循环流化床锅炉燃烧调整
- 格式:pptx
- 大小:155.42 KB
- 文档页数:50
浅析循环流化床锅炉燃烧效率的影响因素与调整策略摘要:循环硫化床锅炉作为环保型的锅炉,当前已被大部分企业所广泛应用。
主要源于其燃烧实用性强、效率高以及污染少等优点,但是基于诸多因素的影响,会影响其燃烧效率。
基于此,本文阐述了循环流化床锅炉燃烧及其应用特征,对循环流化床锅炉燃烧效率主要的影响因素及其调整策略进行了探讨分析。
关键词:循环流化床锅炉;应用特征;燃烧效率;影响因素;调整策略循环流化床锅炉燃烧是燃料通过给煤系统进行燃料输送过程,进入炉膛中,送风又有一次风和二次风之分,部分还有三次风。
布风板下面可以将一次风送入燃烧室,目的是保证料层流化;二次风沿燃烧室高度分级多点送入,目的是供给燃烧室的氧气,让燃料能够充分燃烧;三次风则是为了强化燃烧。
一、循环流化床锅炉应用的特征循环硫化床锅炉应用的特征主要表现为:(1)循环硫化床锅炉的优点。
相对于其他炉型而言,循环硫化床锅炉燃烧的适应范围广,使得一些劣质燃料也能燃用,而这一点,一般燃烧方式是做不到的。
此外,循环硫化床锅炉负荷变化具有较强的适应性。
只要在炉内加吸收剂(石灰石、白云石)即可降低烟气中SO2含量,从而减少污染气体的排放量,这样不仅能达到环保效果,还能够提高灰渣的综合利用率,以及避免锅炉受热面受到严重腐蚀。
(2)循环硫化床锅炉的缺点。
主要表现在:第一、相对于煤粉炉而言,循环硫化床锅炉的热效率比较低,造成这一结果的原因较多,主要包括:在使用的煤粉上,相对于循环硫化床锅炉而言,煤粉炉所用的煤粉要细得多,而燃料往往只有越细才越容易燃尽,因而使得机械不完全燃烧热损失增加;就炉膛的温度来看,相对于煤粉炉而言,循环硫化床锅炉的温度太低,这就使得燃料很难着火,即使着火也难以完全燃烧,造成化学不完全燃烧热损失增加。
第二、循环硫化床锅炉采用了高压风机来克服布风板和料层的阻力,造成风机增加电耗量,受热面遭受磨损,炉膛内部烟尘沉积太多。
二、循环流化床锅炉燃烧效率主要的影响因素1、煤质影响因素。
循环流化床锅炉运行燃烧调整过程中一二次风的合理运用摘要:循环流化床锅炉的常规运行理论是,一种悬浮的颗粒状固体物料借助空气向上流动,在流动过程中燃烧发热,受热面吸收悬浮物放热维持燃烧温度。
在煤质发生变化时,提高了对流化床燃烧调整的要求,为了保持机组能够在稳定经济的环境下运行,本文对循环流化床锅炉一、二次风的运用进行分析。
关键词:循环流化床锅炉燃烧调整一二次风控制1、锅炉系统介绍锅炉型号:SG-1060/17.5-M802锅炉型式:亚临界中间再热,单锅筒自然循环、循环流化床锅炉本锅炉是上海锅炉厂有限公司在引进、吸收法国ALSTOM公司循环流化床锅炉技术的基础上,运行了ALSTOM公司验证过的先进技术以及本公司设计、制造、运行的经验,进行本锅炉的全套设计,在燃用设计煤种时,锅炉能够在定压60%~100%额定负荷范围内、滑压50~100%额定负荷范围内过热器出口蒸汽保持额定参数,在燃用设计煤种或校核煤种时,在35-100%额定负荷范围内锅炉能够稳定燃烧。
锅炉采用岛式布置、全钢结构、紧身封闭,支吊结合的固定方式。
锅炉采用单锅筒自然循环、集中下降管、平衡通风、绝热式旋风气固分离器、循环流化床燃烧方式、风水冷流化床冷渣器和滚筒冷渣器相结合,后烟井布置对流受热面,过热器采用3级喷水调节蒸汽温度,再热器采用外置床调节蒸汽温度为主,事故喷水装置调温为辅。
炉后尾部布置一台四分仓回转式空气预热器,直径10.3m,一二次风分隔布置,一次风分隔角度为50°锅炉燃烧系统由四台给煤机布置在炉膛两侧,每一侧设置2台,连接炉前煤仓和落煤管,根据锅炉负荷要求的燃料量将破碎后的燃煤输送到落煤管进口,每台锅炉共设置12个给煤口,技改后将分别设置在两侧墙的4个给煤口进行封堵,目前只剩下8个给煤口分别设在4根回料腿上。
锅炉配置2台床下风道点火燃烧器,每侧的一次风道内各安装1台风道点火燃烧器,每台风道点火燃烧器内安装2支油枪,每支油枪的额定出力为2000kg/h,采用机械雾化。
循环流化床锅炉燃烧调整及其燃烧优化摘要:循环流化床燃烧技术是从20世纪80年代开始年发展起来的新一代高效低污染的清洁燃烧技术,具有燃料适应性广、较高的燃烧效率、高效脱硫、低氮排放的特点,因此近年来有了很大的发展。
循环流化床锅炉的主要特点是燃料在多次循环状态下燃烧,燃料燃尽时间较长,另外燃烧过程涉及床温、床压、氧量等相互关联的参数,因此,相比煤粉炉等室燃型锅炉,循环流化床的燃烧自动控制更为复杂、难度更大。
关键词:循环流化床锅炉;燃烧调整;燃烧优化1设计投入的自动控制回路燃烧多变量综合优化控制自动包括燃料自动、一次风自动、二次风自动、引风自动、排渣自动;控制参数相关为锅炉热负荷、炉膛温度、床温、床压、炉膛压差、烟气含氧量、炉膛负压、一次风量、二次风量等。
多变量综合控制模型的主要特征是主汽压力信号为基础,在各个运行参数额定设计参数的约束限制范围内,根据炉膛温度、炉膛压差的变化调整物料浓度,快速准确调整给煤量来稳定负荷、一二次风配比调整不同负荷下对应的床温,维持炉内存热量的稳定;通过二次风调整达到不同负荷下对应的最佳氧含量来保证经济性;以风量前馈及炉膛压力信号调整负压;同时,通过排渣的自动调节在不同的负荷下稳定在相应的最佳床压定值。
主要设计回路如下。
(1)主汽压力控制:根据主汽压力、流量、温度测量值、炉膛温度、炉膛压差、汽机负荷变化量等因素,形成主控信号,采用多路平衡控制调节调节给煤机转速。
(2)烟气氧含量控制:根据主控信号及一二次风配比、烟氧含量测量值等参数,调节二次风频率。
(3)床温控制回路:根据主控信号及一次风与给煤配比、床温测量值等信号,调节一次风频率或挡板开度。
(4)床压控制回路:根据主控信号及床压测量值等信号,调节排渣机转速。
(5)炉膛负压控制回路:根据炉膛负压测量值、一次风、二次风风量或频率等信号,调节引风机频率。
2循环流化床锅炉的调整环节风量的调整是锅炉运行过程中的重要调整参数,在设计的过程中一次和二次风量可以占到50%的比例,流化床锅炉的床温和场析量就容易受到它的影响,还会对循环物料量造成一定的影响。
有关循环流化床锅炉燃烧调整及其燃烧优化[摘要]伴随经济的快速发展,目前在我国循环流化床锅炉被广泛应用于很多工业领域,本文基于实际的工业应用对循环流化床锅炉的燃烧调整和燃烧优化展开了系统的分析和研究,循环流化床锅炉作为一种节能产品,其具有高效、低污染的效果,在最近几年,在降低污染以及节能方面得到了许多的肯定,包括用户与社会这两个领域。
它也获得迅速的发展。
可是也存在很多的不足,就比如循环流化床锅炉的运行以及燃烧调整这两个方面,因此要求锅炉运行人员以及从事相关流化床工作的人员进行相应的研究以及探索,将设备的经济运行水平提高。
循环流化床锅炉与其他锅炉有很大的不同,首先,在燃烧调整方面就大不相同,现在这方面的相关资料与书籍并不多,而这篇文章就将设计理论以及在总结运行经验作为前提,对循环流化床锅炉的燃烧调整以及燃烧优化进行了一定的分析,本文的研究充分结合了之前的研究成果,提出的结论对今后的工程应用具有一定的参考和借鉴价值。
[关键词]循环流化床锅炉燃烧调整燃烧优化中图分类号:tk229.66 文献标识码:a 文章编号:1009-914x (2013)08-264-01现在,在循环流化床锅炉燃烧优化以及调整方面的研究很多,而在燃烧调整的同时并且加入污染物排放的控制与运行要素对污染物排放的影响这一方面的研究就比较少,为了达到这一目的,我们首先需要研究流化床锅炉的燃烧优化调整,同时还需要对其运行参数对脱硫效率的影响做出分析,从而基于以上的分析寻找得出更好的燃烧优化方法,达到优质高效的目的,更好的为经济与社会服务。
1循环循环流化床锅炉调整的环节1.1风量的调整。
一次风量与二次风量就构成了风量,循环流化床锅炉进行燃烧调整的一个重要参数就是它。
在设计的过程中,一、二次风量基本上都是占据50%的比例。
密相区在为稀相区扬析许多物料需要一次风作为动力,流化床锅炉的床温以及物料参与的扬析量都会受其大小的影响,最终还会对循环物料量造成一定的影响。
循环流化床锅炉运行调整措施编写:赵云龙审核:陈朝勇批准:冯天武发电运行部2020年 07 月 09 日循环流化床锅炉运行调整措施1、锅炉在200MW时投入CCS协调,主汽压力设定值自动跟踪滑压曲线,通过设定滑压偏差来满足实际情况需要,锅炉升速率设定不得超过3.5MW/min.2、直流工况下主汽压力的调整。
主汽压力、中间点温度同时上升时,先减燃烧,后调给水。
主汽压力、中间点温度同时下降时,先加燃烧,后调给水。
主汽压力上升,中间点温度下降时,先降给水,后调燃烧。
主汽压力下降,中间点温度上升时,先加给水,后调燃烧。
3、锅炉水煤比是控制主蒸汽温度的主要和粗调手段,是主汽温度最终有效控制的前提。
一、二级减温水作为主蒸汽温度的辅助和细调手段。
4、中间点温度的变化既能快速反应水煤比变化,又能超前反应主汽温度的变化趋势。
维持该点温度稳定才能保证主蒸汽温度稳定。
5、在升/降负荷过程中,中间点温度提前调整(设定偏置),防止锅炉热惯性较大导致中间点温度偏离正常范围。
6、再热汽温通过调整后烟井过热器侧和再热器侧烟气挡板开度比例控制,每侧烟气挡板最小开度不得小于30%,两侧烟气挡板开度之和不得小于120%。
7、再热器事故喷水主要是防止在异常情况下再热汽温和金属壁温超限,正常运行时,尽量不采用事故喷水,事故喷水投入时,注意低温再热器出口蒸汽温度变化,提前调整。
锅炉吹灰时可短时间通过事故减温水控制再热汽温。
8、正常运行时,尽量将锅炉两侧氧量控制在给定值范围内,具体参数见附表。
9、锅炉燃烧调整遵循“风煤联动”原则,炉增加负荷时,应先增加风量后增加煤量,减负荷时,应先减煤后减风,按该次序交替进行,并采取“少量多次”的调整方式,避免床温产生大的波动。
10、一、二次风的调整原则是:一次风用于炉内物料正常流化,物料循环正常,并为燃料提供初始燃烧空气,二次风控制总风量及氧量并用于燃料的分级燃烧和调整;下二次风可作为一次风的补充。
11、高压流化风控制在45KPa左右一直运行。
循环流化床锅炉效率偏低原因分析与燃烧调整摘要:新时期经济发展下,循环流化床锅炉在工业生产中的应用较为广泛,为提高煤炭能源燃烧效率,针对流化床锅炉效率偏低原因进行分析,对燃烧调整与效率提升展开探讨。
关键词:循环流化床;锅炉效率;锅炉燃烧;燃烧调整引言随着环保要求日益严格,电站锅炉低NOx燃烧技术发展迅猛,对于有环保型燃煤发电设备美誉的流化床锅炉来说也面临巨大的压力。
由于早期的环保标准及现行的国外环保标准相对较宽松,流化床锅炉的NOx可实现直接达标排放,因此在流化床低NOx燃烧技术的研究方面进展缓慢。
我国火电厂近年开始推行超低排放政策,NOx要求达到50mg/Nm3以下,这对于流化床燃烧技术也提出了新的挑战。
1循环流化床锅炉相关概述我国是目前煤炭生产和消耗的第一大国,煤炭利用最广泛的方式为将其燃烧利用其热能,但是煤炭在燃烧过程中会产生大量的硫化物、氮氧化合物、碳氧化合物以及碳氢化合物等,严重污染环境,给可持续发展带来了隐患。
针对此问题,在煤炭的利用中采用洁净燃煤发电技术,主要包括有循环流化床燃烧、增压流化床燃烧、联合循环以及整体煤气化联合循环等。
循环流化床锅炉主要有物料循环与燃烧系统、风烟系统、汽水系统。
其中,物料循环与燃烧系统包括燃烧室、高温绝热式旋风分离器、U型阀返料器、冷渣器。
物料循环与燃料系统是循环流化床锅炉的关键部分,与其他锅炉有很大有的区别,因此在建模并对该型循环流化床的运行特性进行分析时,需在模型中精确体现设备内部各个主系统和辅助系统之间的相互关系。
2循环流化床锅炉效率偏低原因分析2.1锅炉灰渣未完全燃烧热损失灰渣未完全燃烧热损失是灰渣中可燃物含量造成的热量损失。
由于用无烟煤作燃料煤,燃尽时间长,很多燃料未完全燃烧就随灰渣排出,增加了灰渣未完全燃烧热损失。
如果用石灰石炉内脱硫则添加石灰石后,入炉灰渣由五部分组成,即入炉燃料带入的灰分、石灰石灰分(杂质)、未发生分解反应的碳酸钙、脱硫生成的硫酸钙和未参加脱硫反应的氧化钙。
循环流化床锅炉效率偏低原因分析与燃烧调整摘要:锅炉燃烧技术种类繁多,近些年比较流行的循环流化床锅炉在行业中比较走红,这种煤炭燃烧技术具有独有的特点,燃烧过程中效率更高、而且污染性很低、清洁度方面也很高。
该技术在煤炭燃烧过程中,能确保燃烧材料循环进行燃烧,同时还能实现脱硫反应,但事实上循环流化床锅炉技术在实际应用过程中受到较多因素的影响,并没有达到理想中的效果,本文针对影响循环流化床锅炉效率的根本原因进行了全面分析,并提出了调整方案。
关键词:循环流化床锅炉;锅炉技术;煤炭燃烧;锅炉效率引言正是由于该技术在实际应用过程中能源消耗比较低,煤炭燃烧效率高,所以该技术在市场上应用比较广泛。
随着新时代的发展低碳环保理念逐渐深入人心,人们赋予循环流化床锅炉更高的标准,大部分锅炉厂已经将原本的锅炉型式替换掉,采用循环流化床锅炉技术,能有效地控制整体的运行成本,还能促使运行效率的提升。
但是循环流化床锅炉技术在应用中,非常容易受到外界因素的影响,所以要及时找到影响因素,并有针对性的解决才能有助于提升该技术的使用效果。
1循环流化床锅炉燃烧过程目前循环流化床锅炉燃烧技术应用比较广泛,主要在燃烧的过程中煤炭颗粒会经过干燥处理,燃烧过程中逐渐达到一定膨胀点就会破碎,燃烧中还要经历两次挥发分析出过程,煤炭颗粒在稳定的挥发分析出中第一次的温度是控制在500~600°C,第二次是800~1000°C。
煤炭颗粒的挥发分产量,是由燃烧过程中锅炉运行速度和炉膛内产生的温度来决定的,燃烧方式也会受到一定影响,一般化学反应速率以及氧化扩散效率都会对燃烧方式造成影响,整个燃烧过程是经历了化学反应,并且达到氧化扩散反应的状态下开展的。
2影响因素该技术在实际应用过程中是通过对电量进行自动化管控的方式来对其进行调整控制的,通过自动化的方式能很好地控制煤炭在锅炉中燃烧的速度,而且还能对燃烧系统的发电量进行有效控制。
该技术在应用过程中,煤炭燃烧时会受到较多的外界因素影响,其中煤炭颗粒的大小就会对整体的燃烧情况造成影响,想要确保循环流化床锅炉能实现稳定的燃烧,则需要工作人员根据具体情况有针对性的进行调整。
循环流化床锅炉效率偏低原因分析与燃烧调整摘要:随着经济社会的不断发展,人们在生产生活中追求高效、绿色、节能、环保的产品,循环流化床锅炉在国内外得到了广泛的应用。
近段时间,大量的循环流化床锅炉投入使用,并朝着大容量以及超临界的方向发展,但是由于循环流化床锅炉自身的局限性,在实际操作的过程中不能满足其运行时需要的参数,就会酿成不可挽回的损失。
本文主要针对循环流化床锅炉工作效率低的原因以及燃烧调整进行简要分析。
关键词:循环;流化床;锅炉效率;偏低原因;燃烧调整1 循环流化床锅炉效率偏低原因1.1 低负荷的影响在循环流化床锅炉运行的过程中,相关的工作人员不能因为其负荷过低就降低风量,在降低风量的同时也要注意锅炉每个部位的正常流化和密封性,风量也不会因为负荷的降低而有所改变。
在低负荷状态下,锅炉所要耗费的电量较正常状态下低得多。
相关的工作人员可以将停炉后的冷态实验数据结合正在运行中的返料灰以及煤量进行考虑,循环流化床锅炉最低降到满负荷时的70%时流化风量则是在80MW,为了保持正常的供氧量,二次风量最低需要降到60kNm3/h,经过对上下二次风的调整,可以充分的保证风压不小于6kPa。
所以,面对这种情况需要留一台备用的设备,这样就可以保证循环流化床锅炉的正常使用。
1.2 排烟温度的影响因为在实际生产过程中,乙炔吹灰器吹灰的效果不尽如人意,虽然做了相关的调试但是依然没有理想的效果,尾部受热面污染之后继续恶化从而造成排烟的温度不断升高,与此同时,挥发性高的煤一般产生的热量低,在相同条件下需要耗费的燃料就会增多,从而造成所排烟气量和流速都会升高,进而排烟的温度以及排烟量多会增加,使得循环流化床锅炉的工作效率降低。
受热面积灰也是造成热传导不流畅的原因之一,主要是锅炉受热面积灰等现象,从而造成受热面传到热的能力下降,锅炉的吸热能力下降烟气所放的热量减少,使得所排出的烟温度升高;此外,当空气预热器堵灰会使空气预热器热传导的面积减小,烟气的放热量也随之减小这样就会使得排出烟的温度升高。
循环流化床锅炉与常规煤粉锅炉不但在结构上有所不同,而且在其燃烧方式和调节手段也有自身的特点。
循环流化床锅炉正常运行调整的主要参数除了汽温、汽压、炉膛负压之外,还应重点监视床温、床层压力、炉膛压差、旋风分离器灰温、旋风分离器料层高度、冷渣器工作状态、布风板压力、渣温、排渣温度等。
第一:床温控制床温是循环流化床锅炉需要重点监视的主要参数之一,床温的高低直接决定了整个锅炉的热负荷和燃烧效果,这是由床温是循环流化床锅炉的特点(动力控制燃烧)所决定的。
根据燃用煤种的不同,床温的控制范围一般在850~950℃左右,对于挥发分高的煤种,可以适当地降低,而对于挥发分低的煤种则可能要在900℃以上。
但不宜过高或过低,过低可能会造成不完全燃烧损失增大,脱硫效果下降,降低了传热系数,严重时会使大量未燃烧的煤颗粒聚集在尾部烟道发生二次燃烧,或者密相区燃烧分额不够使床温偏高而主汽温度偏低;床温过高则可能造成床内结焦,损坏风帽,被迫停炉。
一般应保证密相区温度不高于灰的变形温度100~150℃或更多。
调节床温的主要手段是调整给煤量和一、二次风量配比。
如果保持过剩空气量在合适范围内,增加或减少给煤量就会使床温升高或降低。
但此时要注意煤颗粒度的大小,颗粒过小时,煤一进入炉膛就会被一次风吹至稀相区,在稀相区或水平烟道受热面上燃烧,而不会使床温有明显地上升。
当煤粒径过大时,操作人员往往会采用较大的运行风量来保持料层的流化状态,否则会出现床料分层,床层局部或整体超温结焦,这样就会推迟燃烧时间,床温下降,炉膛上部温度在一段时间后升高。
当一次风量增大时,会把床层内的热量吹散至炉膛上部,而床层的温度反而会下降,反之床温会上升。
当然,一次风量一旦稳定下来,一般不要频繁调整,否则会破坏床层的流化状态,所以很多循环流化床锅炉都把一次风量小于某一值作为主燃料切除(MFT)动作的条件。
但在小范围内调节一次风量却仍是调整床温的有效手段。
二次风可以调节氧量,但不如在煤粉炉当中那么明显,有时增加二次风后就加强了对炉膛上部的扰动作用,会出现床温暂时下降的趋势,但过一段时间后因氧量的增加,床温总体上会呈现上升势头。
循环流化床锅炉调试及运行操作规程1. 简介循环流化床锅炉是一种高效、节能的燃煤锅炉,广泛应用于工业生产中。
本文将介绍循环流化床锅炉的调试及运行操作规程。
2. 锅炉调试2.1 燃烧系统调试2.1.1 检查煤仓煤位情况,确保充足的供煤量。
2.1.2 调试点火系统,保证点火可靠。
2.1.3 启动引风机,检查风压和风量是否符合要求。
2.1.4 调试主燃烧器,确保燃烧稳定。
2.1.5 调试过热器和再热器,检查水冷壁温度和烟温的分布情况。
2.2 循环系统调试2.2.1 检查循环系统泵的运行情况,确保循环介质流动畅通。
2.2.2 调试循环系统风机,检查风压和风量是否符合要求。
2.2.3 检查循环排渣系统,确保床料排渣畅通。
3. 锅炉运行操作规程3.1 启动操作3.1.1 按启动顺序依次启动给水泵、引风机、空气预热器等设备。
3.1.2 将循环系统泵切换到自动状态,确保循环介质流动正常。
3.1.3 点火操作,确保点火器点火可靠。
3.1.4 点火成功后,调节给水量和风量,使锅炉达到额定工况。
3.2 运行操作3.2.1 监测锅炉各参数,包括水位、压力、温度等,确保运行安全可靠。
3.2.2 根据燃烧状况,调节给水量和风量,保持燃烧稳定,并控制烟温在允许范围内。
3.2.3 定期检查锅炉各管道、阀门和仪表,确保运行畅通,并进行清洗和维护。
3.2.4 随时监测煤仓煤位,及时补充煤料。
3.2.5 在锅炉停机前,逐步关闭给水泵、引风机等设备,确保安全停机。
4. 应急处理4.1 锅炉故障4.1.1 对煤料进料系统进行检查,解决可能的堵塞问题。
4.1.2 检查给水系统,确保给水正常供应。
4.1.3 检查循环系统,保证循环介质流动正常。
4.1.4 联系维修人员进行故障排除。
4.2 突发情况处理4.2.1 发生漏水现象时,立即切断给水泵和燃料供应,并通知维修人员处理。
4.2.2 发生火灾时,立即启动应急停机装置,切断燃料供应和电源,并报警。
循环流化床锅炉冷态与燃烧调整试验技术导则循环流化床锅炉是一种高效能的锅炉设备,具有节能、环保和资源利用等优点。
为了确保循环流化床锅炉的正常运行和高效燃烧,需要进行冷态与燃烧调整试验。
本文将介绍循环流化床锅炉冷态与燃烧调整试验的技术导则。
一、试验目的和要求试验的目的是验证锅炉在冷态下的运行性能,同时调整燃烧参数,使锅炉燃烧效果达到最佳状态。
试验要求包括试验内容、试验对象、试验装置和试验环境等。
二、试验内容试验内容包括锅炉的静态试验和动态试验。
静态试验主要是测试和验证燃烧系统的各项参数;动态试验主要是通过调整燃烧参数,实现锅炉燃烧的最佳状态。
三、试验对象试验对象为循环流化床锅炉,在试验前需要进行清洗和检修,确保锅炉的各项设备和系统处于良好状态。
四、试验装置试验装置主要包括燃烧控制系统、燃烧器、测量和数据采集系统等。
燃烧控制系统需具备自动化控制功能,能对燃烧参数进行实时调整和监测。
五、试验环境试验环境包括锅炉房的温度、湿度、气流状态等因素。
试验前需要对环境因素进行调整和控制,以保证试验的准确性和可靠性。
六、试验步骤1. 静态试验:首先进行锅炉的冷态试验,主要测试和验证锅炉的压力、温度、流量、氧含量等参数。
依据试验结果,确定燃烧参数的初始值。
2. 动态试验:通过改变燃烧参数,对锅炉进行动态试验,主要包括燃烧空气流量、燃料供给量、床温、床层压降等参数的调整与监测。
根据试验结果,逐步调整燃烧参数,使锅炉燃烧效果达到最佳状态。
3. 数据处理与分析:试验结束后,对试验数据进行处理和分析,包括参数变化趋势、燃烧效率、废气排放等指标的计算和评估。
七、试验安全措施在进行试验时,需注意锅炉的安全运行,确保试验人员的人身安全。
试验前需检查试验装置和设备的安全性能,如燃烧器的点火装置、风门的开启程度等。
总结:循环流化床锅炉冷态与燃烧调整试验技术导则是确保锅炉正常运行和高效燃烧的重要工作。
通过静态试验和动态试验的组合,可以对锅炉的运行性能进行验证和调整,以实现锅炉燃烧的最佳状态。
器用风旁路;第三路,通过空气预热器后的热风送至炉前播料机出口播料用;二次风机的空气经空气预热器后,直接经二次风箱进入炉膛。
烟气最后由引风机抽出锅炉,经烟囱排入大气。
1 锅炉燃烧调整1.1 燃烧的过程首先在流化床内装上合适高度的底料,在冷态启动初期,启动床下各点火燃烧器将燃烧空气预热,热空气化床,加热床料,当具备一定温度后根据锅炉负荷逐步投入物料,使其着火。
在流化床内,空气与燃料是混合进行燃烧,经过化学反应后形成的固体粒子跟随气流上升,经炉内相关受热面后,进入旋风分离器,燃后在旋风分离器的作用下,较粗颗粒被分离下来反至到回料器,最后返回炉膛进行循环燃烧。
其烟气在引风机作用下,通过锅炉水平烟道,竖井烟道,省煤器,烟冷器,布袋除尘器等,最终经烟囱排出。
1.2 燃烧调整过程及原则在锅炉正常运行中,应根据锅炉负荷调整一、二次风量与燃料配比,同时要求流化风量不应低于流化试验的数值,在保证安全的前提下,使其达到最佳经济值,以保证锅炉热损失最小值。
根据锅炉负荷调整风与燃料配比,控制烟气含氧量在2.5%~4.5%,合理调整引风机出力,控制炉膛负压为正常值-50~-100Pa 左右。
在加负荷时原则上先通过二次风机增大0 引言本机组为循环流化床、自然循环锅炉, 半露天布置。
本锅炉构架为全焊接钢结构。
可通过钢筋与基础相连,柱与柱之间有横梁等构件支撑,以承受锅炉本体及由于地震引起的荷载。
锅筒、水冷系统、包墙、过热器、高温省煤器、出口烟道通过吊杆悬挂于顶板上,而其它部件如空气预热器、低温省煤器、回料器、集汽集箱均采用支撑结构支撑在横梁上。
锅炉需运行巡检的地方均设有平台扶梯。
锅炉由两个尾部竖井烟道以及一个独立的空气通道,两个蜗壳式绝热旋风分离器,一个膜式水冷壁炉膛组成。
其中尾部第一竖井烟道下部由护板烟道组成,上部由包墙包覆,第二竖井由护板烟道组成;空气通道由护板组成。
在炉内燃烧过程中形成的高温烟气与夹带着物料经过炉膛向上流动,通过水冷壁,高温过热器以及中温过热器,然后进入蜗壳式绝热旋风分离器,较粗的物料在旋风分离器内作用下被分离下来后进入的回料器,最后返回位于炉膛内布风板之上,实现循环燃烧。