胶体表面化学
- 格式:docx
- 大小:3.64 KB
- 文档页数:2
胶体界面化学知识点总结胶体界面化学是研究在胶体系统中发生的化学现象和过程的科学,它涉及到界面的性质、结构和变化等方面。
胶体界面化学的研究对理解胶体系统的基本特性和应用具有重要的意义。
下面将对胶体界面化学的相关知识点进行总结。
一、胶体概念胶体是由两种或两种以上的相组成的复合系统,其中一个相是固体,另一个或另一些是液相或气相。
这些相都是微观分散的,且不易被重力沉淀的稳定性。
胶体是一种介于溶液和悬浮液之间的分散系统,在胶体中,含有微粒的相称为分散相,微粒与溶剂形成的相称为连续相。
胶体颗粒的尺寸一般在1-1000nm之间。
根据分散相的性质不同,胶体又可以分为溶胶、凝胶和乳胶等。
二、胶体稳定性胶体的稳定性是指其分散相维持分散状态的能力。
胶体稳定性与表面活性剂的类型和浓度、电解质的存在和浓度、电荷作用、范德华力等因素有关。
当表面活性剂存在时,会在分散相的表面形成一层物理吸附膜来减少表面能,改变表面性质,从而稳定胶体。
电解质的存在可以中和分散相表面的电荷,减少静电斥力,使胶体不稳定。
电荷作用和范德华力也会影响胶体的稳定性。
了解这些因素对胶体稳定性的影响对于胶体的应用和制备具有重要的意义。
三、界面活性剂界面活性剂是一类具有分子结构中同时含有亲水性和疏水性基团的化合物,它们在液体界面上降低表面张力,促进液体的分散和乳化,并有较强的渗透性和复合物形成性。
界面活性剂的主要作用包括降低表面张力、增加分散性、稳定胶体、乳化和分散。
根据亲水性基团的不同,界面活性剂可以分为阴离子、阳离子、非离子和两性离子界面活性剂。
界面活性剂的选择和使用对于控制胶体的稳定性和调控乳液、泡沫等具有重要的作用。
四、胶体的表面性质胶体的表面性质是指胶体颗粒的表面具有的润湿性、黏附性、表面能等物理化学性质。
胶体颗粒的表面性质与界面活性剂的类型和浓度、电解质的存在和浓度、溶剂的性质等有关。
表面性质的研究对于控制胶体的稳定性、界面活性剂的选择和应用有着重要的意义。
1、胶体的基本特性特有的分散程度;粒子大小在1nm~100nm之间多相不均匀性:在超级显微镜下可观察到分散相与分散介质间存在界面。
热力学不稳定性;粒子小,比表面大,表面自由能高,是热力学不稳定体系,有自发降低表面自由能的趋势,即小粒子会自动聚结成大粒子。
2、胶体制备的条件:分散相在介质中的溶解度须极小必须有稳定剂存在3、胶体分散相粒子大小分类分子分散系统胶体分散系统粗分散系统二、1、动力学性质布朗运动、扩散、沉降光学性质是其高度分散性与不均匀性的反映电学性质主要指胶体系统的电动现象丁达尔实质:胶体中分散质微粒散射出来的光超显微镜下得到的信息(1)可以测定球状胶粒的平均半径。
(2)间接推测胶粒的形状和不对称性。
例如,球状粒子不闪光,不对称的粒子在向光面变化时有闪光现象。
(3)判断粒子分散均匀的程度。
粒子大小不同,散射光的强度也不同。
(4)观察胶粒的布朗运动、电泳、沉降和凝聚等现象观察到胶粒发出的散射光,可观察布朗运动电泳沉降凝聚,只能确定质点存在和位置(光亮点),只能推测不能看到大小和形状2、胶体制备的条件溶解度稳定剂3、溶胶的净化渗析法、超过滤法4、纳米颗粒粒径在1-100之间纳米颗粒的特性与粒子尺寸紧密相关,许多特性可表现在表面效应和体积效应两方面。
5、布朗运动使胶粒克服重力的影响,6、I反比于波长λ的四次方7、溶胶产生各种颜色的原因;溶胶中的质点对可见光产生选择性吸收。
溶胶对光吸收显示特定波长的补色不吸收显示散射光的颜色agcl&agbr光透过浅红垂直淡蓝雾里黄灯减散,入射白光散射光中蓝紫色光散射最强天蓝是太阳散射光,早傍晚红色是透射光有宇散射作用8、9、胶粒带电原因:吸附、电离、同晶置换(晶格取代)、摩擦带电。
10、胶团结构:一定量难溶物分子聚结成中心称为胶核、然后胶核选择性的吸附稳定剂中的一种离子,形成紧密吸附层;由于正、负电荷相吸,在紧密层外形成反号离子的包围圈,从而形成了带与紧密层相同电荷的胶粒;胶粒与扩散层中的反号离子,形成一个电中性的胶团。
一、名词解释(每小题3分,共18分)1.格拉夫点2.乳状液一种液体以液珠形式分散在与它不相混溶的另一种液体中而形成的分散体系3.连续相在分散体系中分散其他物质的物质称连续相。
4.HLB值HLB值:表面活性剂为具有亲水基团和亲油基团的两亲分子,表面活性剂分子中亲水基和亲油基之间的大小和力量平衡程度的量,定义为表面活性剂的亲水亲油平衡值。
5.电渗在电场中,由于多孔支持物吸附水中的正负离子,使溶液相对带电,在电场作用下,溶液就向一定的方向移动,此种情况称为电渗现象6.感胶离子序是指一定量的电解质加入到胶体溶液中会使胶体破坏,发生聚沉。
同价数的反离子聚沉效率相近,但仍有差异,若按其聚感胶离子序沉能力排一次序,即为感胶离子序二、填空题(每空2分,共26分)1、脂肪醇与环氧乙烷的缩合物是属于()类的表面活性剂,其所含环氧乙烷的数目如果较大,则易溶于()中,其所含环氧乙烷的数目如果较小,则易溶于()中。
2、HLB值用来度量表面活性剂()的性质,一种表面活性剂的HLB值越大,则表示该种活性剂在()中的溶解度越大。
3、两性表面活性剂包括()型和()型两大类,在不同的PH条件下有不同的离解的方式,一般在酸性条件下呈()离子形式,在碱性条件下呈()离子形式,在特定PH条件下呈()形式,此时的PH值称为()。
4、脂肪酸皂是人类使用最早的表面活性剂,用于洗涤时,当水的硬度较大时,洗涤效果不好的原因是由于(),洗涤时,水温越(),效果越好。
三、论述题(每题10分,共40分)1、水溶液中,表面活性剂浓度达到CMC时,其溶液的性质会发生哪些变化?试用图形说明之。
CMC点即是:临界胶束浓度。
表示高于此浓度时,表面活性剂(特别是阴离子型表面活性剂)不以单分子形态存在溶液(这里指的是水)中,而是各亲油基聚合而亲水基伸向溶液成为胶束形态,此时溶液的增溶作用达到最大值,超过胶束浓度时增溶作用反而下降。
在表面活性剂使用中,CMC点的理论不只是应用于增溶,同时还有双电层作用等等。
物理化学中的表面现象与胶体化学物理化学是一门探讨物质性质变化及相关规律的学科。
与之相关的表面现象和胶体化学则是物理化学领域中一项重要的分支。
本文将从表面现象和胶体化学两个方面入手,探讨它们的基本概念、相关应用和研究意义。
一、表面现象观察一个物体,我们会发现它的表面是与外界直接接触的部分。
因此,表面现象是物质研究中一种极其普遍和重要的现象。
表面现象是指两种或两种以上介质相接触时,有特殊性质的现象出现。
在物理化学中,表面现象主要包括表面张力、毛细现象和润湿现象。
表面张力是液体表面处由于分子间作用力而表现出来的一种现象。
表面张力较大的液体在容器中形成凸面或水滴状,这种现象称为毛细现象。
液体与固体相接触时,液体能否在固体表面上均匀分布并附着称为润湿现象。
表面现象在自然界和人类生活中都有广泛应用。
例如,水平稳定的大船只是因为水面的表面张力;高楼大厦的毛细管水系统则利用了毛细现象;润滑油、乳液、涂料等都运用了润湿性质。
二、胶体化学胶体化学是涉及无色透明的小粒子(胶体)和它所处的环境之间的相互作用的学科。
胶体是介于小分子和宏观物体之间的一种存在形式,其中粒子的平均大小在1至1000纳米之间。
胶体物理包括多种胶体类型,例如溶胶、凝胶和气溶胶等。
胶体学科研究中的主要问题是如何制备胶体,以及在胶体中所表现出的各种特殊性质。
胶体的制备方法包括溶胶法、凝胶法和胶体化合物分解法等。
在胶体中存在的各种特殊现象包括布朗运动、泡沫现象和重力分选等。
胶体的应用十分广泛,例如在涂料、油墨、胶水、陶瓷、橡胶等方面都得到了广泛的应用。
另外,人类生命活动中的一些基础物质,例如蛋白质、肌肉等,都是以胶体形式存在的。
三、物理化学中的表面现象与胶体化学的关联表面现象与胶体化学之间有着密不可分的联系。
在液态物质中,固液接触面所呈现的动态变化与胶体的形成和演化密切相关。
例如,胶体粒子表面的物理化学特征决定了胶体粒子的成长和聚集行为。
此外,表面现象和胶体化学之间也有着一些实际应用。
胶体与表面化学原理在实际中的应用李猛钱楠高云飞徐州医学院药学院11药物制剂班摘要胶体与表面化学虽然原属物理化学的一个分支,却是物理化学的一个重要组成部分,是一门应用性极强的学科,它所研究的领域涉及到化学、物理学、材料科学、环境科学、生物化学等,是诸学科的交叉和重叠。
因此,它的应用领域是极其广泛的。
本文将对交替于表面化学的原理作初步的探讨并列举胶体与表面化学在制药工程以及其他领域的应用。
关键词胶体与界面分散体系医药应用引言研究分散体系(除小分子分散体系以外的胶体分散体系和一般粗分散体系)和界面现象的物理化学分支学科。
胶体和表面化学的研究和应用,实际上可追溯到远古时代。
如中国史前时期陶器的制造;4000年以前巴比伦楔形文字碑文中有关油膜(不溶单分子膜)的记载;肥皂以及皂角一类天然表面活性剂(洗涤剂)的应用;毛细现象的研究等等。
但作为一种科学,直到20世纪才得到具有本身特色的迅速发展。
1 胶体早在1861年,英国化学家T.格雷姆(Graham)在研究不同物质水中的扩散速度时发现有两类物质,他把扩散速度慢的、不易结晶的、易成粘稠状的一类物质称为胶体(colloid),而把扩散速度快的、易结晶的、不易成粘稠状的一类物质称为晶体(crystal)。
在胶体体系中,胶体质点成为一个相,周围的介质为另一相。
此种质点分布于介质中的体系称为分散体系:胶体质点分散于介质中的体系即为胶体分散体系,可分为3种基本类型:憎液溶胶(lyophobic colloid),简称溶胶(sol)、亲液胶体(lyophilic colloid)和缔合溶胶(association colloid)。
下表列举了几类溶胶的实例。
胶体研究的许多结果可以应用于高分子体系,从而大大推动了高分子的研究,高分子化学的部分领域也就归入胶体化学的范畴。
经典的胶体体系是热力学不稳定体系,是一相(质点)分布在另一相(介质)中的多相分散体系;而高分子质点分散在介质中的这种胶体体系却是热力学稳定的体系,是均相溶液,即高分子溶于溶剂而形成的溶液。
一、选择题(每小题2分,共20分)二、填空题 (每小题2分,共20分) 1. 离子吸附、固体物质的电离、晶格的取代 2. 布朗运动、胶粒的扩散、沉降平衡 3. O/W 、W/O4. 电泳、电渗、流动电势、沉降电势5. 颗粒与颗粒之间的空隙体积(V 隙)、颗粒内部的微孔体积(V 孔)、多孔物本身骨架的体积(V 骨)6. 47. 染色法、稀释法、导电法 8. 最可几孔径三、判断题(每小题1分,共8分) 1. ✗ 2. ✗ 3. ✓ 4. ✗ 5. ✗ 6. ✓ 7. ✗ 8. ✓四、计算题(1小题8分,2、3每小题6分共20分)1. bc abc T+-=⎥⎦⎤⎢⎣⎡∂∂1σ (2分) bccRT ab bc ab RT c c RT c T +⋅=⎥⎦⎤⎢⎣⎡+--=⎥⎦⎤⎢⎣⎡∂∂-=Γ11σ (2分)2633331311101.8100.062.191100.015.293314.862.190298.01----------⋅⨯=⋅⨯⋅+⋅⋅⨯⋅⋅⋅⨯⋅=+⋅=Γm m ol dm m ol dm m ol dm m ol m ol K J dm m ol m N bcc RT ab (4分)2.设混合乳化剂中Span60的质量百分浓度为x ,则Tween60的质量百分浓度应为1-x15.0 × 70% + 4.3 × 30% = 4.7 × x + 14.9 × (1-x ) (3分)解得x = 30.5% (3分) 即:应以30.5%的Span60与69.5%的Tween60混合为佳。
3.解: 比表面积:g m m S N V S A m 218232002.21656.12240010448.01002.6282240010=⨯⨯⨯⨯⨯=⨯=-- (3分)平均孔半径:nm S V r 625.4102.2165.0210233=⨯⨯=⨯=-(3分)注:公式对得2分;计算结果1分五、简答题(1小题4分、2、3每小题6分,4 、5小题8分共32分) 1.体系1是牛顿体,其流变曲线是直线,且通过原点。
胶体与外表化学复习题一、选择题1. 一个玻璃毛细管分别插入20℃和70℃的水中,则毛细管中的水在两不同温度水中上升的高度〔 C 〕。
(A) 一样;(B) 无法确定;(C) 20℃水中高于70℃水中;(D) 70℃水中高于20℃水中。
2. 以下表达不正确的选项是〔 D 〕。
(A) 比外表自由能的物理意义是,在定温定压下,可逆地增加单位外表积引起系统吉布斯自由能的增量;(B) 外表*力的物理意义是,在相外表的切面上,垂直作用于外表上任意单位长度功线的外表紧缩力;(C) 比外表自由能与外表*力量纲一样,单位不同;(D) 比外表自由能单位为J·m2,外表*力单位为 N·m-1时,两者数值不同。
3. 20℃时水~空气的界面*力为7.27 × 10-2N·m-1,当在20℃和100kPa下可逆地增加水的外表积4cm2,则系统的ΔG为〔 A 〕。
(A) 2.91 × 10-5 J ;(B) 2.91 × 10-1 J ;(C) -2.91 × 10-5 J ;(D) -2.91 × 10-1 J 。
4.在一个密闭的容器中,有大小不同的两个水珠,长期放置后,会发生〔 A 〕。
(A) 大水珠变大,小水珠变小;(B) 大水珠变大,小水珠变大;(C) 大水珠变小,小水珠变大;(D) 大水珠,小水珠均变小。
5. 一根毛细管插入水中,液面上升的高度为h,当在水中参加少量的NaCl,这时毛细管中液面的高度为〔 B 〕。
(A) 等于h;(B) 大于h;(C) 小于h;(D) 无法确定。
6. 关于溶液外表吸附的说法中正确的选项是〔 C 〕。
(A) 溶液外表发生吸附后外表自由能增加;(B) 溶液的外表*力一定小于溶剂的外表*力;(C) 定温下,外表*力不随浓度变化时,浓度增大,吸附量不变;(D) 饱和溶液的外表不会发生吸附现象。
7. 对处于平衡状态的液体,以下表达不正确的选项是〔 C 〕。
胶体化学与表面化学胶体化学是胶体体系的科学,随着胶体化学的迅速发展,它已成为一门独立的学科。
这是因为有一方面由于胶体现象很复杂,有它自己独特的规律性;它在科学研究方面发挥着巨大的作用;不仅如此,它与无机化学、材料化学等相关学科也有着密切关系,如利用微乳技术制取纳米颗粒、利用溶胶—凝胶法制压电陶瓷等。
胶体体系的重要特点之一,是具有很大的表面积。
任何表面,在通常情况下实际上都是界面,如水面即液体与气体的界面、桌面即固体与气体的界面等,在任何两相界面上都可以发生复杂的物理或化学现象,总称为表面现象,也就是界面现象。
胶体化学中所说的界面现象,不仅包括物体表面上发生的物理化学现象以及物体表面分子(或原子)和内部的有什么不同,而且还包括一定量的物体经高度分散后(这时表面积将强烈增大)给体系的性质带来怎样的影响,例如粉尘为什么会爆炸、小液珠为什么能成球、汞的小液滴在洁净玻璃上成球而水的小液滴铺展、活性炭为什么能脱色等等,这些问题都与界面现象有关。
界面现象涉及的范围很广,研究界面现象具有十分重要的意义。
表面化学就是研究表面现象的一门学科,从历史角度看,表面化学是胶体化学的一个重要分支,也是其中最重要的一个部门,二者密切相关。
胶体化学与表面化学内容包括胶体的制备和性质、凝胶、界面现象和吸附、乳状液的基本知识及其应用,如丁达尔现象、电泳及电渗、双电层结构和相应电位分布、双电层理论、DLVO理论、表面张力产生原因及肥皂去污等原理。
胶体的制备与性质和表面现象是胶体化学最核心内容。
胶体的制备与性质包括胶体的运动性质、光学性质、电学性质、流变性质、制备及净化方法及胶团的结构和与其相关的双电层理论及模型等相关内容:由于胶粒对光的散射作用产生了丁达尔现象;由于不同溶胶中胶粒的大小不同,使之对透过其中的光的散射、反射作用不同,故使溶胶产生各种颜色;由于胶粒带电的性质使之产生了电泳及电渗现象;由于它带电的性质又产生了双电层理论;又由于它带电的性质引出了DLVO理论及对其聚沉性的研究;在外力作用下胶体具有流变性质,所谓流变性,是指物质在外力作用下的流动和变形的性质。
胶体表面化学
胶体表面化学是研究胶体体系中表面现象及其相关化学性质和过程的学科。
胶体是由两种或多种相互不溶的物质组成的分散体系,其中分散相的粒径在1纳米至1微米之间。
胶体表面化学研究的重点是胶体颗粒表面的性质和与周围环境的相互作用。
胶体颗粒的表面是由分子、离子或原子组成的,具有高度的活性和特殊的化学性质。
在胶体体系中,胶体颗粒的表面和周围介质之间发生着吸附、解吸附、表面扩散、聚集等一系列表面现象。
这些表面现象的发生和调控,直接影响着胶体体系的稳定性、流变性质和功能性应用。
胶体表面化学的研究内容主要包括胶体颗粒的表面吸附现象、表面电荷和电荷调控、表面活性剂的吸附和胶体稳定性等。
其中,表面吸附现象是胶体表面化学的核心内容之一。
胶体颗粒表面的吸附是指溶质分子或离子在胶体颗粒表面附近的聚集现象。
这些溶质分子或离子可以通过静电作用、范德华力、化学键等相互作用力与胶体颗粒表面结合。
表面吸附的过程受到多种因素的影响,如温度、pH 值、离子强度等。
通过调控这些因素,可以改变胶体颗粒表面的吸附行为,从而实现对胶体体系的控制和调节。
表面电荷是胶体表面化学另一个重要的研究内容。
胶体颗粒表面的电荷来源于表面的游离或离子化的官能团。
这些电荷可以通过吸附或解吸附离子的方式来调节。
表面电荷的存在对胶体体系的稳定性
和流变性质有着重要影响。
具有相同电荷的颗粒会发生静电排斥,使胶体体系呈现分散状态。
相反,具有相反电荷的颗粒会发生静电吸引,使胶体体系发生聚集。
通过调节表面电荷的大小和性质,可以控制胶体体系的稳定性和流变性质。
表面活性剂的吸附是胶体表面化学的另一个重要内容。
表面活性剂是一类在界面上具有活性的化合物,可以降低表面张力,促进胶体颗粒和介质之间的相互作用。
表面活性剂的吸附行为受到表面张力、界面电位、分子结构等因素的影响。
通过调节表面活性剂的类型和浓度,可以改变胶体体系的表面性质和稳定性。
胶体表面化学的研究在许多领域具有重要应用价值。
在材料科学领域,胶体表面化学的研究可以用于合成纳米材料、制备多孔材料和功能薄膜等。
在生物医学领域,胶体表面化学的研究可以用于制备纳米药物载体、生物传感器和基因传递系统等。
在环境科学领域,胶体表面化学的研究可以用于处理废水和土壤污染物。
胶体表面化学的发展将为这些领域的研究和应用提供新的思路和方法。
胶体表面化学是研究胶体颗粒表面现象及其相关化学性质和过程的学科。
通过研究胶体颗粒表面的吸附现象、表面电荷和电荷调控、表面活性剂的吸附等内容,可以实现对胶体体系的控制和调节。
胶体表面化学在材料科学、生物医学和环境科学等领域具有广泛的应用前景,为相关领域的研究和应用提供了新的思路和方法。