浙江省2015届高三五校联考数学理试卷(二)
- 格式:doc
- 大小:1.01 MB
- 文档页数:11
第Ⅰ卷(共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.命题“存在0x ∈R ,02x ≤0”的否定是( )A .不存在0x ∈R, 02x>0 B .存在0x ∈R, 02x ≥0C .对任意的x ∈R, 2x≤0D .对任意的x ∈R, 2x>0【答案】D考点:含有量词命题的否定. 2.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,为真命题的是 ( )A . ①和②B . ②和③C . ③和④D . ②和④ 【答案】D 【解析】试题分析:对于①没有说明两条相交直线,不对;对于②根据平面与平面垂直的判定定理正确;对于③垂直于同一直线的两条直线可能平行、相交、异面,不对;对于④根据平面与平面平行的性质定理正确,故答案为D. 考点:空间中直线、平面的位置关系.3.为得到函数()cos f x x x =,只需将函数y x x ( )A . 向左平移512πB .向右平移512πC .向左平移712πD .向右平移712π【答案】C考点:1、三角函数的化简;2、函数图象的平移.4.已知A 、B 、C 为直线l 上不同的三点,点O ∉直线l ,实数x 满足关系式220x OA xOB OC ++=,有下列结论中正确的个数有 ( )① 20OB OC OA -⋅≥; ② 20OB OC OA -⋅<;③ x 的值有且只有一个; ④x 的值有两个;⑤ 点B 是线段AC 的中点.A .1个B .2个C .3个D .4个 【答案】C 【解析】试题分析:由题意得OB x OA x OC --=2,C B A ,, 为直线l 上不同的三点,点l O ∉,因此0122=++x x ,解得1-=x ,()+=∴21,=⋅-∴2()⋅-+241()0412≥-=又由于1-=x ,()OC OA OB +=21,因此x 的值只有一个,点B 是线段AC 的中点,故答案为C.考点:平面向量及应用.5.已知映射():(,)0,0f P m n P m n '→≥≥.设点()3,1A ,()2,2B ,点M 是线段AB 上一动点,:f M M '→.当点M 在线段AB 上从点A 开始运动到点B 结束时,点M的对应点M '所经过的路线长度为 ( )A .12π B .6π C . 4π D . 3π 【答案】B 【解析】试题分析:设点()y x M ,'从A '开始运动,直到点B '结束,AB 的方程()214≤≤=+x y x ,由于()y x M ,',则()22,y x M ,由点M 在线段AB 可得422-+y x ,按照映射得,()()3,13,1A A '→,()()1,31,3B B '→,3tan ='∠∴OX A ,3π='∠∴OX A ,122tan =='∠OX B ,4π='∠∴OX B ,故OX B OX A B O A '∠-'∠=''∠12π=,点M 对应的点M '所经过的路线长度为弧长6212ππ=⨯=⨯''∠r B O A .考点:映射的概念和函数的性质.6.如图,已知椭圆C 1:112x +y 2=1,双曲线C 2:22ax —22b y =1(a >0,b >0),若以C 1的长轴为直径的圆与C 2的一条渐近线交于A 、B 两点,且C 1与该渐近线的两交点将线段AB 三等分,则C 2的离心率为 ( )A .5B .5C .17D .7142 【答案】A【解析】试题分析:双曲线12222=-b y a x 的一条渐近线方程x a b y =,代入椭圆11122=+y x ,可得221111ba a x +±=,渐近线与椭圆相交的弦长2222111121ba aa b +⋅+,1C 与渐近线的两交点将线段AB 三等分,∴2222111121b a aa b +⋅+11231⋅⋅=,整理得a b 2=,a b a c 522=+=∴,离心率5=e ,故答案为A.考点:1、双曲线的简单几何性质;2、椭圆的应用.7.半径为R 的球内部装有4个半径相同的小球,则小球半径r 的可能最大值为( ). AR BR CD【答案】C 【解析】试题分析:四个小球两两相切并且四个小球都与大球相切时,这些小球的半径最大,以四个小球球心为顶点的正四面体棱长为r 2,该正四面体的中心(外接球球心)就是大球的球心,该正四面体的高为r r r 362332422=⎪⎪⎭⎫ ⎝⎛-,该正四面体的外接球半径为x ,则222332362⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=r x x , 解得r x 26=,r r R +=∴26,R r 636+=∴,故答案为C. 考点:内切球的半径.8.某学生对一些对数进行运算,如下图表格所示:现在发觉学生计算中恰好有两次地方出错,那么出错的数据是 ( ) A .(3),(8) B .()4,(11) C .()1,(3) D .(1),(4) 【答案】A 【解析】试题分析:对于数据(4)(11)5lg 8.2lg +c a c b a ++-+-=221b a 21+-14lg =,数据正确,对于数据(1)(3),232100lg 021.0lg +-++=+c b a 12-++=c b a 1.2lg =,10114lg 4.1lg g -=b a 2+-= ==4.11.2lg5.1lg 134.1lg 1.2lg -+-=-c b a 与(3)对应不起来,(1)(3)其中有错误,对于(1)(4)=-1.2lg 8.2lg ()()12221-++--+-c b a c b a c b a 242-+-=,结合图中的数据 1.2lg 8.2lg -3lg 2lg 234lg-==()3lg 5lg 12--=c b a 242-+-=正好对应出来,(1)(4)正确,故错误的为(3),结合选项,答案为A. 考点:对数的运算.第Ⅱ卷(共110分)二、填空题(每题4分,满分28分,将答案填在答题纸上)9.设全集U R =,集合2{|340}A x x x =--<,2{|log (1)2}B x x =-<,则AB = ,A B = ,RC A = .【答案】()4,1,()5,1-,(][)+∞-∞-,41, 【解析】试题分析:{}{}41|043|2<<-=<--=x x x x x A ,由()21log 2<-x 得⎩⎨⎧<->-4101x x ,得51<<x ,{}51|<<=x x B ,()4,1=∴B A ,()5,1-=B A ,{}41|≥-≤=x x x A C R 或(][)+∞-∞-=,41, .考点:集合的基本运算.10.若某多面体的三视图如右图所示,则此多面体的体积为___,外接球的表面积为 .【答案】32;π3. 【解析】试题分析:该几何体的正方体内接正四面体,如图中红色,此四面体的所有棱长为2,因此底面积为()232432==S ,顶点在底面上射影是底面的中心,高()3322632222=⎪⎪⎭⎫ ⎝⎛⋅-=h , 多面体的体积31332233131=⋅⋅==Sh V ;多面体的外接球的直径是正方体的对角线3,表面积ππ32342=⎪⎪⎭⎫⎝⎛.考点:由三视图求表面积和体积.11.若{}max ,a b 表示,a b 两数中的最大值,若{}2()max ,xx f x e e-=,则()f x 的最小值为 ,若{}()max ,x x tf x e e -=关于2015x =对称,则t = .【答案】e ;4030. 【解析】试题分析:画出函数x e y =,2-=x ey 的图象,取两者较大的部分,由2-=x x ee ,交点横坐标20<<x 得xx e e -=2,1=x ,当1=x 时,()e x f =min ;对于函数xe y =,tx ey -=交点⎪⎪⎭⎫ ⎝⎛2,2te t ,图象关于2t x =对称,故20152=t ,得4030=t.考点:函数图象的应用.12.{}N m m x x x A n n n ∈=<<=+,3,22|1,若n A 表示集合n A 中元素的个数,则5A = ,则12310...A A A A ++++= .【答案】11;682. 【解析】试题分析:当5=n 时,65232<<m ,364332<<∴m ,即2111≤≤m ,115=∴A , 由于n2不能整除3,从12到102,326823211=,3的倍数,共有682个, 6821021=+++∴A A A考点:集合中元素的个数.13.直角ABC ∆的三个顶点都在给定的抛物线22y x =上,且斜边AB 和y 轴平行, 则RT ABC ∆斜边上的高的长度为 . 【答案】2. 【解析】试题分析:由题意知,斜边垂直于x 轴,设点⎪⎪⎭⎫ ⎝⎛c c C ,22,点⎪⎪⎭⎫ ⎝⎛b b B ,22,则点⎪⎪⎭⎫⎝⎛-b b A ,22, ⎪⎪⎭⎫ ⎝⎛+-=∴b c b c ,222,⎪⎪⎭⎫⎝⎛--=c b c b ,222,由于CB AC ⊥,0=⋅∴,整理得422=-c b ,斜边上的高为点C 到AB 的距离2222=-c b.考点:抛物线的简单几何性质.14.圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示 ,正方形的顶点A 和点P 重合)沿着圆周顺时针滚动,经过若干次滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为 .【答案】()π222+.【解析】试题分析:圆的半径1=r ,正方形ABCD 的边长1=a ,正方形的边为弦时所对的圆心角3π, 正方形在圆上滚动了三圈,点的顺序依次为如图,第一次滚动,点A 的路程661ππ=⨯=AB A ,第二次滚动时,点A 的路程ππ6262=⨯=AC A ,第三次滚动时,点A 的路程ππ6163=⨯=DA A , 第四次滚动时,点A 的路程04=A ,点A 所走过的路径长度为()()22234321π+=+++A A A A .考点:弧长的计算.15.已知动点(,)P x y 满足220(1x y x x y ⎧+≤⎪⎪≥⎨⎪+≥⎪⎩,则222x y y ++的最小值为【答案】21- 【解析】试题分析:由()()11122≥++++y y x x ,得y y x x -+≥++1122,1122+-+≥+∴x y y x()()1122+++-+≥+∴x y x y x y y x ,化简得()⎪⎪⎭⎫⎝⎛+++-+++++11112222y x y y x x y x 0≥,0≥+∴y x ,不等组等价⎪⎩⎪⎨⎧≥+≥≤+0022y x x y x ,不等组表示的平面区域如图所示,()1122222-++=++y x y y x ,其中()221++y x 表示()y x ,到()1,0-的距离的平方,由图可知,点A 到直线x y -=的距离的平方就是()221++y x 的最小值,由点到直线的距离公式得()221++y x 的最小值21212=⎪⎪⎭⎫ ⎝⎛,因此()1122222-++=++y x y y x 的最小值21121-=-.考点:线性规划的应用.三、解答题 (本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.) 16.(本小题满分15分)已知ABC ∆的面积为S ,且S 2=⋅. (1)求cos A ;(2)求a 求ABC ∆周长的最大值.【答案】(1)33;(2)18366++. 【解析】试题分析:(1)在三角形中处理边角关系时,一般全部转化为角的关系,或全部转化为边的关系.题中若出现边的一次式一般采用正弦定理,出现边的二次式一般采用余弦定理,应用正弦、余弦定理时,注意公式变形的应用,解决三角形问题时,注意角的限制范围;(2)在三角形中,注意隐含条件π=++C B A ;(3)解决三角形问题时,根据边角关系灵活的选用定理和公式;(4)平方关系和商数关系式中的角都是同一个角,且商数关系式中Z k k ∈+≠,2ππα;利用平方关系解决问题时,要注意开方运算结果的符号,需要根据角α的范围确定.试题解析:(1)∵△ABC 的面积为S ,且2AB AC S ⋅=,∴1cos sin 2bc A bc A =,∴sin A A =,∴A 为锐角,且2222213sin cos sin sin sin 122A A A A A +=+==,∴sin A =,所以cos A . (2)3sin sin sin c a bC A B===所以周长为3sin 3sin 6sin cos22B C B Ca b c B C +-++=+6sincos22AB C π--6cos cos 6cos 222A B C A-≤sin A =,所以cos A =,2cos 2cos 12A A =-=,所以cos 2A =考点:1、三角形的面积公式;2、正弦定理的应用;3、三角形的周长.17.(本小题满分15分)在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,AB BC ⊥侧面PAB ⊥底面ABCD ,2PA AD AB ===,4BC =.(1)若PB 中点为E .求证://AE PCD 平面;(2)若060PAB ∠=,求直线BD 与平面PCD 所成角的正弦值.【答案】(1)证明略;(2)510. 【解析】试题分析:(1)解决立体几何的有关问题,空间想象能力是非常重要的,但新旧知识的迁移融合也很重要,在平面几何的基础上,把某些空间问题转化为平面问题来解决,有时很方便;(2)证明线面平行常用方法:一是利用线面平行的判定定理,二是利用面面平行的性质定理,三是利用面面平行的性质;(3)证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中的一条垂直于这个平面,则另一条也垂直于这个平面.解题时,注意线线、线面与面面关系的相互转化;(4)在求三棱柱体积时,选择适当的底作为底面,这样体积容易计算. 试题解析:(1)取PC 的中点F ,连结DF ,EF 由于F E ,分别是PC PB ,的中点,BC EF //∴,BC EF 21= 又由于BC AD //,BC AD 21=//AD EF ,且AD EF =,所以ADFE 为平行四边形. //AE DF ∴,且AE 不在平面PCD 内,DF 在平面PCD 内,所以//AE PCD 平面 (2)等体积法令点B 到平面PCD 的距离为hP BCD V -=B PCD V -P BCD V -=,13B PCD PCD V S h -∆=又PCD S ∆=h ∴=直线BD 与平面PCD 所成角θ的正弦值sin h BD θ===. 考点:1、直线与平面平行的判定;2、直线与平面所成的角. 18.(本小题满分15分)函数()1f x mx x a x =--+, (1)若1,0m a ==,试讨论函数()f x 的单调性; (2)若1a =,试讨论()f x 的零点的个数;【答案】(1)()f x 在(,0]-∞和[0.5,)+∞上为增函数,在[0,0.5]上为减函数;(2)当13m -≤<-+()11f x mx x x =--+有且仅有一个零点1x =;当3m =-+1m <-或1m ≥或0m =时,函数()11f x mx x x =--+有两个零点;当30m -+<<或01m <<时,()11f x mx x x =--+有三个零点. 【解析】试题分析:把0,1==a m 代入函数()x f ,根据绝对值不等式的几何意义去掉绝对值的符号,根据函数的解析式作出函数的图象,根据函数图象讨论函数的单调性;(2)把函数()11+--=x x mx x f 的零点转化为方程11x mx x -=-的根,作图11x y x -=-和y mx =的图象,直线移动过程中注意在什么范围内有一个零点,在什么范围内有两个零点,三个零点,通过数形结合解决有关问题.试题解析:(1)221(0)()11(0)x x x f x x x x x x x ⎧-+≥⎪=-+=⎨-++<⎪⎩图像如下:所以()f x 在(,0]-∞和[0.5,)+∞上为增函数,在[0,0.5]上为减函数; (2)()110f x mx x x =--+=的零点,除了零点1x =以外的零点 即方程11x mx x -=-的根作图11x y x -=-和y mx =,如图可知:当直线y mx =的斜率m : 当0m =时有一根; 当01m <<时有两根; 当1m ≥时,有一根; 当1m <-时,有一根;当13m -≤<-+y mx =和1(0)1x y x x -=<-相切时)没有实数根;当3m =-+y mx =和1(0)1x y x x -=<-相切时)有一根;当30m -+<<时有两根. 综上所述:当13m -≤<-+()11f x mx x x =--+有且仅有一个零点1x =;当3m =-+1m <-或1m ≥或0m =时,函数()11f x mx x x =--+有两个零点;当30m -+<<或01m <<时,()11f x mx x x =--+有三个零点. 考点:1、函数的单调性;2、函数零点的个数.19.(本小题满分15分)如图,在平面直角坐标系xOy 中,离心率为2的椭圆:C 22221(0)x y a b a b+=>>的左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于,P Q 两点,直线,PA QA 分别与y 轴交于,M N 两点.若直线PQ 斜率为时,PQ =(1)求椭圆C 的标准方程;(2)试问以MN 为直径的圆是否经过定点(与直线PQ 的斜率无关)?请证明你的结论.【答案】(1)12422=+y x ;(2)过定点()0,2±. 【解析】试题分析:(1)设椭圆的方程,若焦点明确,设椭圆的标准方程,结合条件用待定系数法求出22,b a 的值,若不明确,需分焦点在x 轴和y 轴上两种情况讨论;(2)解决直线和椭圆的综合问题时注意:第一步:根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步:联立方程:把所设直线方程与椭圆的方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式∆:计算一元二次方程根.第四步:写出根与系数的关系.第五步:根据题设条件求解问题中结论.试题解析:(1)设00(,)2P x x , ∵直线PQ斜率为2时,PQ =2200()32x x +=,∴202x = ∴22211a b +=,∵2c e a ===,∴224,2a b ==. ∴椭圆C 的标准方程为22142x y +=. (2)以MN为直径的圆过定点(F .设00(,)P x y ,则00(,)Q x y --,且2200142x y +=,即220024x y +=, ∵(2,0)A -,∴直线PA 方程为:00(2)2y y x x =++ ,∴002(0,)2y M x + , 直线QA 方程为:00(2)2y y x x =+- ,∴002(0,)2y N x -, 以MN 为直径的圆为000022(0)(0)()()022y y x x y y x x --+--=+- 即222000220044044x y y x y y x x +-+=--,∵220042x y -=-,∴22220x x y y y ++-=, 令0y =,2220x y +-=,解得x =∴过定点:(.考点:1、椭圆的标准方程;2、直线与椭圆的综合问题.20.(本小题满分14分)已知数列{}n a (*N n ∈,146n ≤≤)满足1a a =, 1,115,1,1630,1,3145,n n d n a a n n d+⎧⎪⎪-=⎨⎪⎪⎩≤≤≤≤≤≤其中0d ≠,*N n ∈.(1)当1a =时,求46a 关于d 的表达式,并求46a 的取值范围; (2)设集合{|,,,,116}i j k M b b a a a i j k i j k *==++∈<<N ≤≤.①若13a =,14d =,求证:2M ∈;②是否存在实数a ,d ,使18,1,5340都属于M ?若存在,请求出实数a ,d ;若不存在,请说明理由.【答案】(1)(][)+∞-∞-,4614, ;(2)①证明略;②不存在实数d a ,. 【解析】试题分析:(1)等差数列基本量的求解是等差数列的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用,对于xbax +的形式求最值,利用基本不等式,注意讨论0>x 及0<x 两种形式;(2)与数列有关的探索问题:第一步:假设符合条件的结论存在;第二步:从假设出发,利用题中关系求解;第三步,确定符合要求的结论存在或不存在;第四步:给出明确结果;第五步:反思回顾,查看关键点. 试题解析:(1)当1a =时,16115a d =+,311615a d =+,4611615()a d d =++.因为0d ≠,21d d +≥,或21d d-+≤, 所以46(,14][46,)a ∈-∞-+∞.(2)①由题意1134n n a -=+,116n ≤≤,314i j k b ++-=+.令3124i j k ++-+=,得7i j k ++=. 因为,,i j k *∈N ,116i j k <<≤≤,所以令1,2,4i j k ===,则2M ∈.②不存在实数a ,d ,使18,1,5340同时属于M .假设存在实数a ,d ,使18,1,5340同时属于M .(1)n a a n d =+-,∴3(3)b a i j k d =+++-,从而{|3,342,}M b b a md m m Z ==+∈≤≤.因为18,1,5340同时属于M ,所以存在三个不同的整数,,x y z ([],,3,42x y z ∈),使得13,831,533,40a xd a yd a zd ⎧+=⎪⎪+=⎨⎪⎪+=⎩从而7(),86(),5y x d z x d ⎧-=⎪⎪⎨⎪-=⎪⎩则3548y x z x -=-. 因为35与48互质,且y x -与z x -为整数, 所以||35,||48y x z x --≥≥,但||39z x -≤,矛盾.所以不存在实数a ,d ,使18,1,5340都属于M .考点:1、等差数列的通项公式;2、与数列有关的探究问题.。
2015年浙江省高三五校第二次联考理科综合答案1----6 C B A B D D7-13 D C C D C C C14.B 15.D 16.A 17.A 18. AC 19. BD 20. ABC21.(1)3.6(2分) (2)D (2分) (3)使B 拉力减小;减小M 的重力大小;A 换成量程更大的弹簧测力计或改变B 的拉力方向等(任选两个) (4分,写一个得2分)22. (1)0.155±0.002 (2分)(2)25.0±0.5 (2分)(3)A 2 R 2 (各1分) 如图(2分) B (2分)23. (1)由图乙知 物块沿斜面上升的位移:39112483m m s =⨯⨯= ……①(2分) 物块沿斜面下滑的距离:55122481m m s =⨯⨯= ……②(2分)∴位移s =s 1-s 2=12m ……③(2分)路程L = s 1+s 2=74m ……④(2分)(2)由图乙知,各阶段加速度的大小a 1=6m/s 2 ……⑤(1分)a 2=12m/s 2 ……⑥(1分)设斜面倾角为θ,斜面对物块的摩擦力为f ,根据牛顿第二定律 0~0.5s 内 1s i n f F F m g m aθ--= ……⑦(2分) 0.5~0.75s 内 2s i n f F m g m a θ+= ……⑧(2分)由⑤⑥⑦⑧得 F =36N ……⑨(2分)24. 解析:(1)物块A 滑到轮带最低点速度为v 0=6m/s (4分)(2)由20212121mv mv mgl -=-μ (1分) F F N G 2 a 1 F f GG 1可得,物块A 速度大小s m v /241=(2分)(3)A 反弹速度s m v v /222112==A 向右经过PQ 段,由gl v v μ22223-=- (1分)得A 的速度s m v /23= (1分)A 滑上圆形轨道,由2312022mgh mv -=-⨯(1分)(也可以应用 223211222222mgl mgh mv mv μ-⨯-=⨯-⨯)可得,返回到右边轨道的高度为0.2h m R ==,h ≤R 符合实际。
浙江省五校联考2015届高考数学二模试卷(理科)一、选择题:(每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)命题“存在x0∈R,2≤0”的否定是()A.不存在x0∈R,2>0 B.存在x0∈R,2≥0C.对任意的x∈R,2x≤0D.对任意的x∈R,2x>02.(5分)给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是()A.①和②B.②和③C.③和④D.②和④3.(5分)为得到函数f(x)=cosx﹣sinx,只需将函数y=sinx()A.向左平移B.向右平移C.向左平移D.向右平移4.(5分)已知A、B、C为直线l上不同的三点,点O∉直线l,实数x满足关系式x2=,有下列结论中正确的个数有()①≥0;②<0;③x的值有且只有一个;④x的值有两个;⑤点B是线段AC的中点.A.1个B.2个C.3个D.4个5.(5分)已知映射.设点A(1,3),B(2,2),点M是线段AB上一动点,f:M→M′.当点M在线段AB上从点A开始运动到点B 结束时,点M的对应点M′所经过的路线长度为()A.B.C.D.6.(5分)如图,已知椭圆C 1:+y 2=1,双曲线C 2:﹣=1(a >0,b >0),若以C 1的长轴为直径的圆与C 2的一条渐近线交于A 、B 两点,且C 1与该渐近线的两交点将线段AB 三等分,则C 2的离心率为()A .B . 5C .D .7.(5分)半径为R 的球内部装有4个半径相同的小球,则小球半径r 的可能最大值为()A .B .C .D .8.(5分)某学生对一些对数进行运算,如图表格所示:x 0.021 0.27 1.5 2.8lgx 2a+b+c ﹣3(1) 6a ﹣3b ﹣2(2) 3a ﹣b+c (3) 1﹣2a+2b ﹣c (4)x 3 5 6 7lgx 2a ﹣b (5) a+c (6) 1+a ﹣b ﹣c (7) 2(a+c )(8) x 8 9 14lgx 3﹣3a ﹣3c (9) 4a ﹣2b (10) 1﹣a+2b (11) 现在发觉学生计算中恰好有两次地方出错,那么出错的数据是()A . (3),(8)B . (4),(11)C . (1),(3)D . (1),(4)二、填空题本大题共7小题,每小题5分,共35分.9.(5分)设全集U=R ,集合A={x|x 2﹣3x ﹣4<0},B={x|log 2(x ﹣1)<2},则A∩B=,A∪B=,C R A=.10.(5分)若某多面体的三视图如图所示,则此多面体的体积为,外接球的表面积为.11.(5分)若max{a,b}表示a,b两数中的最大值,若f(x)=max{e|x|,e|x﹣2|},则f(x)的最小值为,若f(x)=max{e|x|,e|x﹣t|}关于x=2015对称,则t=.12.(5分)A n={x|2n<x<2n+1,x=3m,m∈N},若|A n|表示集合A n中元素的个数,则|A5|=,则|A1|+|A2|+|A3|+…+|A10|=.(5分)直角△ABC的三个顶点都在给定的抛物线y2=2x上,且斜边AB和y轴平行,则RT△ABC 13.斜边上的高的长度为.14.(5分)圆O的半径为1,P为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A与点P重合)沿圆周逆时针滚动,点A第一次回到点P的位置,则点A走过的路径的长度为.15.(5分)已知动点P(x,y)满足,则x2+y2+2y的最小值为.三、解答题:(本大题共5小题,共74分.解答应写出文字说明,证明过程或演算步骤)16.(15分)已知△ABC的面积为S,且S.(1)求cosA;(2)求a=,求△ABC周长的最大值.17.(15分)在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,AB⊥BC侧面PAB⊥底面ABCD,PA=AD=AB=2,BC=4.(1)若PB中点为E.求证:AE∥平面PCD;(2)若∠PAB=60°,求直线BD与平面PCD所成角的正弦值.18.(15分)函数f(x)=mx|x﹣a|﹣|x|+1(1)若m=1,a=0,试讨论函数f(x)的单调性;(2)若a=1,试讨论f(x)的零点的个数.19.(15分)如图,在平面直角坐标系xOy中,离心率为的椭圆C:+=1(a>b>0)的左顶点为A,过原点O的直线(与坐标轴不重合)与椭圆C交于P,Q两点,直线PA,QA分别与y轴交于M,N两点.若直线PQ斜率为时,PQ=2.(1)求椭圆C的标准方程;(2)试问以MN为直径的圆是否经过定点(与直线PQ的斜率无关)?请证明你的结论.20.(15分)已知数列{a n}(n∈N*,1≤n≤46)满足a1=a,a n+1﹣a n=其中d≠0,n∈N*.(1)当a=1时,求a46关于d的表达式,并求a46的取值范围;(2)设集合M={b|b=a i+a j+a k,i,j,k∈N*,1≤i<j<k≤16}.①若a=,d=,求证:2∈M;②是否存在实数a,d,使,1,都属于M?若存在,请求出实数a,d;若不存在,请说明理由.浙江省五校联考2015届高考数学二模试卷(理科)参考答案与试题解析一、选择题:(每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)命题“存在x0∈R,2≤0”的否定是()A.不存在x0∈R,2>0 B.存在x0∈R,2≥0C.对任意的x∈R,2x≤0D.对任意的x∈R,2x>0考点:特称命题;命题的否定.专题:简易逻辑.分析:根据特称命题的否定是全称命题,直接写出该命题的否定命题即可.解答:解:根据特称命题的否定是全称命题,得;命题“存在x0∈R,2≤0”的否定是“对任意的x∈R,都有2x>0”.故选:D.点评:本题考查了全称命题与特称命题的应用问题,解题时应根据特称命题的否定是全称命题,写出答案即可,是基础题.2.(5分)给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是()A.①和②B.②和③C.③和④D.②和④考点:平面与平面垂直的判定;平面与平面平行的判定.专题:空间位置关系与距离;简易逻辑.分析:从直线与平面平行与垂直,平面与平面平行与垂直的判定与性质,考虑选项中的情况,找出其它可能情形加以判断,推出正确结果.解答:解:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;如果这两条直线平行,可能得到两个平面相交,所以不正确.②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;这是判定定理,正确.③垂直于同一直线的两条直线相互平行;可能是异面直线.不正确.④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.正确.故选:D.点评:本题考查平面与平面垂直的判定,平面与平面平行的判定,是基础题.3.(5分)为得到函数f(x)=cosx﹣sinx,只需将函数y=sinx()A.向左平移B.向右平移C.向左平移D.向右平移考点:两角和与差的正切函数.专题:三角函数的图像与性质.分析:由条件利用两角和差的余弦公式化简函数的解析式,再利用函数y=Asin(ωx+φ)的图象变换规律,可得结论.解答:解:由于f(x)=cosx﹣sinx=2cos(x+),函数y=sinx=2cos(x ﹣),+=,故把函数y=sinx=2cos(x﹣)的图象向左平移个单位,即可得到f(x)=2cos(x+)的图象,故选:C.点评:本题主要考查两角和差的余弦公式,函数y=Asin(ωx+φ)的图象变换规律,4.(5分)已知A、B、C为直线l上不同的三点,点O∉直线l,实数x满足关系式x2=,有下列结论中正确的个数有()①≥0;②<0;③x的值有且只有一个;④x的值有两个;⑤点B是线段AC的中点.A.1个B.2个C.3个D.4个考点:平面向量数量积的含义与物理意义.专题:综合题;平面向量及应用.分析:由存在实数x满足x2=,△≥0,得出①正确、②错误;由x2+2x+=,得出=﹣x2﹣2x,根据平面向量的基本定理,得出﹣x2﹣2x=1,判断③正确、④错误;由=(+),得出B是线段AC的中点,判断⑤正确.解答:解:对于①,存在实数x满足x2=,∴﹣•≥0,∴①正确;对于②,由①知,②错误;对于③,∵x2+2x+=,变形为=﹣x2﹣2x,∵A、B、C为直线l上不同的三点,点O∉直线l,∴﹣x2﹣2x=1,解得x=﹣1,∴③正确;对于④,由③知,④错误;对于⑤,由③知,=(+),∴点B是线段AC的中点,⑤正确;综上,正确的命题是①③⑤.故选:C.点评:本题考查了平面向量的应用问题,也考查了一元二次方程有实数根的应用问题,是综合性题目.5.(5分)已知映射.设点A(1,3),B(2,2),点M是线段AB上一动点,f:M→M′.当点M在线段AB上从点A开始运动到点B 结束时,点M的对应点M′所经过的路线长度为()A.B.C.D.考点:映射.专题:函数的性质及应用.分析:根据所给的两个点的坐标写出直线的方程,设出两个点的坐标,根据所给的映射的对应法则得到两个点坐标之间的关系,代入直线的方程求出一个圆的方程,得到轨迹是一个圆弧,求出弧长.解答:解:设点M′从A′开始运动,直到点B′结束,由题意知AB的方程为:x+y=4.设M′(x,y),则M(x2,y2),由点M在线段AB上可得 x2+y2=4.按照映射f:P(m,n)→P′(,),可得 A(1,3)→A′(1,),B(3,1)→B′(,),故tan∠A′OX==,∴∠A′OX=.tan∠B′OX==1,∴∠B′OX=,故∠A′OB′=∠A′OX﹣∠B′OX=,点M的对应点M′所经过的路线长度为弧长为=∠A′OB′•r=×2=;故选:B.点评:本题考查弧长公式和轨迹方程,本题解题的关键是利用相关点法求出点的轨迹,题目不大,但是涉及到的知识点不少,属于基础题.6.(5分)如图,已知椭圆C1:+y2=1,双曲线C2:﹣=1(a>0,b>0),若以C1的长轴为直径的圆与C2的一条渐近线交于A、B两点,且C1与该渐近线的两交点将线段AB三等分,则C2的离心率为()A.B.5 C.D.考点:双曲线的简单性质.专题:计算题;直线与圆;圆锥曲线的定义、性质与方程.分析:求出一条渐近线方程,联立直线方程和圆的方程、椭圆方程,求得交点,再由两点的距离公式,将|AB|=3|CD|,化简整理,即可得到b=2a,再由a,b,c的关系和离心率公式,即可得到结论.解答:解:双曲线C2:﹣=1(a>0,b>0)的一条渐近线方程为y=x,以C1的长轴为直径的圆的方程为x2+y2=11,联立渐近线方程和圆的方程,可得交点A(,),B(﹣,﹣),联立渐近线方程和椭圆C1:+y2=1,可得交点C(,),D(﹣,﹣),由于C1与该渐近线的两交点将线段AB三等分,则|AB|=3|CD|,即有=,化简可得,b=2a,则c==a,则离心率为e==.故选A.点评:本题考查双曲线的方程和性质,考查直线与圆、椭圆的位置关系,考查离心率的求法,属于基础题.7.( 5分)半径为R的球内部装有4个半径相同的小球,则小球半径r的可能最大值为()A.B.C.D.考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:由题意,四个小球两两相切并且四个小球都与大球相切时,这些小球的半径最大,以四个小球球心为顶点的正四面体棱长为2r,该正四面体的中心(外接球球心)就是大球的球心,求出正四面体的外接球半径,即可求得结论.解答:解:由题意,四个小球两两相切并且四个小球都与大球相切时,这些小球的半径最大.以四个小球球心为顶点的正四面体棱长为2r,该正四面体的中心(外接球球心)就是大球的球心,该正四面体的高为=,设正四面体的外接球半径为x,则x2=(﹣x)2+()2,∴x=r,∴R=r+r,∴r=R.故选:C.点评:本题考查点、线、面距离的计算,考查学生分析解决问题的能力,确定四个小球两两相切并且四个小球都与大球相切时,这些小球的半径最大是关键.8.(5分)某学生对一些对数进行运算,如图表格所示:x 0.021 0.27 1.5 2.8lgx 2a+b+c﹣3(1)6a﹣3b﹣2(2)3a﹣b+c(3)1﹣2a+2b﹣c(4)x 3 5 6 7lgx 2a﹣b(5)a+c(6)1+a﹣b﹣c(7)2(a+c)(8)x 8 9 14lgx 3﹣3a﹣3c(9)4a﹣2b(10)1﹣a+2b(11)现在发觉学生计算中恰好有两次地方出错,那么出错的数据是()A.(3),(8)B.(4),(11)C.(1),(3)D.(1),(4)考点:对数的运算性质.专题:函数的性质及应用.分析:写出对数值的关系式,然后判断正误即可.解答:解:由题意可知:lg0.21=lg3+lg7﹣1=2a+b+c﹣3;lg0.27=2lg3﹣2=6a﹣3b﹣2;lg1.5=lg3+lg5﹣1=3a﹣b+clg2.8=2lg2+lg7﹣1,lg3=2a﹣b,lg5=a+clg6=lg2+lg3=1+a﹣b﹣c,lg7=2a+2c,lg8=3﹣3a﹣3c,lg9=2lg3=4a﹣2b,lg14=lg2+lg7=1﹣a+2b.有上述各式,可以看出,lg3,lg9,lg0.27是正确的关系式,则lg7=2a+2c,lg0.21=lg3+lg7﹣1=2a+b+c﹣3,可知lg7错误;由lg5=a+c,lg1.5=lg3+lg5﹣1=3a﹣b+c,可知lg5错误;即(3),(8)错误.故选:A.点评:本题考查对数的运算性质,推理与证明的应用,考查分析问题解决问题的能力.二、填空题本大题共7小题,每小题5分,共35分.9.(5分)设全集U=R,集合A={x|x2﹣3x﹣4<0},B={x|log2(x﹣1)<2},则A∩B=(1,4),A∪B=(﹣1,5),C R A=(﹣∞,﹣1]∪[4,+∞).考点:交、并、补集的混合运算.专题:集合.分析:求出A与B中不等式的解集确定出A与B,找出A与B的交集,并集,求出A的补集即可.解答:解:由A中不等式变形得:(x﹣4)(x+1)<0,解得:﹣1<x<4,即A=(﹣1,4),由B中不等式变形得:log2(x﹣1)<2=log24,得到0<x﹣1<4,解得:1<x<5,即B=(1,5),∴A∩B=(1,4),A∪B=(﹣1,5),∁R A=(﹣∞,﹣1]∪[4,+∞).故答案为:(1,4);(﹣1,5);(﹣∞,﹣1]∪[4,+∞)点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.10.(5分)若某多面体的三视图如图所示,则此多面体的体积为,外接球的表面积为3π.考点:球内接多面体;球的体积和表面积.专题:计算题;空间位置关系与距离.分析:由三视图可知:该几何体是正方体的内接正四面体.可得此多面体外接球的直径是次正方体的对角线.即可得出.解答:解:由三视图可知:该几何体是正方体的内接正四面体(红颜色).∴多面体的体积为1﹣×1=.此多面体外接球的直径是此正方体的对角线.因此其球的表面积是4π•=3π.故答案为:,3π.点评:本题考查了正方体的三视图、球的表面积计算公式,考查了推理能力与计算能力,属于基础题.11.(5分)若max{a,b}表示a,b两数中的最大值,若f(x)=max{e|x|,e|x﹣2|},则f(x)的最小值为e,若f(x)=max{e|x|,e|x﹣t|}关于x=2015对称,则t=4030.考点:指数函数单调性的应用.专题:函数的性质及应用.分析:化简函数的解析式,再利用函数y={e|x|的图象和函数y=e|x﹣t 的图象关于直线x=对称,从而得出结论.解答:解:由于f(x)=max{e|x|,e|x﹣2|}=,故f(x)的最小值为f(1)=e.若f(x)=max{e|x|,e|x﹣t|}关于x=2015对称,则=2015,求得t=4030,故答案为:e;4030.点评:本题主要考查指数函数的单调性,分段函数的应用,属于基础题.12.(5分)A n={x|2n<x<2n+1,x=3m,m∈N},若|A n|表示集合A n中元素的个数,则|A5|=11,则|A1|+|A2|+|A3|+…+|A10|=219﹣29.考点:元素与集合关系的判断.专题:集合.分析:分n为奇数和偶数两种情况,根据等差数列的前n项和公式即可求出答案.解答:解:当n为奇数时,A n中的各个元素组成以2n+1为首项,3为公差的等差数列,设项数为m,则2n+1﹣1=2n+1+3(m﹣1),所以m=,∴|A5|==11,当n为偶数时,n﹣1时奇数,可知2n﹣1+1是3的倍数,因此2n+2=2(2n﹣1+1)是3的倍数;同理,2n+1﹣2=2(2n﹣1)是3的倍数,所以当n为偶数时,A n中的各个元素组成以2n+2为首项,3为公差的等差数列,设项数为m,则2n+1﹣2=2n+2+3(m﹣1),所以m=,所以当n是偶数时,A n中的所有元素个数之和为[2n+2)+(2n+1﹣2)]=22n﹣1﹣2n﹣1,所以|A1|+|A2|+|A3|+…+|A10|=22×10﹣1﹣210﹣1=219﹣29.故答案为:11,219﹣29.点评:本题主要考查与集合有关的新定义题,根据条件分别求出对应范围的个数是解决本题的关键,综合性较强.(5分)直角△ABC的三个顶点都在给定的抛物线y2=2x上,且斜边AB和y轴平行,则RT△ABC 13.斜边上的高的长度为2.考点:抛物线的简单性质.专题:综合题;圆锥曲线的定义、性质与方程.分析:结合抛物线的方程与性质设出A,B,C的坐标,即可表达出斜边上的高|CD|,再由直角三角形的性质得到斜边上中线的长度,然后利用两点之间的距离公式表达出中线的长度,即可得到一个等式,进而求出斜边上的高得到答案.解答:解:由题意,斜边平行y轴,即垂直对称轴x轴,可设C的坐标为(,c),B的坐标为(,b),则A的坐标为(,﹣b);=(﹣,c﹣b),=(﹣,﹣b﹣c),又由Rt△ABC的斜边为AB,则有AC⊥CB,即=0,变形可得|b2﹣c2|=4,而斜边上的高即C到AB的距离为|﹣|=2.故答案为:2.点评:本题考查直线与圆锥曲线的综合问题,考查抛物线的标准方程等基础知识,考查运算求解能力、化归与转化思想.属于中档题.14.(5分)圆O的半径为1,P为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A与点P重合)沿圆周逆时针滚动,点A第一次回到点P的位置,则点A走过的路径的长度为.考点:弧长公式.专题:三角函数的求值.分析:由图可知:圆O的半径r=1,正方形ABCD的边长a=1,以正方形的边为弦时所对的圆心角为,正方形在圆上滚动时点的顺序依次为如图所示,当点A首次回到点P的位置时,正方形滚动了3圈共12次,分别算出转4次的长度,即可得出.解答:解:由图可知:∵圆O的半径r=1,正方形ABCD的边长a=1,∴以正方形的边为弦时所对的圆心角为,正方形在圆上滚动时点的顺序依次为如图所示,∴当点A首次回到点P的位置时,正方形滚动了3圈共12次,设第i次滚动,点A的路程为A i,则A1=×|AB|=,A2=×|AC|=,A3=×|DA|=,A4=0,∴点A所走过的路径的长度为3(A1+A2+A3+A4)=.故答案为:.点评:本题考查了正方形与圆的性质、旋转的性质、弧长的计算公式,考查了数形结合、分类讨论的思想方法,考查了分析问题与解决问题的能力,属于难题.15.(5分)已知动点P(x,y)满足,则x2+y2+2y的最小值为0.考点:二元一次不等式(组)与平面区域;基本不等式.专题:不等式.分析:可将P满足的不等式组变为,作出该不等式组表示的平面区域,可设x2+y2+2y=z,进一步得到x2+(y+1)2=z+1,从而根据平面区域求以(0,﹣1)为圆心的圆的半径的最小值即得到z的最小值.解答:解:x≥0时,;∴要使;只要;∴y≥0;∴动点P满足;该不等式组表示的平面区域如下图:设x2+y2+2y=z;∴x2+(y+1)2=z+1;∴便表示以(0,﹣1)为圆心的圆的半径;由图形看出当该圆经过原点O时半径最小为1;;∴z的最小值为0.故答案为:0.点评:考查不等式组表示的平面区域的概念,能够画出不等式组所表示的平面区域,能判断函数的单调性,圆的标准方程,利用线性规划的知识求最值的方法,数形结合解题的方法.三、解答题:(本大题共5小题,共74分.解答应写出文字说明,证明过程或演算步骤)16.(15分)已知△ABC的面积为S,且S.(1)求cosA;(2)求a=,求△ABC周长的最大值.考点:余弦定理的应用.专题:综合题;解三角形.分析:(1)利用S,结合三角形的面积公式,即可求cosA;(2)利用正弦定理,结合a=,即可求△ABC周长的最大值.解答:解:(1)∵△ABC的面积为S,且,∴,∴,∴A为锐角,且,∴,所以.(2),∴周长为==,∵,∴,∴周长最大值为.点评:本题考查正弦定理,考查三角函数知识的运用,考查学生分析解决问题的能力,属于中档题.17.(15分)在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,AB⊥BC侧面PAB⊥底面ABCD,PA=AD=AB=2,BC=4.(1)若PB中点为E.求证:AE∥平面PCD;(2)若∠PAB=60°,求直线BD与平面PCD所成角的正弦值.考点:直线与平面所成的角;直线与平面平行的判定.专题:空间位置关系与距离;空间角.分析:(1)取PC中点F,并连接DF,FE,根据已知条件容易说明四边形ADFE为平行四边形,从而有AE∥DF,根据线面平行的判定定理即得到AE∥平面PCD;(2)设B到平面PCD的距离为h,从而直线BD与平面PCD所成角的正弦值便可表示为,BD根据已知条件容易求出,而求h可通过V P﹣BCD=V B﹣PCD求出:取AB中点O,连接PO,可以说明PO⊥平面ABCD,而根据已知条件能够求出S△BCD,S△PCD,从而求出h,从而求得答案.解答:解:(1)证明:如图,取PC的中点F,连结DF,EF;∵EF∥AD,且AD=EF,所以ADFE为平行四边形;∴AE∥DF,且AE⊄平面PCD,DF⊂平面PCD;∴AE∥平面PCD;(2)∵∠PAB=60°,PA=AB;∴△PAB为等边三角形,取AB中点O,连接PO;则PO⊥AB;又侧面PAB⊥底面ABCD,平面PAB∩平面ABCD=AB;∴PO⊥平面ABCD;根据已知条件可求得PO=,S △BCD=4,PD=CD=,PC=2,;设点B到平面PCD的距离为h;∴,;∵V P﹣BCD=V B﹣PCD;∴;∴直线BD与平面PCD所成角θ的正弦值.点评:考查中位线的性质,平行四边形的定义,线面平行的判定定理,以及直角三角形边的关系,面面垂直的性质定理,棱锥的体积公式,线面角的定义.18.(15分)函数f(x)=mx|x﹣a|﹣|x|+1(1)若m=1,a=0,试讨论函数f(x)的单调性;(2)若a=1,试讨论f(x)的零点的个数.考点:利用导数研究函数的单调性;函数零点的判定定理.专题:导数的综合应用.分析:(1)将m=1,a=0代入函数表达式,通过讨论x的范围,结合二次函数的性质,从而求出函数的单调性;(2)将a=1代入函数的表达式,通过讨论x的范围,根据二次函数的性质,从而求出函数的零点的个数.解答:解:(1)若m=1,a=0,则f(x)=x|x|﹣|x|+1,①x≥0时,f(x)=x2﹣x+1,对称轴x=,开口向上,∴f(x)在[0,)递减,在(,+∞)递增;②x<0时,f(x)=﹣x2+x+1,对称轴x=﹣,开口向下,∴f(x)在(﹣∞,0)递增;综上:f(x)在(﹣∞,0)递增,在[0,)递减,在(,+∞)递增.(2)a=1时,f(x)=mx|x﹣1|﹣|x|+1,①x<0时,f(x)=mx(1﹣x)+x+1=﹣mx2+(m+1)x+1,△=(m+1)2+4m=m2+6m+1,令m2+6m+1=0,解得:m=﹣3±2,当m<﹣3﹣2或x>﹣3+2时,△>0,有2个零点,当﹣3﹣2<m<﹣3+2时,△<0,没有零点,当m=﹣3±2时,△=0,有1个零点;②0≤x≤1时,f(x)=mx(1﹣x)﹣x+1=﹣mx2+(m﹣1)x+1,△=(m+1)2≥0,m=﹣1时,函数有1个零点,m≠﹣1时,有2个零点;③x>1时,f(x)=mx(x﹣1)﹣x+1=mx2﹣(m+1)x+1,△=(m﹣1)2≥0,m=1时,函数有1个零点,m≠1时,函数有2个零点.点评:本题考查了函数的单调性问题,考查二次函数的性质,考查分类讨论思想,是一道中档题.19.(15分)如图,在平面直角坐标系xOy中,离心率为的椭圆C:+=1(a>b>0)的左顶点为A,过原点O的直线(与坐标轴不重合)与椭圆C交于P,Q两点,直线PA,QA分别与y轴交于M,N两点.若直线PQ斜率为时,PQ=2.(1)求椭圆C的标准方程;(2)试问以MN为直径的圆是否经过定点(与直线PQ的斜率无关)?请证明你的结论.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与范围问题.分析:,(1)设,由于直线PQ斜率为时,,可得,解得,代入椭圆方程可得:,又,联立解得即可.(2)设P(x0,y0),则Q(﹣x0,﹣y0),代入椭圆方程可得.由直线PA方程为:,可得,同理由直线QA方程可得,可得以MN为直径的圆为,由于,代入整理即可得出.解答:解:(1)设,∵直线PQ斜率为时,,∴,∴,=1,∴,∵,化为a2=2b2.联立,∴a2=4,b2=2.∴椭圆C的标准方程为.(2)以MN为直径的圆过定点.下面给出证明:设P(x0,y0),则Q(﹣x0,﹣y0),且,即,∵A(﹣2,0),∴直线PA方程为:,∴,直线QA方程为:,∴,以MN为直径的圆为,即,∵,∴,令y=0,x2+y2﹣2=0,解得,∴以MN为直径的圆过定点.点评:本题考查了椭圆与圆的标准方程及其性质、直线与椭圆相交问题、点与椭圆的位置关系、点斜式,考查了推理能力与计算能力,属于难题.20.(15分)已知数列{a n}(n∈N*,1≤n≤46)满足a1=a,a n+1﹣a n=其中d≠0,n∈N*.(1)当a=1时,求a46关于d的表达式,并求a46的取值范围;(2)设集合M={b|b=a i+a j+a k,i,j,k∈N*,1≤i<j<k≤16}.①若a=,d=,求证:2∈M;②是否存在实数a,d,使,1,都属于M?若存在,请求出实数a,d;若不存在,请说明理由.考点:数列的应用;数列递推式.专题:点列、递归数列与数学归纳法.分析:(1)直接计算即可;(2)①求出a n的公式即可;②假设存在实数a,d满足条件,得出矛盾,从而否定假设.解答:解:(1)当a=1时,a16=1+15d,a31=16+15d,.因为d≠0,,或,所以a46∈(﹣∞,﹣14]∪[46,+∞).(2)①由题意,1≤n≤16,.令,得i+j+k=7.因为i,j,k∈N*,1≤i<j<k≤16,所以令i=1,j=2,k=4,则2∈M.②不存在实数a,d,使,1,同时属于M.假设存在实数a,d,使,1,同时属于M.∵a n=a+(n﹣1)d,∴b=3a+(i+j+k﹣3)d,从而M={b|b=3a+md,3≤m≤42,m∈Z}.因为,1,同时属于M,所以存在三个不同的整数x,y,z(x,y,z∈[3,42]),使得从而则.因为35与48互质,且y﹣x与z﹣x为整数,所以|y﹣x|≥35,|z﹣x|≥48,但|z﹣x|≤39,矛盾.所以不存在实数a,d,使,1,都属于M.点评:本题主要考查数列知识以及反证法,需要清晰的思路,属于难题.。
2015年高考浙江省理科数学真题1.已知集合2{20},{12}P x x x Q x x =-≥=<≤,则()R P Q =( )A .[0,1)B .(0,2]C .(1,2)D .[1,2]2.某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A .38cmB .312cmC .3323cmD .3403cm 3.已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若348,,a a a 成等比数列,则( ) A .10,0n a d dS >> B .10,0n a d dS << C .10,0n a d dS ><D .10,0n a d dS <>4.命题“**,()n N f n N ∀∈∈ 且()f n n ≤的否定形式是( ) A .**,()n N f n N ∀∈∉且()f n n > B .**,()n N f n N ∀∈∉或()f n n >C .**00,()n N f n N ∃∈∉且00()f n n > D .**00,()n N f n N ∃∈∉或00()f n n >5.如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点,,A B C ,其中点,A B 在抛物线上,点C 在y 轴上,则BCF ∆与ACF ∆的面积之比是( ) A .11BF AF -- B .2211BF AF -- C .11BF AF ++ D .2211BF AF ++6.设,A B 是有限集,定义(,)()()d A B card A B card A B =-,其中()card A 表示有限集A 中的元素个数,命题①:对任意有限集,A B ,“A B ≠”是“ (,)0d A B >”的充分必要条件;命题②:对任意有限集,,A B C ,(,)(,)(,)d A C d A B d B C ≤+,( ) A .命题①和命题②都成立 B .命题①和命题②都不成立 C .命题①成立,命题②不成立D .命题①不成立,命题②成立7.存在函数()f x 满足,对任意x R ∈都有( ) A .(sin 2)sin f x x = B .2(sin 2)f x x x =+ C .2(1)1f x x +=+D .2(2)1f x x x +=+8.如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆折成A CD '∆,所成二面角A CD B '--的平面角为α,则( )A .A DB α'∠≤ B .A DB α'∠≥C .A CB α'∠≤D .A CB α'∠≤二、填空题9.双曲线2212x y -=的焦距是 ,渐近线方程是 . 10.已知函数223,1()lg(1),1x x f x xx x ⎧+-≥⎪=⎨⎪+<⎩,则((3))f f -= ,()f x 的最小值是 . 11.函数2()sin sin cos 1f x x x x =++的最小正周期是 ,单调递减区间是 . 12.若2log 3a =,则22aa-+= .13.如图,三棱锥A BCD -中,3,2AB AC BD CD AD BC ======,点,M N 分别是,AD BC 的中点,则异面直线,AN CM 所成的角的余弦值是 .14.若实数,x y 满足221x y +≤,则2263x y x y +-+--的最小值是 . 15.已知12,e e 是空间单位向量,1212e e ⋅=,若空间向量b 满足1252,2b e b e ⋅=⋅=,且对于任意,x y R ∈,12010200()()1(,)b xe ye b x e y e x y R -+≥-+=∈,则0x = ,0y = ,b = .三、解答题16.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知A=4π,22b a -=122c .(Ⅰ)求tanC 的值;(Ⅱ)若ABC 的面积为7,求b 的值。
浙江省2015届高三数学第二次考试五校联考试题 文(含解析)第Ⅰ卷(共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在ABC ∆中,“0=⋅AC AB ”是“ABC ∆为直角三角形”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A考点:充分条件、必要条件的判断. 2.已知数列{}n a 满足:21n a n n =+,且910n S =,则n 的值为( ) A .7 B .8 C .9 D .10 【答案】C 【解析】 试题分析:11112+-=+=n n n n a n ,n n a a a S +++=K 21⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=1113121211n n Λ111+-=n 109=,解得9=n ,故答案为C. 考点:裂项求和.3.要得到函数sin 2y x =的图象,只需将函数πcos(2)3y x =-的图象( )A .向右平移π6个单位长度 B .向左平移π6个单位长度 C .向右平移π12个单位长度 D .向左平移π12个单位长度【答案】C 【解析】试题分析:函数⎪⎭⎫⎝⎛-==22cos 2sin πx x y ,将函数πcos(2)3y x =-的图象向右平移π12个单位长度得到⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=3122cos ππx y x x 2sin 22cos =⎪⎭⎫ ⎝⎛-=π,故答案为C.考点:函数图象的平移.4.若αβ、是两个相交平面,则在下列命题中,真命题的序号为( ) ①若直线m α⊥,则在平面β内,一定不存在与直线m 平行的直线. ②若直线m α⊥,则在平面β内,一定存在无数条直线与直线m 垂直. ③若直线m α⊂,则在平面β内,不一定存在与直线m 垂直的直线. ④若直线m α⊂,则在平面β内,一定存在与直线m 垂直的直线. A .①③ B.②③ C.②④ D.①④ 【答案】C考点:空间中直线与平面的位置关系.5.已知菱形ABCD 的对角线AC 长为1,则AD AC u u u r u u u rg =( )A .4B .2C .1D .21 【答案】D 【解析】试题分析:设AC 的中点为O ,CAD AC AD ∠=⋅21==AO AC ,故答案为D.考点:平面向量的数量积.6.设x R ∈, 对于使22x x M -+≤成立的所有常数M 中,我们把M 的最小值1叫做22x x -+ 的上确界. 若,a b R +∈,且1a b +=,则122ab--的上确界为( )A .5-B .4-C .92D .92-【答案】D 【解析】 试题分析:⎪⎭⎫ ⎝⎛+++-=--b b a a b a b a 222221⎪⎭⎫⎝⎛++-=b a a b 2225,由基本不等式得b a a b 22+b aa b 222⋅≥ 29225221-≤⎪⎭⎫⎝⎛+-≤--∴b a ,故答案为D. 考点:基本不等式的应用.7.如图,已知椭圆C 1:112x +y 2=1,双曲线C 2:22ax —22b y =1(a >0,b >0),若以C 1的长轴为直径的圆与C 2的一条渐近线交于A 、B 两点,且C 1与该渐近线的两交点将线段AB 三等分,则C 2的离心率为 ( )A .5B .5C .17D .7142 【答案】A 【解析】试题分析:双曲线12222=-b y a x 的一条渐近线方程x aby =,代入椭圆11122=+y x ,可得221111ba a x +±=,渐近线与椭圆相交的弦长2222111121ba aa b +⋅+,1C Θ与渐近线的两交点将线段AB 三等分,∴2222111121b a aa b +⋅+11231⋅⋅=,整理得a b 2=,a b a c 522=+=∴,离心率5=e ,故答案为A.考点:1、双曲线的简单几何性质;2、椭圆的应用.8.如图,正ABC ∆的中心位于点G (0,1),A (0,2),动点P 从A 点出发沿ABC ∆的边界按逆时针方向运动,设旋转的角度(02)AGP x x π∠=≤≤,向量OP uuu r在(1,0)a =r 方向的投影为y (O 为坐标原点),则y 关于x 的函数()y f x =的图像是( )【答案】C 【解析】试题分析:设BC 与y 轴的交点为M ,已知得5.0=GM ,故5.1=AM ,正三角形的边长是3,连接BG ,32123tan ==∠BGM ,因此3π=∠BGM ,32π=∠BGA ,由图可知,当32π=x 时,射影y 取到最小值,其大小为23-,由此可排除A ,B 两个选项;又当点P 从点B 向点M 运动时,x 变化相同的值,此时射影长的变化变小,即图象趋于平缓,由此排除D ,故答案为C. 考点:函数的图象.第Ⅱ卷(共110分)二、填空题(每题4分,满分28分,将答案填在答题纸上)9.设全集U R =,集合2{|340}A x x x =--<,2{|log (1)2}B x x =-<, 则A B I = ,A B U = ,R C A = . 【答案】()4,1,()5,1-,(][)+∞-∞-,41,Y 【解析】试题分析:{}{}41|043|2<<-=<--=x x x x x A ,由()21log 2<-x 得⎩⎨⎧<->-4101x x ,得51<<x ,{}51|<<=x x B ,()4,1=∴B A I ,()5,1-=B A Y ,{}41|≥-≤=x x x A C R 或(][)+∞-∞-=,41,Y .考点:集合的基本运算.10.若变量,x y 满足202300x y x y x -≤⎧⎪-+≥⎨⎪≥⎩,则2x y+的最大值为 ,_____21的取值范围-+x y . 【答案】8;⎥⎦⎤⎢⎣⎡--21,3.【解析】试题分析:不等组表示的平面区域如图所示,令y x z +=,则z x y +-=表示的是斜率是1-,截距为z 的平形直线系,当截距最大时,z 最大,当直线过点C 时,截距最大,由⎩⎨⎧=+-=-03202y x y x ,得⎩⎨⎧==21y x ,3max =z ,y x +2的最大值为823=,21-+x y 表示的是点()y x ,与点()1,2-连线的斜率,设()1,2-D ,21-=AD k , 313-=-=CDk , 因此21-+x y 的取值范围⎥⎦⎤⎢⎣⎡--21,3.考点:线性规划的应用.11.已知命题p :R x ∈∃,x x ln 1>-.命题q :R x ∈∀,0>x ,则:P ⌝ ,命题()q p ⌝∧是 (填真命题或假命题)【答案】R x ∈∀,x x ln 1≤-;真命题. 【解析】试题分析:对于命题P ,当e x =时,1ln 1=>-e e ,命题P 是真命题;对于命题q R x ∈∀,0≥x ,命题q 是假命题,则q ⌝是真命题,命题()q p ⌝∧是真命题.考点:命题真假性的判断.12. 若某多面体的三视图如右图所示,则此多面体的体积是 ,此多面体外接球的表面积是 .【答案】32;π3. 【解析】试题分析:该几何体的正方体内接正四面体,如图中红色,此四面体的所有棱长为2,因此底面积为()232432==S ,顶点在底面上射影是底面的中心,高()3322632222=⎪⎪⎭⎫ ⎝⎛⋅-=h , 多面体的体积31332233131=⋅⋅==Sh V ; 多面体的外接球的直径是正方体的对角线3,表面积ππ32342=⎪⎪⎭⎫⎝⎛.考点:由三视图求表面积和体积.13.已知函数22cos ,0()sin(),0x x x f x x x x α⎧+>=⎨-++<⎩是奇函数,则sin α= .【答案】1- 【解析】试题分析:由于函数()x f 是奇函数,()()ππf f -=-,()()ππαππcos sin 22+-=+-+-∴,整理得1sin -=α.考点:奇函数的应用.14. 已知点()0,2A 为圆()22:2200M x y ax ay a +--=>外一点,圆M 上存在点T 使得045=∠MAT ,则实数a 的取值范围是 . 【答案】113<≤-a . 【解析】试题分析:圆的方程()()2222a a y a x =-+-,圆心()a a M ,,半径a r 2=,()222-+=∴a a AM ,a TM 2=,由于TM AM ,长度固定,当T 是切点时,MAT ∠最大,由题意圆M 上存在点T 使得045=∠MAT ,因此最大角度大于045,()02245sin sin 22=∠≥-+=∴MAT a a aAM TM 22=,整理得0222≥-+a a ,由于0>a ,解得13-≥a又()12222≤-+=a a aAM TM Θ,解得1≤a ,又点()2,0A 为圆M 外一点,042022>-+∴a ,解得1<a ,综上可得113<≤-a .考点:圆的方程的应用.15.已知O 是ABC ∆内心,若2155AO AB AC =+u u u r u u u r u u u r,则cos BAC ∠= .【答案】46. 【解析】试题分析:取AB 的中点D ,AC 的中点E ,连接OE OD ,,则AOAB AOAD BAO 2cos ==∠,AOAC AOAE CAO 2cos ==∠,BAO AB AO AB AO ∠=⋅∴cos 221AB =,221AC AC AO =⋅,在AC AB AO 5152+=两边同乘以AB ,得BAC AC AB AB AB ∠⋅+=cos 51522122BAC AC AB ∠=∴cos 51101① 同理在AC AB AO 5152+=同乘以AC 得BAC AB AC ∠⋅=cos 52103②,由①得BAC AC AB ∠=cos 2,代入②得83cos 2=∠BAC ,由①知0cos >∠BAC ,46cos =∠∴BAC .考点:平面向量数量积的应用.三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)16. 已知函数1()3cos cos 2().2f x x x x x R =⋅-∈(1)求函数()f x 的最小值和最小正周期;(2)设ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,且︒=30B ,3,()1c f C ==,判断△ABC 的形状,并求三角形ABC 的面积.【答案】(1)()1min -=x f ,π=T ;(2)ABC ∆是直角三角形,23=S . 【解析】试题分析:(1)熟悉三角公式的整体结构,灵活变换,要熟悉三角公式的代数结构,更要掌握公式中角和函数名称的特征,要体会公式间的联系,掌握常见的公式变形,倍角公式应用是重点,涉及倍角或半角的都可以利用倍角公式及其变形,把形如x b x a y cos sin +=化为()ϕ++=x b a y sin 22,研究函数的性质;(2)在解决三角形的问题中,面积公式B ac A bc C ab S sin 21sin 21sin 21===最常用,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来,在求范围时,注意根据题中条件限制角的范围. 试题解析:(1)x x x x f 2cos 21cos sin 3)(-⋅==x x 2cos 212sin 23-=sin(2)6x π-1sin(2)16x R x π∈∴-≤-≤Q()x f ∴的最小值1- 22T ππ∴==,故其最小正周期是π (2)∵1)(=C f 1)62sin(=-∴πC又∵0<2C <2π,∴6116-26πππ<<-C ∴26-2ππ=C ,3C π∴=∵B=6π,∴A=2π,∴△ABC 是直角三角形 由正弦定理得到:B bsin=2sin c C ==,∴1=b 设三角形ABC 的面积为S, ∴S=23考点:1、求三角函数的最值和最小正周期;2、求三角形的面积.17.已知数列{}n a (*N n ∈,146n ≤≤)满足1a a =, 1,115,1,1630,1,3145,n n d n a a n n d+⎧⎪⎪-=⎨⎪⎪⎩≤≤≤≤≤≤其中0d ≠,*N n ∈.(1)当1a =时,求46a 关于d 的表达式,并求46a 的取值范围; (2)设集合{|,,,,116}i j k M b b a a a i j k i j k *==++∈<<N ≤≤.若13a =,14d =,求证:2M ∈.【答案】(1)(][)+∞-∞-,4614,Y ;(2)证明略. 【解析】试题分析:(1)等差数列基本量的求解是等差数列的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用,对于xbax +的形式求最值,利用基本不等式,注意讨论0>x 及0<x 两种形式;(2)证明时根据题意由题中的条件逐渐过渡到结论,求出k j i ,,的值要符合题中的限制范围,掌握数列的基本知识.试题解析:(1)当1a =时,16115a d =+,311615a d =+,4611615()a d d =++.因为0d ≠,21d d +≥,或21d d-+≤, 所以46(,14][46,)a ∈-∞-+∞U .(2)由题意1134n n a -=+,116n ≤≤,314i j k b ++-=+.令3124i j k ++-+=,得7i j k ++=. 因为,,i j k *∈N ,116i j k <<≤≤, 所以令1,2,4i j k ===,则2M ∈. 考点:等差数列的通项公式及应用.18.在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,AB BC ⊥侧面PAB ⊥底面ABCD ,2PA AD AB ===,4BC =.(1)若PB 中点为E .求证://AE PCD 平面;(2)若060PAB ∠=,求直线BD 与平面PCD 所成角的正弦值.【答案】(1)证明略;(2)510. 【解析】试题分析:(1)解决立体几何的有关问题,空间想象能力是非常重要的,但新旧知识的迁移融合也很重要,在平面几何的基础上,把某些空间问题转化为平面问题来解决,有时很方便;(2)证明线面平行常用方法:一是利用线面平行的判定定理,二是利用面面平行的性质定理,三是利用面面平行的性质;(3)证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中的一条垂直于这个平面,则另一条也垂直于这个平面.解题时,注意线线、线面与面面关系的相互转化;(4)在求三棱柱体积时,选择适当的底作为底面,这样体积容易计算. 试题解析:(1)取PC 的中点F ,连结DF ,EF 由于F E ,分别是PC PB ,的中点,BC EF //∴,BC EF 21= 又由于BC AD //,BC AD 21=//AD EF Q ,且AD EF =,所以ADFE 为平行四边形. //AE DF ∴,且AE 不在平面PCD 内,DF 在平面PCD 内,所以//AE PCD 平面 (2)等体积法令点B 到平面PCD 的距离为hQ P BCD V -=B PCD V -ABC433P BCD V-=,13B PCD PCD V S h -∆= 又Q 15PCD S ∆=5h ∴=直线BD 与平面PCD 所成角θ的正弦值105sin 22h BD θ===. 考点:1、直线与平面平行的判定;2、直线与平面所成的角.19.已知抛物线x y 22=上有四点),(),(2211y x B y x A 、、),(),(4433y x D y x C 、,点M (3,0),直线AB 、CD 都过点M ,且都不垂直于x 轴,直线PQ 过点M 且垂直于x 轴,交AC 于点P ,交BD 于点Q.(1)求21y y 的值; (2)求证:MQ MP =.【答案】(1)6-;(2)证明略. 【解析】试题分析:(1)求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置,开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p ,只需一个条件就可以确定抛物线的标准方程;(2)在解决与抛物线性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此;(3)解决直线和抛物线的综合问题时注意:第一步:根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步:联立方程:把所设直线方程与抛物线的方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式∆:计算一元二次方程根.第四步:写出根与系数的关系.第五步:根据题设条件求解问题中结论. 试题解析:(1)设直线AB 的方程为3+=my x ,与抛物线联立得:0622=--my y ∴621-=y y(2) 直线AC 的斜率为3131312y y x x y y +=--∴直线AC 的方程为1131)(2y x x y y y +-+= ∴点P 的纵坐标为31316y y y y y P ++=6)(66)6(632323232--=+--+=y y y y y y y y同理:点Q 的纵坐标为=Q y 6)(63223--y y y y∴0=+Q P y y ,又PQ⊥x 轴∴MQ MP =考点:1、抛物线的几何性质;2、直线与抛物线的综合问题. 20.已知函数22(),(04)f x x a x kx a a =-++<<为常数且。
2015年高考浙江卷理数试题解析(精编版)(解析版)一.选择题:本大题共8小题,每小题5分,共40分,在每小题的四个选项中,只有一项是符合要求的. 1. 已知集合2{20}P x x x =-≥,{12}Q x x =<≤,则()R P Q =( )A.[0,1)B. (0,2]C. (1,2)D. [1,2]2. 某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( ) A.38cm B. 312cm C.3323cm D. 3403cm【答案】C.3. 已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若3a ,4a ,8a 成等比数列,则( ) A.140,0a d dS >> B. 140,0a d dS << C. 140,0a d dS >< D. 140,0a d dS <>4. 命题“**,()n N f n N ∀∈∈且()f n n ≤的否定形式是( )A. **,()n N f n N ∀∈∈且()f n n > B. **,()n N f n N ∀∈∈或()f n n > C. **00,()n N f n N ∃∈∈且00()f n n > D. **00,()n N f n N ∃∈∈或00()f n n >5. 如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则BCF ∆与ACF ∆的面积之比是( )A.11BF AF -- B.2211BF AF -- C.11BF AF ++ D.2211BF AF ++6. 设A ,B 是有限集,定义(,)()()d A B card A B card A B =-,其中()card A 表示有限集A 中的元素个数,命题①:对任意有限集A ,B ,“A B ≠”是“ (,)0d A B >”的充分必要条件; 命题②:对任意有限集A ,B ,C ,(,)(,)(,)d A C d A B d B C ≤+,( )A. 命题①和命题②都成立B. 命题①和命题②都不成立C. 命题①成立,命题②不成立D. 命题①不成立,命题②成立7. 存在函数()f x 满足,对任意x R ∈都有( )A. (sin 2)sin f x x =B. 2(sin 2)f x x x =+ C. 2(1)1f x x +=+ D. 2(2)1f x x x +=+8. 如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆折成A CD '∆,所成二面角A CD B '--的平面角为α,则( )A. A DB α'∠≤B. A DB α'∠≥C. A CB α'∠≤D. A CB α'∠≤二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9. 双曲线2212xy-=的焦距是,渐近线方程是.10. 已知函数223,1()lg(1),1x x f x xx x ⎧+-≥⎪=⎨⎪+<⎩,则((3))f f -= ,()f x 的最小值是 . 11. 函数2()sin sin cos 1f x x x x =++的最小正周期是 ,单调递减区间是 .12. 若4log 3a =,则22a a-+= .【答案】334. 【解析】13. 如图,三棱锥A BCD -中,3,2AB AC BD CD AD BC ======,点,M N 分别是,AD BC 的中点,则异面直线AN ,CM 所成的角的余弦值是 .13. 若实数,x y 满足221x y +≤,则2263x y x y +-+--的最小值是 .15. 已知12,e e 是空间单位向量,1212e e ⋅=,若空间向量b 满足1252,2b e b e ⋅=⋅=,且对于任意,x y R ∈,12010200()()1(,)b xe ye b x e y e x y R -+≥-+=∈,则0x = ,0y = ,b = .三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤. 16.(本题满分14分)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知4A π=,22b a -=122c . (1)求tan C 的值;(2)若ABC ∆的面积为3,求b 的值.17.(本题满分15分)如图,在三棱柱111ABC A B C --中,90BAC ∠=,2AB AC ==,14A A =,1A 在底面ABC 的射影为BC 的中点,D 为11B C 的中点. (1)证明:1A D ⊥平面1A B C ;(2)求二面角1A -BD-1B 的平面角的余弦值.已知函数2()(,)f x x ax b a b R =++∈,记(,)M a b 是|()|f x 在区间[1,1]-上的最大值. (1)证明:当||2a ≥时,(,)2M a b ≥;(2)当a ,b 满足(,)2M a b ≤,求||||a b +的最大值.已知椭圆2212xy+=上两个不同的点A,B关于直线12y mx=+对称.(1)求实数m的取值范围;(2)求AOB∆面积的最大值(O为坐标原点).20.(本题满分15分)已知数列{}n a满足1a=12且1na+=na-2na(n∈*N)(1)证明:112nnaa+≤≤(n∈*N);(2)设数列{}2n a的前n项和为n S,证明112(2)2(1)nSn n n≤≤++(n∈*N).。
2015年宁波市高三五校适应性考试数学(理科)说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。
注意:本卷考试时间120分钟,请考生将所有题目都做在答题卷上。
参考公式:球的表面积公式 柱体的体积公式S =4πR 2V =Sh 球的体积公式 其中S 表示柱体的底面积,h 表示柱体的高 V =34πR 3 台体的体积公式 其中R 表示球的半径 V =31h (S 1+21S S +S 2)锥体的体积公式 其中S 1, S 2分别表示台体的上、下底面积, V =31Sh h 表示台体的高 其中S 表示锥体的底面积,h 表示锥体的高选择题部分(40分)一、选择题(本大题共8小题,每小题5分,共40分.在每个小题给出的四个选项中只有一项是符合题目要求的)1. 已知命题“:p 0>∃x ,x x <ln ”,则p ⌝为( )A.0≤∃x ,ln x x ≥B.0>∀x ,ln x x ≥C.0≤∃x ,x x <lnD.0>∀x ,x x <ln2.已知互不相等的正数q p d c b a ,,,,,满足d b c a ,,,成等差数列,q b p a ,,,成等比数列,则( ) A.q d p c ><,B.q d p c >>,C.q d p c <>,D.q d p c <<,3. 已知直线b a ,,平面βα,,且α⊥a ,β⊂b ,则“b a ⊥”是“βα//”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.函数1211111(),(),,(),,()()n n f x f x f x x x f x x f x +===++则函数2015()f x 是( )A.奇函数但不是偶函数B.偶函数但不是奇函数C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数5.已知不存在整数x 使不等式2(4)(4)0ax a x ---<成立,则实数a 的取值范围为()A.(0,)+∞B. (0,2]C.[1,2]D.[1,4]6.已知某几何体的三视图(单位:cm ),如图所示,则此几何体的外接球的体积为( ) A.392cm πB.336cm π侧视图正视图C.3643cm πD.39cm π7.已知过双曲线2222:1(0,0)x y C a b a b -=>>的中心的直线交双曲线于点,A B ,在双曲线C 上任取与点,A B 不重合的点P ,记直线,,PA PB AB 的斜率分别为12,,k k k ,若12k k k >恒成立,则离心率e 的取值范围为()A.1e <<B.1e <≤C. e >D.e ≥8. 设,x y 满足约束条件04312x y x x y ≥⎧⎪≥⎨⎪+≤⎩,则231x y x +++取值范围是()A .[1,5]B .[2,6]C .[3,11]D .[3,10]非选择题部分(110分)二、填空题(本大题共7小题,9~12小题每题6分,其它小题每题4分,共36分) 9. 已知直线012:1=-+y ax l ,直线03:2=-+by x l ,且1l 的倾斜角为4π,则a = ;若21l l ⊥,则b = ;若21//l l ,则两直线间的距离为 .10.太阳光的入射角(光线与地面所成的角)为6π,要使长为m 的木棒在地面上的影子最长,则木棒与地面所成的角应为 ,其最大影长为 . 11. 已知α为第二象限角,且1tan 41tan 3αα+=-,则tan()28απ+= ,sin()12πα+= .12.设函数2|1|1,0(),0x x f x x x x +-<⎧=⎨-+≥⎩,则((2))f f = ,函数(())y f f x =的零点个数为 .13.已知实数,x y 满足log 2log log 4a x x x a y ++=,其中常数1a >,当y 取最大值2时,对应的x 的值为 .14.已知抛物线24y x =过焦点F 的弦AB ,过弦AB 的中点作准线l 的垂线,垂足为M ,则M A M B ⋅的值为 .15.已知函数()sin,2f x x π=任意的,t R ∈记函数()f x 在区间[],1t t +上的最大值为(),M t 最小值为()m t ,则函数()()()h t M t m t =-的值域为 .三、解答题(共5小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤) 16. (本小题满分15分)ABC ∆中,内角C B A ,,的对边分别为c b a ,,,且1)cos(32cos ++=C B A .(Ⅰ)求角A 的大小;(Ⅱ)若81cos cos -=C B ,且ABC ∆的面积为32,求a .17. (本小题满分15分)如图,四边形ABCD 为平行四边形,5AB =,4,3AD BD ==,将BCD ∆沿着BD 翻折到平面1BC D 处(不与平面ABCD 重合),,E F 分别为对边1,AB C D 的中点,(Ⅰ)求证:EF BD ⊥;(Ⅱ)若异面直线1,EF BC 所成的角为30,求二面角1C AB D --的平面角的正切值.18.(本小题满分15分)如图,已知椭圆2222:1(0)x y C a b a b+=>>的离心率12e =,右焦点为F ,右顶点为A ,P 为直线54x a =上的任意一点,且()2PF PA AF +⋅=. (Ⅰ)求椭圆C 的方程;(Ⅱ)若过点P 所作椭圆C 的切线l 与坐标轴不平行,切点为Q ,且交y 轴于点T ,试确定x 轴上是否存在定点M ,使得sin 2|cos |OTQ TQM ∠=∠.若存在,请求出点M 的坐标;若不存在,说明理由.第17题图CA19. (本小题满分15分) 已知数列{}n a 满足2233312(1)4n n n a a a ++++=,n *∈N .(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)证明:对任意的n N *∈,都有12331212342222nna a a a na a a a a a a a ++++<----.20. (本小题满分14分)已知二次函数()2f x x bx c =++,其中常数,b c R ∈.(Ⅰ)若任意的[1,1]x ∈-,()0,(2)0f x f x ≥+≤,试求实数c 的取值范围; (Ⅱ)若对任意的[]12,1,1x x ∈-,有()()124f x f x -≤,试求实数b 的取值范围.2015年五校高三适应性考试数学(理科)试题参考答案二、填空题:16. (Ⅰ)由1)cos(32cos ++=C B A 得,02cos 3cos 22=-+A A ,……………2分 即0)2)(cos 1cos 2(=+-A A ,所以,21cos =A 或2cos -=A (舍去) ……………4分 因为A 为三角形内角,所以3π=A .…………………6分(Ⅱ)由(Ⅰ)知21)cos(cos =+-=C B A , 则21sin sin cos cos -=-B A C B ; 由81cos cos -=C B ,得83sin sin =B A ,………………………9分 由正弦定理,有C c B b A a sin sin sin ==,即3sin 2B a b =,3sin 2C a c =,……………12分 由三角形的面积公式,得22833sin sin sin 21a C B a A bc S ===,即32832=a , 解得4=a .………………………15分17. 解法一:(Ⅰ)连结1CC ,并取1CC 的中点M ,连结,FM BM . 因为F 分别为1C D 的中点,所以,//FM DC 且12FM DC =; 因为四边形ABCD 为平行四边形,所以,//DC AB =;又E 分别为AB 的中点,所以,//FM EB =,即四边形FMBE 为平行四边形;………………………3分所以,//EF MB .因为5AB =,4,3AD BD ==,即222AD BD AB +=;所以,BD AD ⊥,BD BC ⊥,1BD BC ⊥; 所以,BD ⊥平面1BCC .又因为BM ⊂平面1BCC ,所以BD BM ⊥,BD EF ⊥.………………………6分 (Ⅱ)取BC 的中点N ,过N 作线段AB 的垂线交AB 的延长线于点H . 由(1)知,异面直线1,EF BC 所成的角为1C BM ∠ ,故130C BM ∠=;因为1BC BC =,M 为1CC 的中点,所以, 160C BC ∠=,即1C BC ∆为正三角形. 所以1C N BC ⊥.………………………9分由(Ⅰ)知,异面直线1,EF BC 所成的角为1C BM ∠ ,故130C BM ∠=;因为1BC BC =,M 为1CC 的中点,所以, 160C BC ∠=,即1C BC ∆为正三角形. 所以1C N BC ⊥.又BD ⊥平面1BCC ,所以,平面ABCD ⊥平面1BCC ; 因为平面ABCD平面1BCC BC =,所以1C N ⊥平面ABCD ,1C N AB ⊥;所以, 1C HN ∠为二面角1C AB D --的平面角. ………………………12分在1Rt C NH ∆中,1C N BC ==16sin 25BD NH NB NBH BC AB =⋅∠=⋅=,所以,11tan C N C HN NH ∠==,即二面角1C AB D --.………………………15分解法二:(Ⅰ)因为5AB =,4,3AD BD ==,即222AD BD AB +=;所以,BD AD ⊥,BD BC ⊥,1BD BC ⊥; 所以,BD ⊥平面1BCC .………………………2分 以B 为原点,直线,BC BD 分别为x 轴、y 轴建立如图所示的空间直角坐标系. ………………………3分 则(4,0,0),(0,3,0),(4,3,0)C D A - ,设1(0,)CB C θπ∠=∈ ,则1(4cos ,0,4sin )C θθ,所以,中点33(2,,0),(2cos ,,2sin )22E F θθ-, 所以,(2cos 2,0,2sin )EF θθ=+,(0,3,0)BD =,所以,0EF BD ⋅=,即BD EF ⊥.………………………6分(Ⅱ) 因为异面直线1,EF BC 所成的角为30,所以,11||||||cos 6EF BC EF BC π⋅=⋅⋅,即88cos θ+=1cos 2θ=,3πθ=.即1C .…………8分 设平面1C AB 的一个法向量(,,)m x y z =,则10m AB m BC ⎧⋅=⎪⎨⋅=⎪⎩,即43020x y x -=⎧⎪⎨+=⎪⎩,取4y =,则3,x z ==(3,4,m =. ………………………11分又平面ABD 的一个法向量(0,0,1)n =,………………………12分所以3cos ,||||1427m n m n m n ⋅-===-53tan ,3m n =-, 因为二面角1C AB D --为锐二面角,所以二面角1C AB D --的平面角的正切值为53|tan ,|m n =………………………15分18. (Ⅰ) 由题意,知右顶点(,0)A a ,设5(,)4P a m ,右焦点(,0)F c ,则2a c =, 由()2PF PA AF +⋅=,得(23)()4c a c a --=, ………………………2分 解得2,1a c ==,所以2223b a c =-=………………………4分EA所以椭圆C 的方程为22143x y +=. ………………………5分(注:取P 为特殊点求值,只能得4分)(Ⅱ)设切点0000(,),0Q x y x y ≠,切线方程为00()y y k x x -=-,与椭圆方程联立,得2220000(34)8()4()120k x k y kx x y kx ++-+--=有相等实根,所以,2220000[8()]4(34)[4()12]0k y kx k y kx ∆=--+--=, 解得,034x k y =-, 又22003412x y +=,所以,切线方程为0034120x x y y +-=.………………………8分(注:用隐函数求导得切线方程同样得分)则切线与y 轴的交点03(0,)T y ,且原点O到切线的距离d =,所以sin ||dOTQ OT ∠==………………………11分若x 轴上存在定点(,0)M m 使sin 2|cos |OTQ TQM ∠=∠,由220000000033(,)(,),(,)4y x QT x x QM m x y y y -=-=-=--得,|||cos |||||9QT QM TQM QTQM ⋅∠==⋅13分=对任意的0||(0,2)x ∈恒成立,化简,得21m =,1m =±.所以,x 轴上存在定点(1,0)M ±即椭圆C 的两焦点使sin 2|cos |OTQ TQM ∠=∠.………………………15分19. (Ⅰ)因为2233312(1)4n n n a a a ++++=,当1n =时,311a =,即11a =.………………………2分当2n ≥时,22333121(1)4n n n a a a--+++=,作差,得222233(1)(1)44n n n n n a n +-=-=, n a n =,………………………4分且11a =也满足此式;………………………5分(不检验,此步不得分) 所以,{}n a 的通项公式为n a n =.………………………6分(Ⅱ)由(Ⅰ)得22nn a n n a nna =--,因为12(1)2(21)2210n n n n n n n +-+=-+->-≥->, 所以,02n na na a >-,………………………8分又122(2)02(2)2n n n a n n n a n n n n n a ---=≤--,即122n n a n n a n a -≤-.………………………11分所以,123312112131112312322222222n n a a a a n n a a a a n a a a a ----++++≤++++----, 记11213111232222n nS ----=++++, 由错位相减法,得211111122222n n n n S --=++++-,即22242n n S +⎛⎫=-< ⎪⎝⎭.………………………14分所以12331212342222nna a a a na a a a a a a a ++++<----.………………………15分 20.(Ⅰ)因为11x -≤≤,则123x ≤+≤,由已知,有对任意的11x -≤≤,()0f x ≥恒成立,任意的13x ≤≤,()0f x ≤恒成立,故()10f ≥且(1)0f ≤,所以,(1)0f =,即1为函数()y f x =的一个零点.………………………2分因此可设()(1)()f x x x c =--.所以,任意的13x ≤≤,()0f x ≤恒成立,则[1,3][1,]c ⊆,………………………5分 即c 的取值范围为3c ≥………………………7分(Ⅱ)函数2()f x x bx c =++对12,[1,1]x x ∀∈-,有4|)()(|21≤-x f x f 恒成立, 即max min ()()4f x f x -≤,………………………8分记max min ()()f x f x M -=,则4M ≤. 当||12b->即||2b >时, |(1)(1)||2|4M f f b =--=>,与4M ≤矛盾; ………………………10分当||12b -≤即22b -≤≤时,max{(1),(1)}()2bM f f f =---2(1)(1)|(1)(1)|()(1)4222b f f f f bf +-+--=--=+≤,即22b -≤≤.………………………13分综上,c 的取值范围为22b -≤≤.………………………14分。
2015年浙江省杭州市高考数学二模试卷(理科)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共8小题,共40.0分)1.下列函数中,既是偶函数又在(0,+∞)单调递增的是()A. B.y=cosx C.y=e x D.y=ln|x|【答案】D【解析】解:y=在(0,+∞)上递增,但不具有奇偶性,排除A;y=cosx为偶函数,但在(0,+∞)上不单调,排除B;y=e x在(0,+∞)上递增,但不具有奇偶性,排除C;y=ln|x|的定义域为(-∞,0)∪(0,+∞),关于原点对称,且ln|-x|=ln|x|,故y=ln|x|为偶函数,当x>0时,y=ln|x|=lnx,在(0,+∞)上递增,故选D.根据函数的单调性、奇偶性的定义逐项判断即可.本题考查函数的奇偶性、单调性的判断,属基础题,定义是解决问题的基本方法.2.命题“存在x0∈R,2x0≤0”的否定是()A.不存在x0∈R,2x0>0B.存在x0∈R,2x0≥0C.对任意的x∈R,2x<0D.对任意的x∈R,2x>0【答案】D【解析】解:因为特称命题的否定是全称命题,所以命题“存在x0∈R,2x0≤0”的否定是:对任意的x∈R,2x>0.故选:D.直接利用特称命题的否定是全称命题,写出结果即可.本题考查命题的否定,全称命题与特称命题的否定关系,基本知识的考查.3.设等比数列{a n}的各项均为正数,若+=+,+=+,则a1a5=()A.24B.8C.8D.16【答案】C【解析】解:∵+=+,∴,∵等比数列{a n}的各项均为正数,∴a1a2=4,同理可得:a3a4=16.∴q4=4,解得,.则a1a5==4q3=8.故选:C.化简整理利用等比数列的通项公式即可得出.本题考查了等比数列的通项公式,属于基础题.4.设函数y=sinax+b(a>0)的图象如图所示,则函数y=log a(x+b)的图象可能是()A. B. C. D.【答案】C【解析】解:有函数的图象可得0<b<1,=>2π-π,∴0<a<1.故函数y=log a(x+b)为减函数,且图象经过点(1-b,0),(0,log a b),log a b>0.结合所给的选项,故选:C.根据条件求出a、b的范围,可得函数y=log a(x+b)的单调性以及图象经过的定点,结合所给的选项得出结论.本题主要考查函数y=A sin(ωx+φ)的图象特征,对数函数的图象和性质,属于基础题.5.设平行于y轴的直线分别与函数y1=log2x及y2=log2x+2的图象交于B,C两点,点A(m,n)位于函数y2的图象上,若△ABC为正三角形,则m•2n=()A.8B.12C.12D.15【答案】B【解析】解:根据题意,设A(m,n),B(x0,log2x0),C(x0,2+log2x0),∵线段BC∥y轴,△ABC是等边三角形,∴BC=2,2+log2m=n,∴m=2n-2,∴4m=2n;又x0-m=,∴m=x0-,∴x0=m+;又2+log2x0-n=1,∴log2x0=n-1,x0=2n-1=;∴m+=;2m+2=2n=4m,∴m=,2n=4;∴m•2n=×4=12;故选:B根据题意,设出A、B、C的坐标,由线段BC∥y轴,△ABC是等边三角形,得出AB、AC与BC的关系,求出p、q的值,计算出结果本题考查了指数函数与对数函数的图象与性质的应用问题,也考查了指数,对数的运算问题,是较难的题目.6.已知ABC-A1B1C1是所有棱长均相等的直三棱柱,M是B1C1的中点,则下列命题正确的是()A.在棱AB上存在点N,使MN与平面ABC所成的角为45°B.在棱AA1上存在点N,使MN与平面BCC1B1所成的角为45°C.在棱AC上存在点N,使MN与AB1平行D.在棱BC上存在点N,使MN与AB1垂直【答案】B【解析】解:根据题意画出图形,如图所示,连接A1M,AM,由题意得到AA1⊥面A1B1C1,∴AA1⊥A1M,在R t△AA1M中,设AA1=1,则有A1B1=A1C1=B1C1=1,A1M=,∴tan∠AMA1==>1,∴∠AMA1>45°,则在棱AA1上存在点N,使MN与平面BCC1B1所成的角为45°,故选:B.根据题意画出图形,如图所示,连接A1M,AM,根据直三棱柱得到侧棱与底面垂直,在直角三角形AA1M中,利用锐角三角函数定义求出tan∠AMA1的值,判断出∠AMA1与45°大小判断即可.此题考查了棱柱的结构特征,直线与面垂直的性质,锐角三角函数定义,以及正弦函数的性质,熟练掌握性质是解本题的关键.7.设P是双曲线C:-=1(a>0,b>0)右支上的任意一点,已知A(a,b),B(a,-b),若=λ+μ(O为坐标原点),则λ2+μ2的最小值为()A.abB.C.abD.【答案】D【解析】解:由题意,设P(x,y),则∵=λ+μ,∴x=(λ+μ)a,y=(λ-μ)b∵P为双曲线C右支上的任意一点,∴(λ+μ)2-(λ-μ)2=1∴4λμ=1∴λ2+μ2≥2λμ=∴λ2+μ2的最小值为.故选:D.确定A,B的坐标,根据=λ+μ,确定坐标之间的关系,可得4λμ=1,利用基本不等式,即可得出结论.本题考查向量知识的运用,考查基本不等式的运用,属于中档题.8.设f0(x)=|x|-10,f n(x)=|f n-1(x)|-1(n∈N*),则函数y=f20(x)的零点个数为()A.19B.20C.31D.22【答案】C【解析】解:依题意,令f0(x)=0,则|x|-10=0,∴x有2个解±10;当f1(x)=0时,即|f0(x)|-1=0,∴|x|-10=±1,即x有4个解:±9、±11;当f2(x)=0时,即|f1(x)|-1=0,∴|f0(x)|-1=±1,即|x|-10=0、±2,∴x有6个解:±8、±10、±12;…当f9(x)=0时,x有20个解:±1、±3、±5、±7、±9、±11、±13、±15、±17、±19;当f10(x)=0时,x有21个解:0、±2、±4、±6、±8、±10、±12、±14、±16、±18、±20;当f11(x)=0时,x有22个解:±1、±3、±5、±7、±9、±11、±13、±15、±17、±19、±21;当f12(x)=0时,x有23个解:0、±2、±4、±6、±8、±10、±12、±14、±16、±18、±20、±22;∴当0≤n≤9时,y=f n(x)=0时的解的个数为2(n+1)=2n+2个,当n≥10时,y=f n(x)=0时的解的个数为21+(n-10)=11+n个,∴函数y=f20(x)的零点个数为11+20=31个.附:y=f20(x)=0,即f20(x)=|f19(x)|-1=0,即f19(x)=|f18(x)|-1=±1,即f18(x)=|f17(x)|-1=0、2,即f17(x)=|f16(x)|-1=±1、3,即f16(x)=|f15(x)|-1=0、2、4,即f15(x)=|f14(x)|-1=±1、3、5,即f14(x)=|f13(x)|-1=0、2、4、6,即f13(x)=|f12(x)|-1=±1、3、5、7,即f12(x)=|f11(x)|-1=0、2、4、6、8,即f11(x)=|f10(x)|-1=±1、3、5、7、9,即f10(x)=|f9(x)|-1=0、2、4、6、8、10,即f9(x)=|f8(x)|-1=±1、3、5、7、9、11,即f8(x)=|f7(x)|-1=0、2、4、6、8、10、12,即f7(x)=|f6(x)|-1=±1、3、5、7、9、11、13,即f6(x)=|f5(x)|-1=0、2、4、6、8、10、12、14,即f5(x)=|f4(x)|-1=±1、3、5、7、9、11、13、15,即f4(x)=|f3(x)|-1=0、2、4、6、8、10、12、14、16,即f3(x)=|f2(x)|-1=±1、3、5、7、9、11、13、15、17,即f2(x)=|f1(x)|-1=0、2、4、6、8、10、12、14、16、18,即f1(x)=|f0(x)|-1=±1、3、5、7、9、11、13、15、17、19,即f0(x)=|x|-10=0、±2、±4、±6、±8、±10、12、14、16、18、20,解得:x=0、±2、±4、±6、±8、±10、±12、±14、±16、±18、±20、±22、±24、±26、±28、±30,∴函数y=f20(x)的零点个数为31个,故选:C.令f n(x)=|f n-1(x)|-1=0,则|f n-1(x)|=1,问题转化为方程|f n-1(x)|=1的根的个数,找出规律:当0≤n≤9时y=f n(x)=0时的解的个数为2(n+1)=2n+2个、当n≥10时y=f n(x)=0时的解的个数为21+(n-10)=11+n个,进而可得结论.本题考查求函数零点的个数,注意条件中的递推关系,属于中档题.二、填空题(本大题共7小题,共36.0分)9.设集合{(x,y)|(x-1)2+(y-2)2≤10}所表示的区域为A,过原点O的直线l将A 分成两部分,当这两部分面积相等时,直线l的方程为______ ;当这两部分面积之差最大时,直线l的方程为______ ,此时直线l落在区域A内的线段长为______ .【答案】2x-y=0;x+2y=0;2【解析】解:集合{(x,y)|(x-1)2+(y-2)2≤10}表示的区域A如下,故过圆心E(1,2)时,两部分面积相等;此时直线l的方程为y=x,即2x-y=0;当直线l与OE垂直时,两部分面积之差最大;此时直线l的方程为y=-x;即x+2y=0;此时与圆相交于C、D两点,CO==;故CD=2;故答案为:2x-y=0,x+2y=0,2.作出集合{(x,y)|(x-1)2+(y-2)2≤10}表示的区域A,再结合直线与圆的位置关系确定直线的方程,并求线段的长度即可.本题考查了学生的作图能力,同时考查了直线与圆的位置关系的应用,属于中档题.10.若某几何体的三视图如图所示,则这个几何体中最长的棱长等于______ ,体积等于______ .【答案】;【解析】解:可以得出空间几何体是如右图:BD=4,BC=CD=2,运用三视图得出:AC==,AB=,根据这个几何体得出:PB==,PC==,PD==,∴这个几何体中最长的棱长等于,底面积为:4×2=4体积为:(4×2)×4=故答案为:,.可以得出空间几何体是如下图:三棱锥,运用空间几何体的性质,求解边长,面积体积,计算准确,可以得出答案.本题考查了运用几何体的三视图求解棱长,体积,属于计算题,关键是运用三视图恢复空间几何体的原图.11.设直线l:y=kx+1经过抛物线x2=2py(p>0)的焦点F,则p= ______ ;已知Q,M 分别是抛物线及其准线上的点,若=2,则|MF|= ______ .【答案】2;4【解析】解:∵直线l:y=kx+1过定点(0,1),即抛物线x2=2py(p>0)的焦点F为(0,1),则抛物线方程为x2=4y,如图,∵=2,∴|MQ|=2|QE|,则∠EMQ=30°,∴|MF|=2p=4.故答案为:2;4.由直线方程求出直线所过定点的坐标,从而得到抛物线的焦点坐标,则p可求;作出抛物线图形,数形结合得到|MF|=2p,则答案可求.本题考查了抛物线的简单性质,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.12.设非负实数x,y满足(m<0),则不等式所表示的区域的面积等于______ (用m表示);若z=2x-y的最大值与最小值之和为19,则实数m= ______ .【答案】;-10【解析】解:作出不等式组对应的平面区域如图:当y=0时,x=-m,由,解得,即A(,-),则三角形OAB的面积S=(-m)(-)=,由z=2x-y得y=2x-z,平移直线y=2x-z,由图象可知当直线y=2x-z经过点A(,-)时,直线y=2x-z的截距最大,此时z最小.即最小值z=2×()-(-)=,当直线y=2x-z经过点B(-m,0)时,直线y=2x-z的截距最小,此时z最大,即最大值z=-2m,∵z=2x-y的最大值与最小值之和为19,即m=-10.故答案为:,-10.作出不等式组对应的平面区域,求出交点坐标,利用数形结合即可得到结论.本题主要考查线性规划的应用,利用数形结合求出相应的交点坐标是解决本题的关键.13.在正四面体ABCD中,M是AB的中点,N是棱CD上的一个动点,若直线MN与BD 所成的角为α,则cosα的取值范围是______ .【答案】[,]【解析】解:在正四面体ABCD中,M是AB的中点,N是棱CD上的一个动点,则:①当N点与C点重合时,线段MN与BD所成的角最大,设:正四面体的边长为2,取AD的中点,连接MN、NG,利用勾股定理得:CM=,M、G是AB和AD的中点,所以:MG=1,同理解得:CG=,在△CMG中,利用余弦定理得:,即:所成角的余弦值最小为.②当N点与D点重合时,线段MN与BD所成的角最小,连接DM,在△MBD中,线段MD与BD所成角为30°,所以:cos,即所成角的余弦值最大为.所以:cosα的范围为:[,].故答案为:[,]首先①当N点与C点重合时,线段MN与BD所成的角最大,进一步利用解三角形知识利用余弦定理求出角的余弦值.②当N点与D点重合时,线段MN与BD所成的角最小,直接在△MBD中,线段MD 与BD所成角为30°,求出夹角的余弦值.最后求出角的余弦值的范围.本题考查的知识要点:异面直线的夹角的应用,余弦定理的应用,主要考查学生的应用能力和空间想象能力.14.在△ABC中,||=3,||=5,M是BC的中点,=λ(λ∈R),若=+,则△ABC的面积为______ .【答案】【解析】解:如图所示,过A作边BC的垂线,垂足为O,则:cos B=,cos C=;∴;根据题意知λ≠0;∴;∴;∴;即O是边BC的中点,M与O重合;∴在R t△ABM中,,,;∴;∴.故答案为:.在△ABC的顶点A作边BC的垂线BO,垂足为O,这样可表示出cos B=,cos C=,从而得到,而根据已知条件及中线向量的表示即可得到,所以便得出O是BC的中点,即M,O重合.所以在R t△ABM中可以求出sin B,所以根据三角形的面积公式可求出△ABC的面积.考查余弦函数的定义,向量加法的平行四边形法则,以及直角三角形三边的关系,三角形的面积公式:S=.15.已知单位正方形的四个顶点A(0,0),B(1,0),C(1,1)和D(0,1),从A 点向边CD上的点P(,1)发出一束光线,这束光线被正方形各边反射(入射角等于反射角),直到经过正方形某个顶点后射出,则这束光线在正方形内经过的路程长度为______ .【答案】5【解析】解:从A点向边CD上的点P(,1)发出一束光线,经过各边发射后最后由B点射出,如图,因为已知是单位正方形,这束光线在正方形内经过的路程如图,由对称性可以得到OP=FI=HE=FJ=,所以这束光线在正方形内经过的路程的长度为=5;故答案为:5.由题意,画出图形,根据入射光线和反射光线的对称性以及正方形的性质得到I,J的坐标,利用两点之间的距离公式可得.本题考查了点关于直线的对称以及两点之间的距离公式的运用;关键是画出图形.三、解答题(本大题共5小题,共74.0分)16.在△ABC中,内角A,B,C的对边分别为a,b,c,已知c=6,sin A-sin C=sin(A-B).(Ⅰ)若b=2,求△ABC的面积;(Ⅱ)若1≤a≤6,求sin C的取值范围.【答案】解:(Ⅰ)∵sin A-sin C=sin(A-B),∴sin A=sin C+sin(A-B)=sin(A+B)+sin(A-B)=sin A cos B+cos A sin B+sin A cos B-cos A sin B=2sin A cos B,∴cos B=,由余弦定理可得(2)2=a2+62-12acos,即a2-6a+8=0,解得a=2或a=4.当a=2时,△ABC的面积S=acsin B=×2×6sin=3;当a=4时,△ABC的面积S=acsin B=×4×6sin=6;…8分(Ⅱ)由余弦定理可得:b2=a2+c2-2accos B=a2-6a+36,∴b=,于是由正弦定理可得sin C===,∵1≤a≤6,∈[3,6],从而得到sin C的取值范围是:[,1]…15分.【解析】(Ⅰ)由两角和与差的余弦函数公式化简已知可得cos B=,由余弦定理可解得a的值,由三角形面积公式即可求值.(Ⅱ)利用余弦定理求得b,进而根据正弦定理求得sin C的表达式,根据a范围确定sin C 的范围.本题主要考查了两角和与差的余弦函数公式,考查了余弦定理和正弦定理的综合应用,属于基本知识的考查.17.如图,在四棱锥P-ABCD中,底面ABCD为等腰梯形,且满足AB∥CD,AD=DC=AB,PA⊥平面ABCD.(1)求证:平面PBD⊥平面PAD;(2)若PA=AB,求二面角A-PD-C的余弦值.【答案】证明:(1)取AB的中点E,连接CE,则由题意知,△BCE为正三角形,∴∠ABC=60°,由等腰梯形知∠BCD=120°,设AD=DC=BC=2,则AB=4,由余弦定理得BD2=CD2+BC2-2CD•BC cos120°=4+4-2×2×2×=4+4+4=12,∴BD=2,故AD2+BD2=AB2,即得∠ADB=90°,则AD⊥BD,∵PA⊥平面ABCD,∴PA⊥BD,∴BD⊥平面PAD,BC⊂平面PBD,∴平面PBD⊥平面PAD;(2)在平面ABCD中,过C作CH∥BD,交AD的延长线于H,由(1)知,BD⊥平面PAD,∴CH⊥平面PAD,则CH⊥PD,在平面PAD中,过点H作HG⊥PD,交PD的延长线于G,连接CG,则PG⊥平面HGC,∴PG⊥GC,则∠HGC为二面角A-PD-C的平面角,在直角三角形CHD中,CD=2,∠CDH=60°,∴CH=,∵R t△PAD∽R t△HGD,∴GH=,在R t△GHC,GC==,则cos∠GHC==,则二面角A-PD-C的余弦值为-.【解析】(1)根据面面垂直的判定定理即可证明平面PBD⊥平面PAD;(2)根据二面角的定义先作出二面角的平面角,进行求解即可.本题主要考查空间面面垂直的判定以及空间二面角的求解,利用定义法是解决空间二面角的常用方法.本题也可以使用向量法进行求解.18.已知椭圆C:+=1(a>b>0)的左焦点为F(-c,0),点D(0,b),直线DF的斜率为.(Ⅰ)求椭圆C的离心率;(Ⅱ)设过点F的直线交椭圆于A,B两点,过点P(-4c,0)作与直线AB的倾斜角互补的直线l,交椭圆C于M,N两点,问:是否为定值,若是,求出此定值,若不是,说明理由.【答案】解:(Ⅰ)由题意可得,k DF==,a==2c,则椭圆的离心率为e==;(Ⅱ)设直线AB:x=ty-c,直线MN:x=-ty-4c,设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),将直线x=ty-c代入椭圆方程+=1,可得(3t2+4)y2-6tcy-9c2=0,则y1y2=-,再将直线x=-ty-4c代入椭圆方程+=1,可得(3t2+4)y2+24tcy+36c2=0,则y3y4=,即有====.故为定值.【解析】(Ⅰ)运用直线的斜率公式和离心率公式,结合a,b,c的关系,即可得到;(Ⅱ)设直线AB:x=ty-c,直线MN:x=-ty-4c,设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),将直线方程分别代入椭圆方程,运用韦达定理,再由两点的距离公式,化简整理,即可得到定值.本题考查椭圆的方程和性质,主要是离心率的运用,同时考查直线方程和椭圆方程联立,运用韦达定理,以及两点的距离公式的运用,正确设出直线方程是解题的关键.19.数列{a n}与{b n}满足:①a1=a<0,b1=b>0,②当k≥2时,若a k-1+b k-1≥0,则a k=a k-1,b k=;若a k-1+b k-1<0,则a k=,b k=b k-1.(Ⅰ)若a=-1,b=1,求a2,b2,a3,b3的值;(Ⅱ)设S n=(b1-a1)+(b2-a2)+…+(b n-a n),求S n(用a,b表示);(Ⅲ)若存在n∈N*,对任意正整数k,当2≤k≤n时,恒有b k-1>b k,求n的最大值(用a,b表示).【答案】解:(Ⅰ)a2=-1,b2=0,a3=,b3=0;(Ⅱ)∵=,=,∴无论是a k-1+b k-1≥0,还是a k-1+b k-1<0,都有b k-a k=,即{b k-a k}是以b1-a1=b-a为首项,为公比的等比数列,所以S n=(b1-a1)+(b2-a2)+…+(b n-a n)=;(Ⅲ)∵b k-1>b k,及数列{a n}与{b n}满足的关系,∴a k-1+b k-1≥0,∴a k=a k-1,即对任意正整数k,当2≤k≤n时,恒有a k=a,由(Ⅱ)知b k-a k=,∴b k=a+,所以a k-1+b k-1=,解得,所以n的最大值为不超过的最大整数.【解析】(Ⅰ)由题意可直接写出答案;(Ⅱ)分情况计算b k-a k,得{b k-a k}是以b1-a1=b-a为首项,为公比的等比数列,从而可得S n;(Ⅲ)由b k-1>b k,数列{a n}与{b n}满足的关系倒推出对任意正整数k,当2≤k≤n时,恒有a k=a,结合(Ⅱ)知,解之即可.本题考查数列中递推关系,以及解指数不等式,考查学生对数学知识的应用能力,属于中档题.20.设a>0,b>0,函数f(x)=ax2-bx-a+b.(Ⅰ)(i)求不等式f(x)<f(1)的解集;(ii)若f(x)在[0,1]上的最大值为b-a,求的取值范围;(Ⅱ)当x∈[0,m]时,对任意的正实数a,b,不等式f(x)≤(x+1)|2b-a|恒成立,求实数m的最大值.【答案】解:(Ⅰ)(i)求不等式f(x)<f(1),即f(x)<0,即(x-1)(ax+a-b)<0,当b>2a时,解集为(1,)当b<2a时,解集为(,1),当b=2a时,解集为∅(ii)∵a>0,b>0,∴>0,①当0<<时,即0<b<a时,f(0)=b-a<0=f(1),不符合题意,②当时,即b≥a时,f(0)=b-a≥0=f(1),符合题意,≥1,∴的取值范围:[1,∞)(Ⅱ)由不等式f(x)≤(x+1)|2b-a|,得ax2-(b+|2b-a|)x-a+b-|2b-a|≤0,则x2-(+|2-1|)x-1-|2-1|≤0,令t=,则x2-(t+|2t-1|)x+t-1-|2t-1|≤0,当△=(t+|2t-1|)2-4(t-1-|2t-1|)>0,时,解得≤x≤,(1)当t时,≤x≤,又因为<0,≥1,只需m≤恒成立.即m≤1(2)当0<<时,≤x≤,显然<0,且y==在(0,)上递减,所以>1,所以只需要m≤=恒成立,即m≤1,综上,m的最大值为1.【解析】(Ⅰ)(i)(x-1)(ax+a-b)<0,分类讨论得出:当b>2a时,解集为(1,),当b <2a时,解集为(,1),当b=2a时,解集为∅(ii)分类得出①当0<<时,②当时,≥1,判断结果是不是符合题意.(Ⅱ)把不等式f(x)≤(x+1)|2b-a|,得ax2-(b+|2b-a|)x-a+b-|2b-a|≤0,即x2-(+|2-1|)x-1-|2-1|≤0,令t=,则x2-(t+|2t-1|)xt-1-|2t-1|≤0,当△=(t+|2t-1|)2-4(t-1-|2t-1|)>0,时,求解不等式,分类讨论即可.(1)当t时,只需m≤恒成立.即m≤12)当0<<时,只需要m≤=恒成立,转化为函数最值即可.本题综合考查了函数的性质,不等式的求解,分类讨论,利用好方程的根,与不等式解集的关系,难度较大,属于难题,关键是确定根,写解集.。
浙江省2015届高三第一次五校联考理科数学试题本试题卷分选择题和非选择题两部分.全卷共4页, 选择题部分1至2页, 非选择题部分3至4页.满分150分, 考试时间120分钟.请考生按规定用笔将所有试题的答案涂、写在答题纸上.参考公式:柱体的体积公式V =Sh 其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式 V =13Sh 其中S 表示锥体的底面积,h 表示锥体的高台体的体积公式1()123V h S S =+ 其中S 1,S 2分别表示台体的上,下底面积球的表面积公式S =4πR 2 其中R 表示球的半径,h 表示台体的高 球的体积公式V =43πR 3 其中R 表示球的半径第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知全集为R ,集合{}{}221,680xA xB x x x =≥=-+≤,则R AC B =( )(A ){}0x x ≤ (B ) {}24x x ≤≤ (C ){}024x x x ≤<>或 (D ){}024x x x ≤<≥或 2.在等差数列{}n a 中,432a a =-,则此数列{}n a 的前6项和为( ) (A )12 (B )3 (C )36 (D )6 3.已知函数()y f x x =+是偶函数,且(2)1f =,则(2)f -=( )(A )1- (B ) 1 (C )5- (D )5 4.已知直线,l m ,平面,αβ满足,l m αβ⊥⊂,则“l m ⊥”是“//αβ”的( ) (A )充要条件 (B )充分不必要条件(C )必要不充分条件 (D )既不充分也不必要条件 5.函数()cos 3f x x πω⎛⎫=+⎪⎝⎭(,0)x R ω∈>的最小正周期为π,为了得到()f x 的图象,只需将函数()sin 3g x x πω⎛⎫=+ ⎪⎝⎭的图象( ) (A )向左平移2π个单位长度 (B )向右平移2π个单位长度(C )向左平移4π个单位长度(D )向右平移4π个单位长度6.右图为一个几何体的侧视图和俯视图,若该几何体的体积为43, 则它的正视图为( )7.如图,在正四棱锥ABCD S -中,N M E ,,分别是SC CD BC ,,的中点,动点P 在线段MN 上运动时,下列四个结论:①AC EP ⊥;②//EP BD ;③SBD EP 面//;④SAC EP 面⊥.中恒成立的为( )(A )①③ (B )③④ (C )①② (D )②③④8.已知数列{}n a 满足:11a =,12n n n a a a +=+()n N *∈.若11(2)(1)n n b n a λ+=-⋅+()n N *∈,1b λ=-,且数列{}n b 是单调递增数列,则实数λ的取值范围是( )(A )23λ>(B )32λ> (C )23λ< (D )32λ<9.定义,max{,},a a b a b b a b ≥⎧=⎨<⎩,设实数,x y 满足约束条件22x y ⎧≤⎪⎨≤⎪⎩,则max{4,3}z x y x y =+-的取值范围是( )(A )[8,10]- (B ) [7,10]-(C )[6,8]- (D )[7,8]-(A(B )(C(D侧视图俯视图10.已知函数52log (1)(1)()(2)2(1)x x f x x x ⎧-<=⎨--+≥⎩,则关于x 的方程1(2)f x a x+-=的实根个数不可..能.为( ) (A )5个 (B )6个 (C )7个 (D )8个非选择题部分(共100分)二、填空题: 本大题共7小题, 每小题4分, 共28分. 11.函数)2(log 1)(2-=x x f 的定义域为_____▲____.12.已知三棱锥A BCD -中,2AB AC BD CD ====,2BC AD ==,则直线AD 与底面BCD 所成角为_____▲____.13.已知3cos()45πα+=,322ππα≤<,则cos 2α=_____▲____. 14.定义在R 上的奇函数()f x 满足(3)()f x f x +=-,且(1)2f =,则(2013)(2015)f f +=_____▲____.15.设12n ⋅⋅⋅⋅⋅⋅a ,a ,,a ,是按先后顺序排列的一列向量,若1(2014,13)=-a , 且1(1,1)n n --=a a ,则其中模最小的一个向量的序号n = ___▲____. 16.设向量2(2,)λλα=+a ,(,sin cos )2mm αα+b =,其中,,m λα为实数. 若2=a b ,则mλ的取值范围为_____▲____.17.若实数,,a b c 满足2221a b c ++=,则2332ab bc c -+的最大值为____▲____.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤. 18.(本题满分14分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,已知30B ∠=,ABC ∆的面积为32.(Ⅰ)当,,a b c 成等差数列时,求b ;(Ⅱ)求AC 边上的中线BD 的最小值. 19.(本题满分14分)四棱锥P ABCD -如图放置,//,AB CD BC CD ⊥,2AB BC ==, 1CD PD ==,PAB ∆为等边三角形.DPABC(Ⅰ)证明:面PD PAB ⊥;(Ⅱ)求二面角P CB A --的平面角的余弦值.20.本题满分15分)已知函数2()2f x x x x a =+-,其中a R ∈. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若不等式4()16f x ≤≤在[1,2]x ∈上恒成立,求a 的取值范围.21.(本题满分15分)已知数列{}n a 的前n 项和n S 满足2n n S a n =-.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设1nn n a b a +=,记数列{}n b 的前n 和为n T ,证明:1032n n T -<-<.22.(本题满分14分)给定函数()f x 和常数,a b ,若(2)()f x af x b =+恒成立,则称(,)a b 为函数()f x 的一个“好数对”;若(2)()f x af x b ≥+恒成立,则称(,)a b 为函数()f x 的一个“类好数对”.已知函数()f x 的定义域为[1,)+∞.(Ⅰ)若(1,1)是函数()f x 的一个“好数对”,且(1)3f =,求(16)f ;(Ⅱ)若(2,0)是函数()f x 的一个“好数对”,且当12x <≤时,()f x = 函数()y f x x =-在区间(1,)+∞上无零点;(Ⅲ)若(2,2)-是函数()f x 的一个“类好数对”,(1)3f =,且函数()f x 单调递增,比较()f x 与22x+的大小,并说明理由.2014学年浙江省第一次五校联考数学(理科)答案说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容制订相应的评分细则.二、对计算题,当考生的题答在某一步出现错误时,如果后续部分的解答未改变该题的内容与难度,可视影响的程度决定后续部分的给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.选择题和填空题不给中间分.而22222()(246(2ba c a c acb =+=+-=-.即236(2b =,解得1b =7分(Ⅱ)∵2BA BCBD +=,∴222(BA BA BC BA BCBD++⋅===≥==当a c ==14分(19)解法1:(Ⅰ)易知在梯形ABCD 中,AD 12,PD AP ==,则PD PA ⊥ 同理PD PB ⊥,故面PD PAB ⊥;…………6分MA(Ⅱ)取AB 中点M ,连,PM DM ,作PN DM ⊥,垂足为N ,再作NH BC ⊥,连HN 。
浙江大联考2015届高三第二次联考·数学试卷考生注意:1.本试卷共150分.考试时间120分钟.2.答题前,考生务必将密封线内的项目填写清楚.3.请将各题答案填在试卷后面的答题卷上.4.交卷时,可根据需要在加注“”标志的夹缝处进行裁剪.5.本试卷主要考试内容:第1次联考内容+三角函数与解三角形+平面向量.第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|2x2-x-6<0},N={x|0<x≤4},则M∩N等于A.(0,2)B.(-,0)C.(-2,3)D.(-2,2)2.设a=(,cos θ)与b=(-1,2cos θ)垂直,则cos 2θ的值等于A.-B.0C.-D.-13.已知命题p:若tan θ=2,则3sin2θ-sin θcosθ=2.则命题p及其逆命题、否命题、逆否命题中,正确命题的个数是A.0B.1C.2D.34.若四边形ABCD满足:+=0,(+)·=0,则该四边形一定是A.矩形B.正方形C.菱形D.直角梯形5.设△ABC的内角A,B,C所对的边长分别为a,b,c,且atan B=,bsin A=4,则a等于A.3B.C.4D.56.已知非零向量a,b的夹角为60°,且满足|a-2b|=2,则a·b的最大值为A. B.1 C.2 D.37.若函数f(x)=sin ωx+cos ωx(x∈R,ω>0),又f(α)=-2,f(β)=0,且|α-β|的最小值为,则函数g(x)=f(x)-1在[-2π,0]上零点的个数为A.0B.1C.2D.38.已知△ABC各角的对应边分别为a,b,c,且满足+ ≥ 1,则角A的取值范围是A.(0,]B.(0,]C.[,π)D.[,π)9.已知向量a,b的模均为2, 且<a,b>=.若向量c满足|c-(a+b)|=,则|c|的取值范围为A.[2-,2]B.[1-,1+]C.[2,2+]D.[2-,2+]10.设函数f(x)=-(x∈R),区间M=[a,b](a<b),集合N={y|y=f(x),x∈M},则使M=N成立的实数对(a,b)有A.0个B.1个C.2个D.无数多个第Ⅱ卷二、填空题:本大题共7小题,每小题4分,共28分.把答案填在答题卷中的横线上.11.已知sin 2α=cos(+α),α∈(0,π),则sin 2α=▲.12.设函数f(x)=的最小值为-1,则实数a的取值范围是▲.13.给出如下三个命题:①“x≥2”是“log2(x+1)>2”的充分不必要条件;②将函数y=sin(2x-)的图象向左平移个单位可得到函数y=sin 2x的图象;③a,b为单位向量,其夹角为θ,若|a-b|>1,则<θ≤π.其中正确的命题是▲.(填序号)14.设e1,e2,e3,e4是平面内的四个单位向量,其中e1⊥e2,e3与e4的夹角为135°,对这个平面内的任一个向量a=xe1+ye2,规定经过一次“斜二测变换”得到向量a1=xe3+e4,设向量v=3e1-4e2,则经过一次“斜二测变换”得到向量v1的模是▲ .15.已知△ABC的三边a,b,c和其面积S满足S=c2-(a-b)2,则tan C= ▲.16.已知函数f(x)=,函数g(x)=asin(x)-2a+2(a>0),若存在x1∈[0,1],对任意x2∈[0,1]都有f(x1)=g(x2)成立,则实数a的取值范围是▲.17.圆心为O的圆内有一条弦BC,其长为2,动点A在圆上运动,且∠BAC=45°,若∠ABC为锐角,则·的取值范围是▲.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(本小题满分14分)已知函数f(x)=2sin x·sin(+x)-2sin2x+1(x∈R).(1)若f()=,x0∈(-,),求cos 2x0的值;(2)在锐角△ABC中,三条边a,b,c对应的内角分别为A,B,C,若b=2,C=,且满足f(-)=, 求△ABC的面积.19.(本小题满分14分)已知向量m=(sin ωx,cos ωx),n=(cos ωx,-cos ωx)(ω>0),函数f(x)=m·n的最小正周期为.(1)求ω的值;(2)设△ABC的三边a、b、c满足:b2=ac,且边b所对的角为x,若关于x的方程f(x)=k有两个不同的实数解,求实数k的取值范围.20.(本小题满分15分)在平行四边形ABCD中,E是DC的中点,AE交BD于点M,||=4,||=2,,的夹角为.(1)若=λ+μ,求λ+3μ的值;(2)当点P在平行四边形ABCD的边BC和CD上运动时,求·的取值范围.21.(本小题满分15分)已知函数f(x)=cos(2x-)+2sin(x-)cos(x-),x∈R.(1)若对任意x∈[-,],都有f(x)≥a成立,求a的取值范围;(2)若先将y=f(x)的图象上每个点纵坐标不变,横坐标变为原来的2倍,然后再向左平移个单位得到函数y=g(x)的图象,求函数y=g(x)-在区间[-2π,4π]内的所有零点之和.22.(本小题满分14分)已知函数f1(x)=e|x-2a+1|,f2(x)=e|x-a|+1,x∈R.(1)若a=2,求f(x)=f1(x)+f2(x)在x∈[2,3]上的最小值;(2)若x∈[a,+∞)时,f2(x)≥f1(x),求a的取值范围;(3)求函数g(x)=-在x∈[1,6]上的最小值.2015届高三第二次联考·数学试卷参考答案1.A M={x|-<x<2},所以M∩N={x|0<x<2}.2.C 根据题意得-+2cos2θ=0,∴cos2θ=,则cos 2θ=2cos2θ-1=2×-1=-.3.B 若tan θ=2,则3sin2θ-sin θcos θ===2,若3sin2θ-sin θcos θ=2,则tan θ=-1或tan θ=2,故选B.4.C ∵+=0,∴AB∥DC且AB=DC,即四边形ABCD是平行四边形,又∵(+)·=0,∴·=0,即BD⊥AC,∴四边形ABCD是菱形.5.D ∵atan B=,bsin A=4,∴=,即=cos B=,则tan B=,∴a=⇒a=5.6.B ∵a,b的夹角为60°,且|a-2b|=2,∴a2+4b2-4a·b=|a|2+4|b|2-2|a||b|=4≥4|a||b|-2|a||b|=2|a||b|,即|a||b|≤2,∴a·b=|a||b|≤1.7.B ∵|α-β|的最小值为,∴=,则T=3π,又∵ω>0,∴ω==.令g(x)=f(x)-1=2sin(x+)-1=0,得x+=2kπ+或x+=2kπ+(k∈Z),即x=3kπ-或x=3kπ+(k∈Z).当且仅当k=0时,有x=-符合题意.8.A 由已知得:b(a+b)+c(a+c)≥(a+c)(a+b),即b2+c2-a2≥bc,将不等式两边同除以2bc 得≥,即cos A≥(0<A<π),所以0<A≤.9.D 如图所示,圆的半径为,|a+b|=2.当c与a+b共线时,|c|分别取得最大值2+与最小值2-,所以|c|的取值范围为[2-,2+].10.A 集合N即为定义在[a,b]上的函数f(x)的值域,而f(x)=-为奇函数,且当x≥0时,f(x)=-1+递减,∴f(x)在R上递减,∴由M=N可得f(a)=b且f(b)=a,即-=b且-=a,∴a与b异号.而a<b,∴a<0且b>0,∴=b且=a,即=a,解得a=0,这与a<0矛盾.∴这样的实数对(a,b)不存在.11. 由已知得2sin αcos α=sin α,即c os α=,∵α∈(0,π),∴sin α=,sin 2α=2××=.12.[-,+∞)当x≥时,4x-3≥-1,∴当x<时,f(x)=-x+a≥-1,即-+a≥-1,得a≥-.13.②③由log2(x+1)>2得x>3,则“x>2”是“log2(x+1)>2”的必要不充分条件,故①错误;②正确;由|a-b|>1,得cos θ<,θ∈[0,π],所以<θ≤π,③正确.14. 由定义可知v1=3e3+e4=3e3-2e4,∴|v1|====.15. S=c2-(a2+b2)+2ab=-2abcos C+2ab=2ab(1-cos C)=absin C,=,∴=,∴tan=,tan C===.16.[,1] 因为f(x)=,所以当x1∈[0,1]时,f(x1)∈[0,1],因为x2∈[0,1],所以x2∈[0,],又a>0,所以asin(x2)∈[0,a],所以g(x2)∈[2-2a,2-a],因为若存在x1∈[0,1],对任意x2∈[0,1]都有f(x1)=g(x2)成立,所以解得a∈[,1].17.(-2,2] 因为BC=2,∠A=45°,所以2R=⇒R=,建立如图所示的直角坐标系,则B(-1,0),C(1,0),O(0,1),求得圆O:x2+(y-1)2=2.设A(x,y),则因为-1<x≤,所以·=2x∈(-2,2].18.解:(1)f(x)=2sin x·cos x-2sin2x+1=sin 2x+cos 2x=sin(2x+).因为x0∈(-,),所以x0+∈(0,).又因为f()=sin(2·+)=sin(x0+)=,得sin(x0+)=.所以cos(x0+)==.所以cos 2x0=sin(2x0+)=sin[2(x0+)]=2sin(x0+)cos(x0+)=2··=.7分(2)由(1)知f(x)=sin(2x+),所以f(-)=sin[2(-)+]=sin A=,sin A=,又因为△ABC为锐角三角形,所以A=,又因为C=,所以B=,所以b=c=2,△ABC的面积S=bcsin A=×2×2×sin=1.14分19.解:(1)f(x)=m·n=sin ωxcos ωx-cos2ωx=sin 2ωx-cos2ωx=sin 2ωx-=sin(2ωx-)-,∴T==,ω=2;5分(2)由余弦定理得cos x==≥=,∴0<x≤,由 f(x)=k得sin(4x-)=k+,由函数y=sin(4x-)(0<x≤)的图象知,方程sin(4x-)=k+有两个不同的实数解等价于-<k+<1,所以-1<k<.14分20.解:(1)如图所示,易得△ABM与△EDM相似,且===2,∴=,又=+=+=+,∴=(+)=+,=+,=-,代入=λ+μ,得+=λ(+)+μ(-)=(λ+μ)+(λ-μ),∴,解得λ=,μ=,∴λ+3μ=+3×=1.7分(2)如图所示,以A为原点,AB所在直线为x轴,建立直角坐标系.则A(0,0),B(4,0),C(5,),D(1,),E(3,).∴=(4,0)=,=(1,)=,=(3,),①当点P位于边BC上时,设=m(0≤m≤1).则=+=+m=(4,0)+m(1,)=(4+m,m).∴·=(4+m,m)·(3,)=3(4+m)+3m=6m+12,∵0≤m≤1,∴12≤6m+12≤18,∴·的取值范围[12,18].10分②当点P位于边CD上时,设=n(0≤n≤1).=+=+n=(1,)+n(4,0)=(1+4n,),∴·=(1+4n,)·(3,)=3(1+4n)+3=12n+6.∵0≤n≤1,∴6≤12n+6≤18.∴·的取值范围是[6,18].综上①②可知:·的取值范围是[6,18].15分21.解:(1)f(x)=cos(2x-)+2sin(x-)cos(x-)=cos(2x-)+sin(2x-)=cos 2x+sin 2x-cos 2x=sin 2x-cos 2x=sin(2x-).4分若对任意x∈[-,],都有f(x)≥a成立,则只需f min(x)≥a即可.∵-≤x≤,∴ -≤2x-≤,∴当2x-=-即x=-时,f(x)有最小值 -,故a≤-.7分(2)依题意可得g(x)=sin x,由g(x)-=0得sin x=,由图可知,sin x=在[-2π,4π]上有6个零点:x1,x2,x3,x4,x5,x6.根据对称性有=-,=,=,从而所有零点和为x1+x2+x3+x4+x5+x6=3π.15分22.解:(1)因为a=2,且x∈[2,3],所以f(x)=e|x-3|+e|x-2|+1=e3-x+e x-1=+≥2=2e,当且仅当x=2时取等号,所以f(x)在x∈[2,3]上的最小值为3e.3分(2)由题意知,当x∈[a,+∞)时,e|x-2a+1|≤e|x-a|+1,即|x-2a+1|≤|x-a|+1恒成立,所以|x-2a+1|≤x-a+1,即2ax≥3a2-2a对x∈[a,+∞)恒成立,则由,得所求a的取值范围是0≤a≤2.7分(3) 记h1(x)=|x-(2a-1)|,h2(x)=|x-a|+1,则h1(x),h2(x)的图象分别是以(2a-1,0)和(a,1)为顶点开口向上的V型线,且射线的斜率均为±1.①当1≤2a-1≤6,即1≤a≤时,易知g(x)在x∈[1,6]上的最小值为f1(2a-1)=e0=1.②当a<1时,可知2a-1<a,所以(ⅰ)当h1(1)≤h2(1),得|a-1|≤1,即0≤a<1时,g(x)在x∈[1,6]上的最小值为f1(1)=e2-2a.(ⅱ)当h1(1)>h2(1),得|a-1|>1,即a<0时,g(x)在x∈[1,6]上的最小值为f2(1)=e2-a.③当a>时,因为2a-1>a,可知2a-1>6,(ⅰ)当h1(6)≤1,得|2a-7|≤1,即<a≤4时,g(x)在x∈[1,6]上的最小值为f1(6)=e2a-7. (ⅱ)当h1(6)>1且a≤6时,即4<a≤6,g(x)在x∈[1,6]上的最小值为f2(a)=e1=e . (ⅲ)当a>6时,因为h1(6)=2a-7>a-5=h2(6),所以g(x)在x∈[1,6]上的最小值为f2(6)=e a-5.综上所述, 函数g(x)在x∈[1,6]上的最小值为g(x)min=14分。
2014学年浙江省五校联考第二次考试数学(理科)试题卷本试题卷分选择题和非选择题两部分.全卷共4页, 选择题部分1至2页, 非选择题部分3至4页.满分150分, 考试时间120分钟.请考生按规定用笔将所有试题的答案涂、写在答题纸上.参考公式:柱体的体积公式V=Sh 其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式 V=13Sh 其中S 表示锥体的底面积,h 表示锥体的高台体的体积公式1()123V h S S =++ 其中S 1,S 2分别表示台体的上,下底面积球的表面积公式S=4πR 2其中R 表示球的半径,h 表示台体的高球的体积公式V=43πR3其中R 表示球的半径第Ⅰ卷(选择题 共40分)一、选择题:(每小题5分, 共40分。
在每小题给出的四个选项中, 只有一项是符合题目要求的)1.命题“存在0x ∈R ,02x0”的否定是( ▲ ) A .不存在0x ∈R, 02x >0B .存在0x ∈R, 02xC .对任意的x ∈R, 2x 0D .对任意的x ∈R, 2x>02.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是 ( ▲ )A . ①和②B . ②和③C . ③和④D . ②和④3.为得到函数()cos f x x x =,只需将函数y x x = ( ▲ )A . 向左平移512π B .向右平移512π C .向左平移712π D .向右平移712π4.已知、、C 为直线l 上不同的三点,点O ∉直线l ,实数满足关系式220x OA xOB OC ++= ,有下列结论中正确的个数有 ( ▲ )① 20OB OC OA -⋅≥ ; ② 20OB OC OA -⋅< ;③的值有且只有一个; ④的值有两个;⑤ 点是线段AC 的中点.A .1个B .2个C .3个D .4个5.已知映射():(,)0,0f P m n P m n '→≥≥.设点()3,1A ,()2,2B ,点M 是线段AB 上一动点,:f M M '→.当点M 在线段AB 上从点开始运动到点结束时,点M 的对应点M '所经过的路线长度为 ( ▲ ) A .12π B .6π C . 4π D . 3π6.如图,已知椭圆C 1:112x +y 2=1,双曲线C 2:22a x —22by =1(a>0,b>0),若以C 1的长轴为直径的圆与C 2的一条渐近线交于A 、B 两点,且C 1与该渐近线的两交点将线段AB 三等分,则C 2的离心率为 ( ▲ ) A .5 B .5 C .17D .7142 7.半径为的球内部装有4个半径相同的小球,则小球半径的可能最大值为( ▲ ).AR B C R D R8.某学生对一些对数进行运算,如下图表格所示:现在发觉学生计算中恰好有两次地方出错,那么出错的数据是 ( ▲ ) A .(3),(8) B .()4,(11) C .()1,(3) D .(1),(4)非选择题部分(共110分)二、填空题本大题共7小题, 每小题4分, 共28分.9.设全集U R =,集合2{|340}A xx x =--<,2{|log (1)2}B x x =-<, 则A B = ▲ ,A B = ▲ ,R C A = ▲ .10.若某多面体的三视图如右图所示,则此多面体的体积为__▲ , 外接球的表面积为__▲ .11.若{}max ,a b 表示,a b 两数中的最大值,若{}2()max ,xx f x e e-=,则()f x 的最小值为▲ ,若{}()max ,x x tf x e e-=关于2015x =对称,则t = ▲ .12.,若n A 表示集合n A ▲ ,则123...A A A +++13.直角ABC ∆的三个顶点都在给定的抛物线22y x =上,且斜边AB 则RT ABC ∆斜边上的高的长度为 ▲ .14.圆O 的半径为,为圆周上一点,现将如图放置的边长为的正方形 (实线所示 ,正方形的顶点和点重合)沿着圆周顺时针滚动,经过若 干次滚动,点第一次回到点的位置,则点走过的路径的长度为 ▲ .15.已知动点(,)P x y满足220(1x y x x y ⎧+≤⎪⎪≥⎨⎪≥⎪⎩,则222x y y ++的最小值为▲ .三、解答题:(本大题共5小题, 共74分。
解答应写出文字说明, 证明过程或演算步骤) 16.(本小题满分15分)已知ABC ∆的面积为S ,且S AC AB 2=⋅.(1)求cos A ; (2)求a =求ABC ∆周长的最大值.17.(本小题满分15分)在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,AB BC ⊥侧面PAB ⊥底面ABCD ,2PA AD AB ===,4BC =.(1)若PB 中点为.求证://AE PCD 平面;(2)若060PAB ∠=,求直线BD 与平面PCD 所成角的正弦值.AB C18.(本小题满分15分)函数()1f x mx x a x =--+, (1)若1,0m a ==,试讨论函数()f x 的单调性; (2)若1a =,试讨论()f x 的零点的个数;19.(本小题满分15分)如图,在平面直角坐标系xOy 中,离心率为的椭圆:C 22221(0)x y a b a b+=>>的左顶点为,过原点O 的直线(与坐标轴不重合)与椭圆C 交于,P Q 两点,直线,PA QA 分别与轴交于,M N 两点.若直线PQ时,PQ =(1)求椭圆C 的标准方程;(2)试问以MN 为直径的圆是否经过定点(与直线PQ 的斜率无关)?请证明你的结论.20.(本小题满分14分)已知数列{}n a (*N n ∈,146n ≤≤)满足1a a =, 1,115,1,1630,1,3145,n n d n a a n n d+⎧⎪⎪-=⎨⎪⎪⎩≤≤≤≤≤≤其中0d ≠,*N n ∈.(1)当1a =时,求46a 关于的表达式,并求46a 的取值范围; (2)设集合{|,,,,116}i j k M b b a a a i j k i j k *==++∈<<N ≤≤.①若13a =,14d =,求证:2M ∈;②是否存在实数,,使18,,5340都属于M ?若存在,请求出实数,;若不存在,请说明理由.2014学年浙江省五校联考第二次考试数学(理科)答案一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共7小题,9-12题每题6分,每格3分,13-14题每题4分,共36分) 9. A B =(1,4),A B =(1,5)-,R C A =(,1][4,)-∞-+∞ . 10.5263or ;3π.11.;4030.12.;682. 13..14. 15.12-.三、解答题:(共5题,其中第20题14分,其余每题15分)解答:(1)∵△ABC 的面积为,且AB AC ⋅= ,∴1cos sin 2bc A bc A =,∴sin A A =,∴为锐角,且2222213sin cos sin sin sin 122A A A A A +=+==,∴sin A =,所以cos A =. (2)3sin sin sin c a bC A B===所以周长为3sin 3sin 6sin cos22B C B Ca b c B C +-++=+=+6sincos22AB C π--6cos cos 6cos 222A B C A-≤sinA=,所以cos A=,2cos2cos12AA=-=所以cos2A=.另解:由余弦定理可得:22262cos()2(1cos)b c bc A b c bc A=+-=+-+又因为2()2b cbc+≤,所以22()6()(1cos)2b cb c A+≥+-+所以:a b c++≤当且仅当b c=时取到等号.17.证明(1)取PC的中点,连结DF,EF//ADEF,且AD EF=,所以ADFE为平行四边形.//AE DF∴,且AE不在平面PCD内,DF在平面PCD内,所以//AE PCD平面(2)等体积法令点到平面PCD的距离为hP BCDV-=B PCDV-P BCDV-=,13B PCD PCDV S h-∆=又PCDS∆=h∴=直线BD与平面PCD所成角θ的正弦值sinhBDθ===.18.解答:(1)221(0)()1x x xf x x x x⎧-+≥⎪=-+=⎨图像如下:所以()f x 在(,0]-∞和[0.5,)+∞上为增函数,在[0,0.5]上为减函数; (2)()110f x mx x x =--+=的零点,除了零点1x =以外的零点即方程11x mx x -=-的根作图11x y x -=-和y mx =,如图可知:当直线y mx =的斜率: 当0m =时有一根; 当01m <<时有两根; 当1m ≥时,有一根; 当1m <-时,有一根;当13m -≤<-+(当y mx =和1(0)1x y x x -=<-相切时)没有实数根;当3m =-+(当y mx =和1(0)1x y x x -=<-相切时)有一根;当30m -+<<时有两根. 综上所述:当13m -≤<-+时,函数()11f x mx x x =--+有且仅有一个零点1x =;当3m =-+或1m <-或1m ≥或0m =时,函数()11f x mx x x =--+有两个零点;当30m -+<<或01m <<时,()11f x mx x x =--+有三个零点.19. 解:(1)设00()P x x , ∵直线PQ时,PQ =,∴2200)3x x +=,∴202x = ∴22211a b +=,∵c e a ===,∴224,2a b ==.∴椭圆C 的标准方程为22142x y +=.(2)以MN为直径的圆过定点(F .设00(,)P x y ,则00(,)Q x y --,且2200142x y +=,即220024x y +=,∵(2,0)A -,∴直线PA 方程为:00(2)2y y x x =++ ,∴002(0,)2y M x + , 直线QA 方程为:00(2)2y y x x =+- ,∴002(0,)2y N x -, 以MN 为直径的圆为000022(0)(0)()()022y y x x y y x x --+--=+- 即222000220044044x y y x y y x x +-+=--, ∵220042x y -=-,∴220220x x y y y ++-=, 令0y =,2220x y +-=,解得x =,∴过定点:(.20.解:(1)当1a =时,16115a d =+,311615a d =+,4611615()a d d=++.因为0d ≠,21d d +≥,或21d d-+≤, 所以46(,14][46,)a ∈-∞-+∞ . (2)①由题意1134n n a -=+,116n ≤≤,314i j k b ++-=+. 令3124i j k ++-+=,得7i j k ++=. 因为,,i j k *∈N ,116i j k <<≤≤,所以令1,2,4i j k ===,则2M ∈. ②不存在实数,,使18,,5340同时属于M .假设存在实数,,使18,,5340同时属于M .(1)n a a n d =+- ,∴3(3)b a i j k d =+++-,从而{|3,342,}M b b a md m m Z ==+∈≤≤.因为18,,5340同时属于M ,所以存在三个不同的整数,,x y z ([],,3,42x y z ∈),使得13,831,533,40a xd a yd a zd ⎧+=⎪⎪+=⎨⎪⎪+=⎩从而7(),86(),5y x d z x d ⎧-=⎪⎪⎨⎪-=⎪⎩则3548y x z x -=-. 因为35与48互质,且y x -与z x -为整数, 所以||35,||48y x z x --≥≥,但||39z x -≤,矛盾. 所以不存在实数,,使18,,5340都属于M .。