第五章贝氏体相变
- 格式:ppt
- 大小:6.48 MB
- 文档页数:69
相变之间的中温区时,将发生贝氏体相变,亦称为典型的上贝氏体组织在光镜下观察时呈羽毛状、条状或针状,少数呈椭圆形或矩形。
光镜下电镜下素体条增多并变薄,条间渗碳体的数量增多,其形态也由粒状变为链珠状、短杆状、直至断续条状。
为间形成。
渗碳体,也可以是ε-碳化物,主要分布在铁素体条内部。
下贝氏体既可以在奥氏体晶界上形核,也可以在奥氏体晶粒内部形核。
光镜下电镜下下贝氏体中铁素体的碳含量远远氏体铁素体相似,也是往高于上贝氏体铁素体,而且未发现有孪晶亚结体相变区无碳化物贝氏体示意图)体相变区状(岛状)富碳奥氏体贝氏体相变是由一个单相(γ)转变为两个相(α相和碳化物)的过程,所以相变过程中子的扩散。
贝氏体相变时产生氏体保持一定的晶体学位向关系。
转变温度范围①转变的两个基本过程贝氏体的转变包含铁素体的成长和碳化物的析出两个过程。
Fe -Fe3C平衡状态图育期内由于碳原子的扩散重新分配,在奥氏体内形成富碳区和贫碳区,其Ms Bs奥氏体和贝氏体自由能与温度的关系素体的碳含量减低,则使其自由能降低,增大了新、母相自由能的差值。
某合金钢等温转变动力学示意图贝氏体和珠光体的转变曲线轮廓合为一条某合金钢等温转变动力学示意图(珠光体转变与贝氏体转变已分离)生的,贝氏体相变主要受碳的扩散所控制。
中的扩散速度所控制。
1)化学成分的影响温转变为碳含量增高,形成贝氏体时需要扩散的碳的数量入多种合金元素,其相互影响比较复杂。
相变速度提高。
当应力超过其屈服强度时,贝氏体相变速度的提高尤为显著。
高,有利于碳的扩散,故使贝氏体相变((分上贝氏体后再冷却至贝氏体相变的低温区(曲线2)时,将使下贝氏体相变的孕育期延长,速度,减少最终贝氏体转变量。
要低,体时脆性转折温度突然下降,其原因可能是:。
在此温度范围内,铁原子已难以扩散,而碳原子还能进行扩散,1.什么是贝氏体:贝氏体是由F和碳化物组成的非层片状组织。
2.上贝氏体:由于其中碳化物分布在铁素体片层间,脆性大,易引起脆断,因此,基本无实用价值。
下贝氏体:铁素体片细小且无方向性,碳的过饱和度大,碳化物分布均匀,弥散度大,因而,它具有较高的强度和硬度、塑性和韧性。
在实际生产中常采用等温淬火来获得下贝氏体,以提高材料的强韧性。
贝氏体转变的基本特征--兼有珠光体转变与马氏体转变的某些特征1.贝氏体转变有上、下限温度B s,Bf,点Bf与Ms无关2.转变产物为非层片状3.贝氏体转变通过形核及长大方式进行氏体不能全部转变为贝氏体) 5.转变的扩散性6.贝氏体转变的晶体学(“表面浮凸”)7.贝氏体铁素体也为碳过饱和固溶体.第二节以及柱状贝氏体等。
变区的上部(高温区)形成,所以称为上贝氏体。
在光学显微镜下观察呈羽毛状,故又称羽毛状贝氏体。
上贝氏体中铁素体呈板条状成束地自晶界向奥氏体晶内长人,不会穿越奥氏体晶界。
铁素体束由位向差很小的细小铁素体板条组成,这些板条称为“亚基元”在一束中,每个亚基元长到一定尺寸后,新的亚基元将优先在束的尖端而不是侧面形核特征:上贝氏体中的铁素体形成时可在抛光试样表面形成浮突。
上贝氏体中铁素体的惯习面为{111},与奥氏体之间的位向关系为K-S 关系。
碳化物的惯习面为{227},与奥氏体之间也存在一定的位向关系。
因此一般认为碳化物是从奥氏体中直接析出的。
上贝氏体铁素体束的宽度通常比相同温度下形成的珠光体铁素体片大,其亚结构为位错,位错密度较高,可形成缠结。
渗碳体的形态取决于奥氏体的碳含量,碳含量低时,渗碳体沿条间呈不连续的粒状或链珠状分布,随钢碳含量的增加,上贝氏体亚基元变薄,渗碳体量增多,并由粒状、链状过渡到短杆状甚至可分布在铁素体亚基元内。
形成温度:随形成温度的降低,α相变薄、变小,渗碳体也更细小和密集。
2、下贝氏体:1. 形成温度范围:下贝氏体大约在350℃-Ms之间形成,当碳含量很低时,其形成温度可能高于350℃与上贝氏体相似,下贝氏体也是由铁素体和碳化物组成的两相混合组碳含量低时呈板条状,碳含量高时呈透镜片状,碳含量中等时两种形在下贝氏体铁素体内部总有细微碳化物沉淀。