单因素模型与多因素模型(ppt 37)
- 格式:ppt
- 大小:207.50 KB
- 文档页数:37
因素模型杨长汉1证券资产价格的决定因素是多种多样的,西方学者在研究中采取了多种多样的方法去探讨证券价格的决定因素。
最主要的两种模型就是单因素模型和多因素模型。
一、单因素模型(Single-Index Model)夏普(William Sharp)于1963年建立了单因素模型2。
单因素模型是指证劵价格的影响因素只有一个,而如果有两个或两个以上的因素,则称为多因素模型。
单因素模型的基本思想是:当市场指数上升时,市场中大部分证券资产的价格就会上涨;相反,当市场指数下降时,市场中大部分证券资产的价格就会下降。
单因素模型中有以下两个基本假设条件:第一,证券的风险分为系统性风险和非系统性风险,而这里所讲的因素仅指系统性风险。
第二,一个证券的非系统性风险与其他证券的非系统性风险之间的相关系数为零,两种证券之间的相关性仅取决于共同的市场因素。
在单因素模型中,主要有两个基本因素会造成证券收益率的波动:一是宏观经济环境因素,比如GDP 增长率、利率、通货膨胀率等,这些因素的变化会引起证券市场中所有证券收益率的变化,相对于市场中的系统性风险;二是微观因素的影响,如公司的财务状况、公司的经营状况以及突发事件等,这些因素的变化只会引起个别证券收益率的变化,相当于市场中的非系统性风险,可以通过多样化的投资组合进行分散。
我们以股票的收益率和股价指数的收益率为例,可以得到如下单因素模型公式: it it i mt it r A R βξ=++这一公式揭示了股票的收益率与市场指数收益率之间的关系。
其中,it r 为t 时期证券i 的收益率,mt R 为t 时期市场指数的收益率,i β为斜率,表明股票收益率波动对市场指数波动的反应程度,代表两者的相关关系,it A 是截距项,反映市场指数为零时股票收益率的大1 文章出处:《中国企业年金投资运营研究》 杨长汉 著杨长汉,笔名杨老金。
师从著名金融证券学者贺强教授,中央财经大学MBA 教育中心教师、金融学博士。
APT 模型套利定价理论(Arbitrage Pricing Theory,简称APT)是由斯蒂夫•罗斯(Stephen Ross)于1976年提出的(在《经济理论杂志》上发表了经典论文“资本资产定价的套利理论”)。
他试图提出一种比CAPM 传统更好的解释资产定价的理论模型。
经过十几年的发展,APT 在资产定价理论中的地位已不亚于CAPM 。
APT 的研究思路研究者拓展问题的思路是:首先,分析市场是否处于均衡状态;其次,如果市场是非均衡的,分析投资者会如何行动;再次,分析投资者的行为会如何影响市场并最终使市场达到均衡;最后,分析在市场均衡状态下,证券的预期收益由什么决定。
套利定价理论认为,套利行为是现代有效率市场形成(亦即市场均衡价格形成)的一个决定因素。
套利定价理论认为,如果市场未达到均衡状态的话,市场上会存在无风险的套利机会。
一、因素模型套利定价理论的出发点是假设证券的回报率与未知数量的未知因素相联系。
套利定价理论是利用因素模型来描述资产价格的决定因素和均衡价格的形成机理的。
因素模型是一种统计模型。
(一)单因素模型:单因素模型认为证券收益率受到一种因素的影响,一般可以用下面的方程来表示单因素模型:这里, 是因素值, 是证券对这一影响因素的敏感度,即因素F 对于风险资产i 的收益率的影响程度,称它为灵敏度(sensitivity)或者因素负荷(factor loading )。
如果因素等于零,这种证券的收益率等于因素每变动一个单位,收益率 增减 单位。
是随机误差项,它是一个期望值为零、标准差等于 的随机变量。
根据单因素模型中参数的估计,证券i 的预期收益率可以写成:其中 项表示因素预期值为零时证券i 的预期收益率。
(二)多因素模型在现实经济中,影响预期收益率改变的因素往往有若干种,因此用多因素模型取代单因素模型分析证券的收益率,将会更切合实际。
我们首先从多因素模型的特列:两因素模型入手。
1.两因素模型假定收益率决定模型中含有两种因素,模型表达如下:(11.5)这里, 和 是影响证券收益率的两个因素; 和 是证券i 对这两个因素的灵敏度;同前面一样, 为随机误差项; 是当两个因素为零时证券i 的预期收益率。