据。
现在基站间通过RoF光纤直接相连,光线传输数据的能力大大高于无线的Mesh网络。
除了将现有的基站X2口采用光纤互联,扩大其传输能力,从而实现基站间协调传输外,还有一种方式能实现多点协同通信,那就是采用分布式天线。
6、所谓中继,就是基站不直接将信号发送给终端,而是先发给一个中继站RS,然后再由中
继站发送给终端的技术。
Relay(中继)是LTE-Advanced采取的一项重要技术,一方面,LTE-Advanced系统提出了很高的系统容量要求;另一方面,可供获得大容量的大带宽频谱可能只能在较高频段获得,而这样高的频段的路径损耗和穿透损耗都比较大,很难实现好的覆盖。
7、无论是RRU拉远也好,中继也罢,解决的基本都是较大范围的覆盖问题,如果某人家里
信号不好怎么办呢?那就是femto。
8、家庭基站femto,也叫飞蜂窝,不仅仅在LTE-Advanced采用,在UMTS上也开始广泛使
用。
9、3GPP的自组织网络SON,包含四个特点:网络自配置、网络自优化、网络自愈、网络
节能
10、LTE-Advanced在制定之初就提出了很高的目标,下行峰值1Gbit/s,上行峰值
500Mbit/s,这样高的速率必定需要很多频谱资源,由于连续的频谱资源并不多见,LTE-Advanced采用了多个频段共存的方案,从高频到低频都有,分布很不均匀。
由于频谱资源可能比较零散不连续,所有LTE-Advanced中开发了载波聚合技术,用以将零散的频谱聚合起来使用;除了关注上下行峰值速率外,LTE-Advanced也关注处在小区边缘的用户体验,这些区域的用户想得到更好的体验,通常靠功率控制的用处不大,因此可以
通过多站点协作传输的方式取得最佳的效率。
除了峰值速率和边缘吞吐率外,由于LTE-Advanced多数频谱资源处于高频段,覆盖范围是个很大的问题,LTE-Advanced通过中继、RUU拉远、femto基站等多种方式来提升覆盖质量。
做过建设和维护经验的人都知道,高频段意味着多基站,基站数量增多意味着管理起来很麻烦,为了降低运维成本,LTE-Advanced采用了自组织网络SON,通过自动配置、自动优化、自动故障处理、自动节能来尽最大可能地降低成本。