当前位置:文档之家› 高等代数第3章第3节n阶行列式

高等代数第3章第3节n阶行列式

n阶行列式的计算方法

n 阶行列式的计算方法 徐亮 (西北师大学数信学院数学系 , 730070 ) 摘 要:本文归纳总结了n 阶行列式的几种常用的行之有效的计算方法,并举列说明了它们的应运. 关键词:行列式,三角行列式,递推法,升降阶法,得蒙行列式 The Calculating Method of the N-order Determinant Xu Liang (College o f M athematics and Information Scien ce ,North west Normal Uni versit y , Lanzhou 730070,Gansu ,Chin a ) Abstract:This paper introduces some common and effective calculating methods of the n-order determinant by means of examples. Key words: determinant; triangulaire determinant; up and down order; vandermonde determinant 行列式是讨论线形方程组理论的一个有力工具,在数学的许多分支中都有这极为广泛的应用,是一种不可缺少的运算工具,它是研究线性方程组,矩阵,特征多项式等问题的基础,熟练掌握行列式的计算是非常必要的.行列式的计算问题多种多样,灵活多变,需要有较强的技巧.现介绍总结的计算n 阶行列式的几种常用方法. 1. 定义法 应用n 阶行列式的定义计算其值的方法,称为定义法. 根据定义,我们知道n 阶行列式 12121211 12121222() 1212(1)n n n n n j j j j j nj j j j n n nn a a a a a a a a a a a a π= -∑ L L L L L M M L M L .

(完整版)三阶行列式的计算

三阶行列式 称左式的左边为三阶行列式,右边的式子为三阶行列式的展开式。 目录 1 基本概念 2 计算方法 1 基本概念 2 计算方法 1 基本概念 对于三元线性方程组,如上图利用加减消元法,为了容易记住其求解公式,但要记住这个求解公式是很困难的,因此引入三阶行列式的概念。 记称上式的左边为三阶行列式,右边的式子为三阶行列式的展开式。 2 计算方法 标准方法是在已给行列式的右边添加已给行列式的第一列、第二列。我们把行列式的左上角到右下角的对角线称为主对角线,把右上角到左下角的对角线称为次对角线。这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的三个对角线上的数的积的和减去次对角线的三个数的积与和次对角线平行的对角线上三个数的积的和的差。 例如 a1 a2 a3 b1 b2 b3 c1 c2 c3 结果为a1·b2·c3+b1·c2·a3+c1·a2·b3-a3·b2·c1-b3·c2·a1-c3·a2·b1(注意对角线就容易记住了)这里一共是六项相加减,整理下可以这么记: a1(b2·c3-b3·c2) + a2(b3·c1-b1·c3) + a3(b1·c2-b2·c1) 此时可以记住为: a1*a1的代数余子式+a2*a2的代数余子式+a3*+a3的代数余子式 某个数的代数余子式是指删去那个数所在的行和列后剩下的行列式。 行列式的每一项要求:不同行不同列的数字相乘 如选了a1则与其相乘的数只能在2,3行2,3列中找,(即在b2 b3 中找) c2 c3 而a1(b2·c3-b3·c2)+a2(b1·c3-b3·c1)+a3(b1·c2-b2·c1)是用了行列式展开运算:即行列式等于它每行的每一个数乘以它的代数余子式之和某个数的代数余子式是指删去那个数所在的行和列后剩下的行列式。

行列式习题答案

行列式习题答案

2 线性代数练习题 第一章 行 列 式 系 专业 班 姓名 学号 第一节 n 阶 行 列 式 一.选择题 1.若行列式x 5 22 31521- = 0,则 = x [ C ] (A )2 (B )2- (C )3 (D )3- 2.线性方程组? ? ?=+=+4 733 22 1 21 x x x x ,则方程组的解),(2 1 x x = [ C ] (A )(13,5) (B )(13-,5) (C )(13, 5 -) (D )(5,13--) 3 . 方 程 09 3 142112 =x x 根的个数是 [ C ] (A )0 (B )1 (C )2 (D )3

3 4.下列构成六阶行列式展开式的各项中,取“+”的有 [ A ] (A )665144322315 a a a a a a (B )6553443226 11a a a a a a (C ) 34 6542165321a a a a a a (D ) 26 654413 3251a a a a a a 5.若55 443211) 541() 1(a a a a a l k l k N -是五阶行列式ij a 的一项,则l k ,的 值及该项的符号为[ B ] (A )3,2==l k ,符号为正; (B )3,2==l k ,符号为负; (C )2,3==l k ,符号为正; (D )2,3==l k ,符号为负 6.下列n (n >2)阶行列式的值必为零的是 [ BD ] (A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个 二、填空题 1.行列式1 2 21 --k k 0 ≠的充分必要条件是 3,1 k k ≠≠- 2.排列36715284的逆序数是 13 3.已知排列397461t s r 为奇排列,则r = 2,8,5 s

计算N阶行列式若干方法

网上搜集的计算行列式方法总结, 还算可以. 计算n 阶行列式的若干方法举例 闵 兰 摘 要:《线性代数》是理工科大学学生的一门必修基础数学课程。行列式的计算是线性代数中的难点、重点,特别是n 阶行列式的计算,学生在学习过程中,普遍存在很多困难,难于掌握。计算n 阶行列式的方法很多,但具体到一个题,要针对其特征,选取适当的方法求解。 关键词:n 阶行列式 计算方法 n 阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例1 计算行列式 00100200 10 000 00n D n n = - 解 D n 中不为零的项用一般形式表示为 1122 11!n n n nn a a a a n ---=. 该项列标排列的逆序数t (n -1 n -2…1n )等于 (1)(2) 2 n n --,故 (1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算 例2 一个n 阶行列式n ij D a =的元素满足

,,1,2, ,,ij ji a a i j n =-= 则称D n 为反对称行列式,证明:奇数阶反对称行列式为零. 证明 由ij ji a a =-知ii ii a a =-,即 0,1,2, ,ii a i n == 故行列式D n 可表示为 1213112 23213 233123000 n n n n n n n a a a a a a D a a a a a a -=----- 由行列式的性质A A '= 1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -----=- 1213112 23213 23312300(1)0 n n n n n n n a a a a a a a a a a a a -=------ (1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0. 3.化为三角形行列式 若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。因此化三角形是行列式计算中的一个重要方法。 例3 计算n 阶行列式 a b b b b a b b D b b a b b b b a =

#行列式的计算方法 (1)

计算n 阶行列式的若干方法举例 1.利用行列式的性质计算 例: 一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-= 则称D n 为反对称 行列式, 证明:奇数阶反对称行列式为零. 证明:由ij ji a a =-知ii ii a a =-,即0,1,2, ,ii a i n == 故行列式D n 可表示为1213112 23213 233123000 n n n n n n n a a a a a a D a a a a a a -=-----,由行列式的性质A A '=,1213112 23213 23312300 00 n n n n n n n a a a a a a D a a a a a a -----=-12131122321323312300( 1)0 n n n n n n n a a a a a a a a a a a a -=------(1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0. 2.化为三角形行列式 例2 计算n 阶行列式123123 1 23 1 2 3 1111n n n n a a a a a a a a D a a a a a a a a ++=++. 解 这个行列式每一列的元素,除了主对角线上的外,都是相同的,且各列的结构相似,因此n 列之和全同.将第2,3,…,n 列都加到第一列上,就可以提出公因子且使第一列的元素全是1. [][]()()()()()()122323122 3231223231122 3 2 3 211 12, ,2,,11 111 1 1111 1111 11 1n n n n n n n n n i n i n n n n i i i i i n i n a a a a a a a a a a a a a a a a a a D a a a a a a a a a a a a a a a a a a a a a a ==+-==+++ +++++++??+++++=++ ??? +++ +++?? + ??? ∑∑3110100 111 . 00100 1 n n n i i i i a a a ==?? =+=+ ??? ∑∑

行列式的计算方法(课堂讲解版)

计算n 阶行列式的若干方法举例 n 阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例 计算行列式 00100 2001000000n D n n =-L L M M M M L L 解 D n 中不为零的项用一般形式表示为 112211!n n n nn a a a a n ---=L . 该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2) 2 n n --, 故(1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算 例: 一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-=L 则称D n 为反对称 行列式, 证明:奇数阶反对称行列式为零. 证明:由ij ji a a =-知ii ii a a =-,即0,1,2,,ii a i n ==L 故行列式D n 可表示为1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -=-----L L L L L L L L L ,由行列式的性质T A A =,

1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -----=-L L L L L L L L L 12131122321323312300(1)00 n n n n n n n a a a a a a a a a a a a -=------L L L L L L L L L (1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0. 3.化为三角形行列式 若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。因此化三角形是行列式计算中的一个重要方法。 化三角形法是将原行列式化为上(下)三角形行列式或对角形行列式计算的一种方法。这是计算行列式的基本方法重要方法之一。因为利用行列式的定义容易求得上(下)三角形行列式或对角形行列式的性质将行列式化为三角形行列式计算。 原则上,每个行列式都可利用行列式的性质化为三角形行列式。但对于阶数高的行列式,在一般情况下,计算往往较繁。因此,在许多情况下,总是先利用行列式的性质将其作为某种保值变形,再将其化为三角形行列式。 例1 计算行列式1 1231337952 4 213571464 410 10 2 D -----=-----. 解 这是一个阶数不高的数值行列式,通常将它化为上(下)三角行列式来计算. 23 42 2131 4151 323411231 11231 1-12-31 00102020410 204-1 020*********-10-20215302153001-120 2 2 2 2 2 2 2 2 -2 r r r r r r r r r r r r D +---?+------------------

n阶行列式的计算方法

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1定义法 (1) 2利用行列式的性质 (23) 化三角形行列式 (3) 4行列式按一行(列)展开 (4) 5 升阶法 (5) 6 递推法 (6) 7 范德蒙德行列式 (7) 8 拉普拉斯定理 (7) 9 析因法 (8) 小结 (10) 参考文献 (11)

n阶行列式的计算方法 学生姓名:孙中文学号:20120401217 数学与计算机科学系数学与应用数学专业 指导老师:王改霞职称:讲师 摘要:行列式是高等代数中最基本也是最重要的内容之一,是高等代数学习中的一个难点.本文主要探讨一般n阶行列式的计算方法和一些特殊的行列式求值方法.如:化三角形法、拉普拉斯定理法、升阶法等.总结了每种方法的行列式特征. 关键词:行列式;定义;计算方法 Abstract: Determinant is one of higher algebra the most fundamental and important content, is a difficult point in Higher Algebra Learning. This paper mainly discusses the general order determinant of calculation method and some special determinant evaluation method. Such as: triangle method, method of Laplace theorem, ascending order method. This paper summarizes the determinant of the characteristics of each method. Keywords: Determinant ;Definition ;Calculation method 引言 行列式是高等代数的一个非常重要的内容,同时它也是非常复杂的.它的计算方法多种多样.在我们本科学习中只解决了一些基本的有规律的行列式.当遇到低阶行列式时,我们可以根据行列式的性质及其定义便能计算得出结果.但对于一些阶数较大的n阶行列式来说,用定义法就行不通了,本文根据各行列式的特征总结了一些对应方法. 1定义法 n阶行列式计算的定义:

n阶行列式的计算方法

n阶行列式的计算方法 姓名: 学号: 学院: 专业: 指导老师: 完成时间:

n阶行列式的计算方法 【摘要】 本文主要针对行列式的特点,应用行列式的性质,提供了几种计算行列式的常用方法。例如:利用行列式定义直接计算法,根据行列式性质化为三角形列式法,按一行(列)展开以及利用已知公式法,数学归纳法与递推法,加边法,利用多项式性质法,拉普拉斯定理的应用。但这几种方法之间不是相互独立,而是相互联系的.一个行列式可能有几种解法,或者在同一个行列式的计算中将同时用到几种方法以简便计算。这就要求我们在掌握了行列式的解法之后,灵活运用,找到一种最简便的方法,使复杂问题简单化。 【关键词】 n阶行列式行列式的性质数学归纳法递推法加边法

Some methods of an n-order determinant calculation 【Abstract】In this paper, considering the characteristics of determinant, it provides several commonly used methods to calculate the determinant by applying the properties of the determinant . For example :The direct method of calculation by using the determinant definition . The method of changing the determinant into a triangular determinant According to the properties of the determinant. The method of expanding the determinant by line (column) .using the known formula , the mathematical induction, recursive Method , adding the edge method, using the properties of polynomial , the application of Laplace theorem. These methods are not independent of each other ,but interrelated. There is probably that a determinant has several solutions, or in the calculation of the same determinant there will be used several methods to calculate simply. This requires us to grasp several solution of the determinant,and to find the easiest ways after, so simplify complex issues . 【Key words】n-order determinant the property of the determinant the mathematical induction adding the edge method

线性代数§1.2n阶行列式习题与答案

§ n 阶行列式 为了得到更为一般的线性方程组的求解公式,我们需要引入n 阶行列式的概念。为此,先介绍排列的有关知识。 ㈠排列与逆序:(课本P4) 1、排列的定义:由数码1,2,…,n ,组成一个有序数组12n i i i L , 称为一个n 级排列。 【例1】1234是一个4级排列, 3412也是一个4级排列, 而52341是一个5级排列。(课本P4中例) 【例2】由数码1,2,3 组成的所有3级排列为:123,132,213,231,312,321共有3! = 6个。 【例3】数字由小到大的n 级排列1234…n 称为自然序排列。 2、逆序的定义:在一个n 级排列12n i i i L 中,如果有较大的数t i 排在s i 的前面,则称t i 与s i 构成一个逆序。(课本P4) 【例4】在4 级排列3412中, 31,32,41,42,各构成一个逆序, 在5 级排列34152中, 31,32,41,42,52,共构成5个逆序。 3、逆序数的定义:一个n 级排列12n i i i L 中逆序的总数,称为这个排列的逆序数,记为12()n N i i i L 。(课本P4) 【例5】排列3412的逆序数为N (3412) = 4, 排列52341的逆序数为N (52341) = 7, 自然序排列的逆序数为0。 4、奇、偶排列的定义:如果排列12n i i i L 的逆序数12()n N i i i L 是奇数,

则将12n i i i L 称为奇排列;如果排列12n i i i L 的逆序数12()n N i i i L 是偶数,则将12n i i i L 称为偶排列。(课本P4) 【例6】由于N (3412) = 4,知排列3412是偶排列, 由于N (52341) =7,知排列52341是奇排列, 由于N (123…n ) = 0,知自然排列123…n 是偶排列。 【例7】由数码1,2,3组成的所有3级排列为:123,132,213,231,312,321共有3! = 6个,其中,奇排列有132,213,321三个,偶排列有123,312,231三个。奇偶排列各占一半。 5、对换的定义:在一个n 级排列1t s n i i i i L L L 中,如果其中某两个数t i 与s i 对调位置,其余各数位置不变,就得到另一个新的n 级排列 1s t n i i i i L L L ,这样的变换称为一个对换,记作(,)t s i i 。(课本P5) 【例8】在排列3412中,将4与2对换, 得到新的排列3214。 【例9】偶排列3412经过4与2的对换后,变成了奇排列3214; 反之,奇排列3214经过2与4的对换后,变成了偶排列3412。 定理 任意一个排列经过一个对换后,其奇偶性改变。(课本P5) 定理的证明见课本P5。 【例10】奇排列132经对换(3,2)得到偶排列123, 偶排列312经对换(1,2)得到奇排列321。 定理1. 2 n 个数码(2n )共有n !个n 级排列,其中奇、偶排列各占一半。(课本P6) 定理的证明见课本P6。 【例11】由数码1,2,3组成的所有3级排列为:123,132,213,231,312,321共有3! = 6个,其中,奇排列有132,213,321三个,偶排列有

n阶行列式的计算方法

n 阶行列式的计算方法 1.利用对角线法则 “对角线法则”: (1)二、三阶行列式适用“对角线法则”;(2)二阶行列式每项含 2 项,三阶行列式每项含 3 项,每项均为不同行、不同列的元素 的乘积;(3)平行于主对角线的项为正号,平行于副对角线的项为负号。 例 1 计算二阶行列式 D = 1 3 。 2 4 解: D = 1 3 = 1? 4 ? 3 ? 2 = ?2 2 4 例 2 计算三阶行列式 D = 1 2 0 4 ? 3 8 。 0 ?1 2 解: D = 1 2 0 4 ? 3 8 = 1? (?3) ? 2 + 2 ? 8 ? 0 + 0 ? 4 ? (?1) ? 0 ? (?3) ? 0 ? 2 ? 4 ? 2 ?1? 8 ? (?1) 0 ?1 2 = ?14 2.利用 n 阶行列式的定义 a 11 a 12 ? a 1 n n 阶行列式 D = a 21 a 22 ? a 2 n =∑ (?1) τ a 1 p 1 a 2 p 2 ? a np n ? ? ? ( p 1 p 2 ? p n ) a n 1 a n 2 ?a nn 其中 τ = τ( p 1 p 2 ? p n ) , 求和式中共有 n ! 项。 显然有 a 11 a 12 ? a 1 n 上三角形行列式 D = a 22 ?a 2 n = a 11 a 22 ? a nn ? ? a nn a 11 下三角形行列式 D = a 21 a 22 ? = a 11 a 22 ? a nn ? ? a n 1 a n 2 ?a nn

第一章 第一节 n阶行列式的定义和性质(2)

第一章 行列式 行列式的概念是在研究线性方程组的解的过程中产生的. 它在数学的许多分支中都有着非常广泛的应用,是常用的一种计算工具。特别是在本门课程中,它是研究后面线性方程组、矩阵及向量组的线性相关性的一种重要工具。 §1.1 n 阶行列式定义和性质 一、 二、三阶行列式定义的引出 1. 二阶行列式 例1:二阶线性方程组 ?? ?=+=+2 2221211 212111b x a x a b x a x a 且021122211≠-a a a a . 解:利用加减消元可求得122122 112121 1211221221 11221221 , .b a a b a b b a x x a a a a a a a a --==-- 取 2112221122 21 1211a a a a a a a a D -== ,21222122 2 1211b a a b a b a b D -== , 得 .,2 21 1D D x D D x = = 定义1 二阶行列式 由22个数排成2行2列所组成下面的式子(或符号) 2112221122 21 1211a a a a a a a a -= 称为二阶行列式,行列式中每一个数称为行列式的元素,数ij a 称为行列式的元素,它的第一个下标i 称为行标,表明该元素位于第i 行,第二个下标j 称为列标, 表明该元素位于第 j 列.位于第i 行第j 列的元素称为行列式的),(j i 元。 2阶行列式由2 2个数组成,两行两列;展开式是一个数或多项式;若是多项式则必有2!2=项,且正负项的各数相同。 应用:解线性方程 例2:解方程组.328 3221 21 ???-=-=+x x x x 解 D 2 132-=13)2(2?--?=,7-=1D 233 8--=)3(3)2(8-?--?=,7-= 1112112121 21 2 a b D a b b a a b = =-

第一讲:n阶行列式

线性代数第一讲 概论 线性代数是一门普通的基础理论课,它被广泛地应用于科技的各个领域,尤其在计算机日益普及的今天,求解线性方程组等问题已成为研究科技问题经常遇到的课题。 线性代数重点研究应用科学中常用的矩阵法,线性方程组的基本知识,另外行列式也是一个有力的工具,在讨论上述问题时都要用到。 本门课程的特点,既有繁琐和技巧性很强的数字计算,又有抽象的概念和逻辑推理,在学习中,需要特别加强这两个方面的训练。 第一章 行列式 §1定义 一、 二阶、三阶行列式 中学学过解二元一次方程组 ?? ?=+=+221 1 21c y b x b c y a x a 如果有解,它的解完全可由他们的系数()212121,,,,,c c b b a a 表示出来。 ?? ?=+=+) 2()1(2 211 21c y b x b c y a x a 1 1 )1()2(b a ??? ?? ?=+=+) 4()3(2 12111112211c a y b a x b a b c y b a x b a ()()1 1211221) 3()4(c b c a y b a b a -=-? -. 若01221≠-b a b a ,则2 1 212111 1 2211121b b a a c b c a b a b a c b c a y ? = --= (2) 同理 2 1 212221b b a a b c a c x = (3) 其中 2 2 212 1 21 2111, ,b c a c b b a a c b c a 均称为二阶行列式 定义1.二阶行列式 bc ad d c b a -= (4) 是一个数,主对角线两数之积减副对角线两数之积(对角线法则) 同样,在解三元一次方程组??? ??=++=++=++3333231 2 2322211131211b z a y a x a b z a y a x a b z a y a x a (5)

四阶行列式的计算

四阶行列式的计算; N阶特殊行列式的计算(如有行和、列和相等); 矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算); 求矩阵的秩、逆(两种方法);解矩阵方程; 含参数的线性方程组解的情况的讨论; 齐次、非齐次线性方程组的求解(包括唯一、无穷多解); 讨论一个向量能否用和向量组线性表示; 讨论或证明向量组的相关性; 求向量组的极大无关组,并将多余向量用极大无关组线性表示; 将无关组正交化、单位化; 求方阵的特征值和特征向量; 讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵; 通过正交相似变换(正交矩阵)将对称矩阵对角化; 写出二次型的矩阵,并将二次型标准化,写出变换矩阵; 判定二次型或对称矩阵的正定性。 第二部分:基本知识 一、行列式 1.行列式的定义 用n^2个元素aij组成的记号称为n阶行列式。 (1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算 一阶|α|=α行列式,二、三阶行列式有对角线法则; N阶(n>=3)行列式的计算:降阶法 定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。

方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。 特殊情况 上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积; (2)行列式值为0的几种情况: Ⅰ行列式某行(列)元素全为0; Ⅱ行列式某行(列)的对应元素相同; Ⅲ行列式某行(列)的元素对应成比例; Ⅳ奇数阶的反对称行列式。 二.矩阵 1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等); 2.矩阵的运算 (1)加减、数乘、乘法运算的条件、结果; (2)关于乘法的几个结论: ①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵); ②矩阵乘法一般不满足消去律、零因式不存在; ③若A、B为同阶方阵,则|AB|=|A|*|B|; ④|kA|=k^n|A| 3.矩阵的秩 (1)定义非零子式的最大阶数称为矩阵的秩; (2)秩的求法一般不用定义求,而用下面结论: 矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。 求秩:利用初等变换将矩阵化为阶梯阵得秩。 4.逆矩阵 (1)定义:A、B为n阶方阵,若AB=BA=I,称A可逆,B是A的逆矩阵(满足半边也成立); (2)性质:(AB)^-1=(B^-1)*(A^-1),(A')^-1=(A^-1)';(A B的逆矩阵,你懂的)(注意顺序)

线性代数特殊行列式及行列式计算方法总结

特殊行列式及行列式计算方法总结 一、 几类特殊行列式 1. 上(下)三角行列式、对角行列式(教材P7例5、例6) 2. 以副对角线为标准的行列式 11112112,1 221222,11,21,1 1,11 2 ,1 (1)2 12,11 000000 0000 0000 (1) n n n n n n n n n n n nn n n n n n nn n n n n n a a a a a a a a a a a a a a a a a a a a a a ---------===-L L L L L L M M M M M M M M M N L L L L 3. 分块行列式(教材P14例10) 一般化结果: 00n n m n n m n m m n m m n m A C A A B B C B ????= =? 0(1)0n m n n m n mn n m m m n m m n A C A A B B C B ????= =-? 4. 范德蒙行列式(教材P18例12) 注:4种特殊行列式的结果需牢记! 以下几种行列式的特殊解法必须熟练掌握!!! 二、 低阶行列式计算 二阶、三阶行列式——对角线法则 (教材P2、P3) 三、 高阶行列式的计算 【五种解题方法】 1) 利用行列式定义直接计算特殊行列式; 2) 利用行列式的性质将高阶行列式化成已知结果的特殊行列式; 3) 利用行列式的行(列)扩展定理以及行列式的性质,将行列式降阶进行计算— —适用于行列式的某一行或某一列中有很多零元素,并且非零元素的代数余子式很容易计算; 4) 递推法或数学归纳法; 5) 升阶法(又称加边法)

第一章 n阶行列式

线性代数讲稿 讲稿编者:王杰 使用教材:《线性代数》 教学参考:《线性代数典型题分析解集》

第一章 n 阶行列式 §1.2 排列及其逆序数 1.排列:n 个依次排列的元素. 例如, 自然数1,2,3,4构成的不同排列有4!=24种. 1234, 1342, 1423, 1432, 1324, 1243 2134, 2341, 2413, 2431, 2314, 2143 3124, 3241, 3412, 3421, 3214, 3142 4123, 4231, 4312, 4321, 4213, 4132 例1 互异元素n p p p ,,,21 构成的不同排列有!n 种. 解 在n 个元素中选取1个 n 种取法 在剩余1-n 个元素中选取1个 1-n 种取法 在剩余2-n 个元素中选取1个 2-n 种取法 ……………… ………… 在剩余2个元素中选取1个 2种取法 在剩余1个元素中选取1个 1种取法 ------------------ 总共!n 种取法 2.标准排列:n 个不同的自然数从小到大构成的排列. n 个不同的元素按照某种约定次序构成的排列. 3.逆序数: (1) 某两个数(元素)的先后次序与标准次序不同时, 称这两个数(元素) 之间有1个逆序. (2) 排列n p p p 21中逆序的总和称为排列的逆序数, 记作)(21n p p p τ. 算法:固定),,2(n i =, 当i j <时, 满足的“”的个数记作(称为的逆序数), 那么. 例2 排列6372451中, . 例3 排列, 求逆序数. 解 记作 , , , …,

4.奇偶性:排列 奇数时, 称为奇排列; 偶数时, 称为偶排列. 5.对换: 相邻对换: 一般对换: 定理1 排列经过1次对换, 其奇偶性改变. 证先证相邻对换:(1) (2) :对换后增加1, 不变, 故; :对换后不变, 减少1, 故. 所以与的奇偶性相反. 再证一般对换:(1) (2) (3) (1)(2)经过次相邻对换 (2)(3)经过次相邻对换 (1)(3)经过次相邻对换, 所以与的奇偶性相反. 推论奇排列标准排列, 对换次数为奇数. 偶排列标准排列, 对换次数为偶数. §1.3 阶行列式的定义 1.二阶: 2.三阶: (1) 乘积中三个数不同行、不同列: 行标(第1个下标):标准排列123 列标(第2个下标):是1,2,3的某个排列(共6种) (2) 正项:123, 231, 312为偶排列 负项:132, 213, 321为奇排列 于是, . 3.阶:个数, 称 为阶行列式, 它表示数值 , 其中, 求和式中共有项. 例3 计算, . 解中只有一项不显含0, 且列标构成排列的逆序数为, 故.

n阶行列式的若干计算方法

n 阶行列式的若干计算方法 n 阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例计算行列式00100200 1000000n D n n =-L L M M M M L L 解D n 中不为零的项用一般形式表示为112211!n n n nn a a a a n ---=L . 该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2) 2 n n --, 故 (1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算 例:一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-=L 则称D n 为反对称行列式,证明:奇 数阶反对称行列式为零. 证明:由ij ji a a =-知ii ii a a =-,即0,1,2,,ii a i n ==L 故行列式D n 可表示为1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -=-----L L L L L L L L L ,由行列式的性质A A '=, 1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -----=-L L L L L L L L L 12131122321323312300(1)00 n n n n n n n a a a a a a a a a a a a -=------L L L L L L L L L (1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0. 3.化为三角形行列式

行列式的计算技巧窍门与方法情况总结(修改版)

-! 行列式的若干计算技巧与方法 内容摘要 1. 行列式的性质 2.行列式计算的几种常见技巧和方法 2.1 定义法 2.2 利用行列式的性质 2.3 降阶法 2.4 升阶法(加边法) 2.5 数学归纳法 2.6 递推法 3. 行列式计算的几种特殊技巧和方法 3.1 拆行(列)法 3.2 构造法 3.3 特征值法 4. 几类特殊行列式的计算技巧和方法 4.1 三角形行列式 4.2 “爪”字型行列式 4.3 “么”字型行列式 4.4 “两线”型行列式 4.5 “三对角”型行列式 4.6 范德蒙德行列式 5. 行列式的计算方法的综合运用 5.1 降阶法和递推法 5.2 逐行相加减和套用范德蒙德行列式 5.3 构造法和套用范德蒙德行列式

1.2 行列式的性质 性质1 行列互换,行列式不变.即 nn a a a a a a a a a a a a a a a a a a n 2n 1n2 2212n12111nn n2n12n 2221 1n 1211 . 性质2 一个数乘行列式的一行(或列),等于用这个数乘此行列式.即 nn n2 n1in i2i1n 11211 k k k a a a a a a a a a k nn a a a a a a a a a n2n1in i2i1n 11211. 性质3 如果行列式的某一行(或列)是两组数的和,那么该行列式就等于两个行列式的和,且这两个行列式除去该行(或列)以外的各行(或列)全与原来行列式的对应的行(或列)一样.即 111211112111121112212121 2 1212.n n n n n n n n n nn n n nn n n nn a a a a a a a a a b c b c b c b b b c c c a a a a a a a a a K K K M M M M M M M M M M M M K K K M M M M M M M M M M M M K K K 性质4 如果行列式中有两行(或列)对应元素相同或成比例,那么行列式为零.即 k a a a ka ka ka a a a a a a nn n n in i i in i i n 21 2121112 11nn n n in i i in i i n a a a a a a a a a a a a 212121112 11 =0. 性质5 把一行的倍数加到另一行,行列式不变.即

第一章n阶行列式

第一章 n 阶行列式 §1.2 排列及其逆序数 1.排列:n 个依次排列的元素. 例如, 自然数1,2,3,4构成的不同排列有4!=24种. 1234, 1342, 1423, 1432, 1324, 1243 2134, 2341, 2413, 2431, 2314, 2143 3124, 3241, 3412, 3421, 3214, 3142 4123, 4231, 4312, 4321, 4213, 4132 例1 互异元素n p p p ,,,21 构成的不同排列有!n 种. 解 在n 个元素中选取1个 n 种取法 在剩余1-n 个元素中选取1个 1-n 种取法 在剩余2-n 个元素中选取1个 2-n 种取法 ……………… ………… 在剩余2个元素中选取1个 2种取法 在剩余1个元素中选取1个 1种取法 ------------------ 总共!n 种取法 2.标准排列:n 个不同的自然数从小到大构成的排列. n 个不同的元素按照某种约定次序构成的排列. 3.逆序数: (1) 某两个数(元素)的先后次序与标准次序不同时, 称这两个数(元素) 之间有1个逆序. (2) 排列n p p p 21中逆序的总和称为排列的逆序数, 记作)(21n p p p τ. 算法:固定),,2(n i =, 当i j <时, 满足i j p p >的“j p ”的个数记作i τ(称为i p 的逆序数), 那么)(21n p p p τn ττ++= 2. 例2 排列6372451中, 1462230172=+++++=++=τττ . 例3 排列42)22)(2)(12(13 --n n n , 求逆序数.

线性代数之行列式的性质及计算

第二节 行列式的性质与计算 § 行列式的性质 考虑111212122212 n n n n nn a a a a a a D a a a = 将它的行依次变为相应的列,得 112111222212n n T n n nn a a a a a a D a a a = 称T D 为D 的转置行列式 . 性质1 行列式与它的转置行列式相等.(T D D =) 事实上,若记1112 12122212 n n T n n nn b b b b b b D b b b = 则(,1,2, ,)ij ji b a i j n == 12 12 () 12(1)n n p p p T p p np D b b b τ∴=-∑12 12() 12(1).n n p p p p p p n a a a D τ=-=∑ 说明:行列式中行与列具有同等的地位, 因此行列式的性质凡是对行成立的结论, 对列也同样成立. 性质2 互换行列式的两行(i j r r ?)或两列(i j c c ?),行列式变号. 例如 123 123086351.351 086 =- 推论 若行列式D 有两行(列)完全相同,则0D =. 证明: 互换相同的两行, 则有D D =-, 所以0D =. 性质3 行列式某一行(列)的所有元素都乘以数k ,等于数k 乘以此行列式,即 111211112 11212 1 2 12 n n i i in i i in n n nn n n nn a a a a a a ka ka ka k a a a a a a a a a =

推论:(1) D 中某一行(列)所有元素的公因子可提到行列式符号的外面; (2) D 中某一行(列)所有元素为零,则0D =; 性质4: 行列式中如果有两行(列)元素对应成比例, 则此行列式等于零. 性质5: 若行列式某一行(列)的所有元素都是两个数的和,则此行列式等于两个行列式的和.这两个行列式的这一行(列)的元素分别为对应的两个加数之一,其余各行(列)的元素与原行列式相同 .即 1112111221 2 n i i i i in in n n nn a a a a b a b a b a a a +++=1112112 12n i i in n n nn a a a a a a a a a +1112112 12 n i i in n n nn a a a b b b a a a . 证: 由行列式定义 12 12() 12(1)()n i i n p p p p p ip ip np D a a a b a τ=-+∑ 12 12 12 12() () 1212(1)(1).n n i n i n p p p p p p p p ip np p p ip np a a a a a a b a ττ=-+-∑∑ 性质6 行列式D 的某一行(列)的各元素都乘以同一数k 加到另一行(列)的相应元素上,行列式的值不变()i j r kr D D +=,即 11121121 2 i j n r kr i i in n n nn a a a a a a a a a +=1112111221 2 n i j i j in jn n n nn a a a a ka a ka a ka a a a +++ 计算行列式常用方法: 利用性质2,3,6, 特别是性质6把行列式化为上(下)三角形行列式, 从而, 较容易的计算行列式的值. 例1: 计算行列式 2 324311112321311 (1)(2) 323 4 11310 4 25 1113 D --= -

相关主题
文本预览
相关文档 最新文档