A FPGA-based frequency measurement system for high-accuracy QCM sensors
- 格式:pdf
- 大小:432.96 KB
- 文档页数:6
基于FPGA的TDLAS气体测量系统康信文;唐杰;张彤【摘要】A gas detection system based on FPGA is proposed,which realizes the miniaturization and digitalization of TDLAS gas measurement system. FPGA have good performance on parallel computing, easy to realize DDS and quadrature digital phase-locked which can be used to calculate the high frequency signal and the extraction of har-monic signal in the process of TDLAS measurement. The laser, the temperature control module, the current drive module,the signal generator,the photoelectric detector,the band-pass filter and the ADC sampling are integrated on the same printed circuit board to realize the miniaturization and integration of the system. Finally,the stability of the system is verified by monitoring the oxygen concentration in the air for a long time.%提出了基于FPGA的气体检测系统,实现了TDLAS气体测量系统小型化、数字化.利用FPGA并行计算、易于实现DDS信号发生和正交数字锁相等特点,可以满足TDLAS测量过程中的高频信号发生、谐波信号的提取等计算,从而采用正交数字锁相方法及拟合法实现气体的测量.将激光器、温度控制模块、电流驱动模块、信号发生器、光电探测器、带通滤波器、ADC采样集成在同一块印制电路板上,实现系统的小型化和集成化.最后,通过在空气中对氧气浓度进行长时监测,验证了本系统的稳定性.【期刊名称】《传感技术学报》【年(卷),期】2017(030)012【总页数】6页(P1781-1786)【关键词】气体测量;TDLAS;FPGA;正交数字锁相【作者】康信文;唐杰;张彤【作者单位】东南大学仪器科学与工程学院,南京210096;东南大学苏州研究院苏州金属纳米光电技术重点实验室,江苏苏州215123;东南大学仪器科学与工程学院,南京210096;东南大学苏州研究院苏州金属纳米光电技术重点实验室,江苏苏州215123;东南大学仪器科学与工程学院,南京210096;东南大学电子科学与工程学院,南京210096;东南大学苏州研究院苏州金属纳米光电技术重点实验室,江苏苏州215123【正文语种】中文【中图分类】TP212.2可调谐半导体激光吸收光谱TDLAS(Tunable Diode Laser Absorption Spectroscopy)作为一种新兴的高灵敏、高分辨率的光学气体参数测量技术,可实现对气体的的快速、非侵入原位测量,已逐步用于大气环境监测、工业现场气体参数检测、燃烧诊断等[1-3]。
Q260046902 专业做论文西南科技大学毕业设计(论文)题目名称:基于FPGA的等精度频率与相位计设计年级:2003级■本科□专科学生学号:20035070学生姓名:刘智超指导教师:方艳红赵海龙学生单位:信息工程学院技术职称:讲师助教学生专业:生物医学工程教师单位:信息工程学院西南科技大学教务处制基于FPGA的等精度频率与相位计设计摘要:频率、相位是信号最重要的两个特征值,把握了它们,就可以基本把握一个信号。
因此研制高精度的频率与相位测量设备具有十分重要的意义。
本文介绍了基于FPGA的等精度频率与相位计的设计,包括硬件和软件设计,设计主要分为三个模块:计数模块、计算模块和显示模块,计数模块对被测信号周期数进行计数,计算模块对信号处理模块输出的数据进行计算,最后计算结果由显示模块显示。
实验结果表明,这种基于FPGA的方法可以对频率、相位以及脉宽进行测量,并在精度和处理速度都达到实际计要求,由此可以看出,本课题有其发展空间和实际价值。
关键词:等精度;频率与相位计;FPGAThe Design of Equal Precision Frequency and PhaseMeter Based on FPGAAbstract: Frequency and phase are two important characteristics of a signal. Grasping these two characteristics means that we could basically grasp a signal. So it is very significant to develop a high precision frequency and phase meter. The development of an equal precision frequency and phase meter based on FPGA is introduced in this paper, mainly about the design of hardware and software. The Design mainly includes three modules: counting module, calculating module and displaying module. The number of period of a signal is counted by counting module, data from counting module is computed by calculating module, and finally the result from calculating module is showed by displaying module. The measure results show that frequency and phase meter based on FPGA could scale frequency, phase and pulse width, and could meet requires of speed and precision. Therefore, this design will take up an important position in the future and have practical value.Keywords:equal precision, frequency and phase meter, FPGA目录第一章绪论 (1)1.1 课题背景及意义 (1)1.2 国内外研究状况和进展 (1)1.3 本文主要工作及内容安排 (3)第二章等精度频率相位计的基本原理 (5)2.1 频率测量的基本原理 (5)2.2 相位测量原理 (6)2.2.1 模拟式直读相位计 (6)2.2.2 基于傅立叶变换测量相位 (7)2.2.3 自动数字测相 (8)2.2.4 脉宽、占空比测量 (10)第三章等精度频率相位计硬件结构以及实现 (11)3.1 FPGA器件及设计开发板介绍 (11)3.1.1 FPGA简介 (11)3.1.2 设计所用开发平台(Create-SOPC1000A1CT)简介 (13)3.2 系统模块结构 (13)3.2.1 信号处理模块 (14)3.2.2 数据处理 (16)3.2.3 显示模块 (18)第四章等精度频率相位计设计软件实现及结果仿真 (20)4.1 VHDL语言简介 (20)4.2 系统的软件实现 (21)4.2.1 信号处理模块的VHDL实现 (22)4.2.2 译码显示模块实现 (23)4.3 系统仿真 (24)4.3.1 信号处理模块仿真 (25)4.3.2 计算模块仿真 (26)4.3.3 译码模块 (26)4.3.4 系统结果仿真 (27)4.3.5 测量结果以及误差分析 (29)第五章系统调试 (31)5.1 系统引脚约束及功能 (31)5.2 系统调试 (32)结论 (34)致谢 (35)参考文献 (36)第一章绪论1.1课题背景及意义频率、相位是现代数字信号的基本也是最重要的特征。
基于FPGA的等精度频率计的设计作者:王宪楠杨晓慧来源:《科技资讯》 2013年第25期王宪楠杨晓慧(长春理工大学电子信息工程学院吉林长春 130022)摘要:本文基于FPGA等精度测频原理设计了一种数字频率计,具有精度高、可靠性高及测频范围宽的特点。
利用Quartus Ⅱ软件,通过VHDL语言,进行了仿真,验证了本设计的正确性。
关键词:等精度频率测量 FPGA中图分类号:TP312 文献标识码:A 文章编号:1672-3791(2013)09(a)-0035-02随着电子信息技术的飞速发展,频率测量是电子测量领域中重要的测量之一。
频率计的主要功能是根据基准时钟信号来进行对被测信号的频率检测。
频率的测量方法主要有直接计数法、周期测频法、混合测频法和等精度侧频法[1]。
其中,前三种测频方法有一个共同点,即测频误差随被测信号频率的变化而发生较大的变化,在实际应用中有局限性。
最后一种测频方法测频误差不随被测信号频率变化,测量精度高。
本文利用FPGA技术实现了等精度频率计的设计,具有精度高、可靠性高及测频范围宽的特点。
1 等精度测量原理等精度测量原理[2]如图1所示,在计数允许的周期内,同时对标准信号和被测信号进行计数,被测信号频率fx的相对误差与被测信号的频率无关,知与预置门宽度和标准频率有关,为了提高测量精度,增大软件闸门时间,或者提高标准频率,可以减小测量相对误差。
2 等精度测频实现2.1 系统设计本设计采用FPGA芯片EP2C8Q208C,硬件结构由两个计数器、分频器、D触发器等组成。
频率计系统方框图如图2所示[3]。
两个计数器分别对标准频率信号和被测信号进行计数,通过D 触发器来控制计数的开始及结束,然后通过运算模块进行频率计数。
2.2 频率计的程序设计控制测试的过程由频率计的内部控制信号start1和en1进行控制,clk为系统的标准时钟,标准时钟由晶振提供,tclk为被测时钟,被测时钟tclk由被测信号提供。
第42卷第3期激光杂志 Vol.42,No_3 2021 年3 月L A S E R J O U R N A L M a rc h,2021•光电技术与应用•基于F P G A的光谱仪数据采集系统袁洪平,曾立波,林志鹏武汉大学电子信息学院,武汉430072摘要:傅里叶红外光谱仪高效、可靠地获得光谱数据对于后续定性和定量分析物质有着重大的意义。
使 用F P G A的并行处理能力和可自定义外设构建灵活的片内系统,配合外部硬件电路设计,提出了一种基于FP- G A的可定制高效稳定地采集、存储和传输光谱数据的系统实现方法。
阐述了基于F P G A完全使用硬件实现干 涉信号采集和存储的方法,用以提高数据采集的可靠性。
通过最终的实验结果表明,系统可以长时间稳定的运 行,解决了使用ARM进行数据采集和传输出现数据丢失的问题。
关键词:光谱仪;F P G A;自定义外设;数据采集中图分类号:TN216 文献标识码:A d o i:10. 14016/j. cnki. jgzz. 2021. 03. 153Data acquisition system of spectrometer based on FPGAYUAN Hongping,ZENG Libo,LIN ZhipengSchool o f Electronics a n d In fo rm a tio n,W uhan U niversity,W uhan430072, C hinaAbstract:The efficient and reliable acquisition of spectral data by Fourier infrared spectrom eter is significant for the subsequent qualitative and quantitative analysis of substances. Using the parallel processing capability of FPGA and the characteristic of building flexible in-c h ip system with custom izable peripheral and com bining with the design of external hardware circ u it, a system im plem entation m ethod based on FPGA can be custom ized and efficiently and stably co llec t, store and transm it spectral data was proposed. The method of interference signal acquisition and storage based on FPGA was described to improve data acquisition reliability. The final experim ental results show that the system can run stably for a long time and solve data loss in ARM data acquisition and transm ission.Key words:spectrom eter;F PG A;custom izable p e rip h e ra ls;data acquisitioni引言傅里叶红外光谱仪(Fourier Transform Infrared Spectrometer,FTS)能够对物质进行定性和定量分析,因此被广泛地应用于医药化工、石油、煤炭、环保等领 域[|4]。
凝血酶原时间检测理论与实验研究王青【期刊名称】《《电子设计工程》》【年(卷),期】2019(027)019【总页数】4页(P73-76)【关键词】石英晶体; 传感器; 频率; 测量【作者】王青【作者单位】陕西国防工业职业技术学院陕西西安710300【正文语种】中文【中图分类】TN2191959年,德国学者Sauerbrey等对石英晶体的物理结构与频率之间关系进行了研究,推导了石英晶体物理模型与频率之间的表达式,建立了石英晶体的检测基础。
从此,石英晶体检测理论与实践不断发展与完善,衍生了许多新的应用领域。
近些年来,基于石英理论及微弱质量检测技术成为检测生物微量试剂组成比例的重要手段之一[1-2]。
国外学者对这类电路的研究典型代表是M Ferrari等人设计了射极耦合振荡电路,提高了电路的带载能力实现了电路的振荡[3];Pennazza G等人建立了在桥式电路的基础上提出了主动桥式振荡电路,建立了一种新的电路振荡模式[4],在对原电路的进行深入研究的基础上,Radgolchin M等人对标准桥式理论分析,建立了基于标准振荡理论的振荡电路并进行了相关的实验[5],Tang Z对平衡桥式电路进行细致的研究,建立了改进的平衡桥式电路,实现了振荡的功能。
其中,射极振荡电路的相位约为90°,满足相关的振荡条件,但这种方式存在一定的振荡误差[6]。
而主动桥式振荡电路的振荡理论都是基于理想器件的推出的,与实际工作状况存在一定的偏离,所以这种石英电路也没有带来让你满意的频率输出。
国内对于QCM的研究工作开始上世纪八十年代后期,张先恩等对试剂滴入时的频率突变进行了分析,阐明了频率变化与微质量之间的关系[7]。
第三军医大学的府伟灵教授所在的课题组多年来一直致力于石英传感器的探索,建立了完善的数据处理PC上位机软件,以此为平台,搭建了凝血酶检测系统,可以实现石英频率的快速检测与分析[8,9]。
何东元等对高频石英振荡电路进行了理论分析和充分的实验验证,使得石英振荡电路方便可调,强化了电路的适应性。
基于FPGA的高精度全量程电压测量系统设计及实现秦益霖;宋依青【摘要】基于FPGA设计的全量程高精度电压测量系统,测量区间可调,测量精度高.利用区间式电压测量原理,有效地克服了传统的宽电压测量与高精度之间的矛盾,可在不需要太多增加硬件的情况下,大大提高测量精度.文中设计的高精度电压测量系统精度可达0.24 mv,且电路较简单,价格便宜,具有很好的市场推广应用前景.【期刊名称】《常州信息职业技术学院学报》【年(卷),期】2010(009)005【总页数】4页(P16-19)【关键词】高精度电压测量;Actel Fusion融合技术;AFS600芯片【作者】秦益霖;宋依青【作者单位】常州信息职业技术学院,江苏常州,213164;常州工学院,江苏常州,213002【正文语种】中文【中图分类】TM933.2在电压检测、电量监控、自动控制、标准计量仪器等许多方面都需要进行高精度的电压测量[1]。
传统的测量方法通常有两种:一种为高精度型,但是输出电压范围小;另一种是输出范围大,但精度较低。
这样高精度测量与宽动态范围测量之间是一对矛盾。
针对这一矛盾,本文采用Actel公司的Fusion系列混合信号FPGA为控制器核心,提出一种基于Actel Fusion AFS 600的FPGA实现高精度宽测量范围电压测量系统的设计方法,该方法可在不需要增加太多硬件的情况下,大大提高电压测量精度。
目前对电压的测量通常采用全量程电压表,量程从零起至某一个终点数值。
例如:0~1 V,0~250 V等。
有时被测的电压值仅仅在整个量程中一个较小的范围内变化,占全量程范围很小的一部分,这时测量的分辨率就很低。
例如:测量5±0.1V直流稳压电源,用普通的0~10 V电压表±0.1 V的变化仅占表盘的1/50,其变化就很难读出。
而采用高精度区间式电压测量可以大大提高测量性能。
根据被测电压变化范围和测量精度的需要,适当选定电压量程的一个区间为起始值和终点值,采用运算放大器,只对选定的那一个区间进行线性放大,在运放输出端接一个标有对应起始值和终点值的电压表显示被放大的测量值。
GuideHow to read a QCM specification Parameters to keep an eye on, what they mean and why they are importantGUIDE I How to read a QCM specificationIntroductionWhen you are to invest in a new QCM-system, there are several aspects of the instrument to consider. The first aspect that comes to mind is most likely the hardware capabilities. From an experimental setup and execution perspective, the hardware must fulfill the needed require-ments.Another aspect that is important to consider is the quality of the data generated. Because what is the point of running the experiments if the results are ambiguous and the data cannot be trusted? Therefore, the specification of the parameters related to the data quality is equally important to evaluate.In this guide, you will get the full picture on how to read a QCM specification. In the appendix, you will also find the specification for QSense hardware and data quality parameters. Feel free to add other suppliers’ QCM specifications for comparison. There are several ways to express QCM parameters. The guide will help you to match the parameters.Keep an eye on the parameters related to data quality – but which are they? The key parameter measured by a QCM instru-ment is the resonance frequency change of the oscillator. Extended QCM setups will in addition to the frequency change, measure one or more parameters related to the energy losses in the system. The parameters included in an instrument specification can, however, both vary and be described with different terminology.Which of all the parameters specified are relevant and will have an impact on the end measurement, and how can they be compared between different instrument suppliers?Some parameters are more important than othersThe relevance of a certain parameter may, to some extent, be determined by the actual measurement situation. For example, high time resolution may not be critical if very slow surface interaction processes are studied, and a high measurement sensitivity may not be important if large changes are to be measured. An aspect which is critical irrespective of the end use, however, is the assurance that the measurement reflects the process being studied. For example, a meas-ured decrease in frequency should reflect mass uptake (or change in solvent proper-ties) and not be induced by an uncontrolled drift in temperature. The temperature has a large impact on the resonance frequency, and therefore it is important to assure a good temperature control that keeps the temperature stable throughout the meas-urement. There are also other factors that will influence the information quality of the measured signal, such as noise and drift. The magnitude of these and other parameters, listed in the table on page 3, will significantly impact the measurement result.Theoretical values vs actual ones Some parameters mentioned in the context of QCM are purely theoretical, see table on page 3. These parameters are true but most often irrelevant in the actual measurement situation.Measurement resolutionOne example of such a parameter is the measurement resolution. The instrument electronics may fulfill a certain precision and be able to deliver a certain number of deci-mals in the measured signal, but this number doesn’t mean that all the decimals have any meaning. Noise and drift will ultimately determine the data quality and determine how many of the measured decimals that in the end are significant.When you are to invest in a new QCM-system, there are several aspects of the instrument to consider. The first aspect that comes to mind is most likely the hardware capabilities. From an experimental setup and execution perspective, the hardware must fulfill the needed requirements. For example, if a flow-mode experiment is planned, the setup must be equipped with flow capabil-ities, and if the experiment will be run in harsh solvents, the setup must withstand those chemicals. Another aspect that is important to consider is the quality of the data generated. Because what is the point of running the experiments if the results are ambiguous and the data cannot be trusted? Therefore, the specification of the parameters related to the data quality is equally important to evaluate. Here, we present an overview of the key parameters to consider in the specification ofa QCM instrument, what the respective parameter means and how they matter in the end use. Key parameters to considerIn the specification of a QCM instrumentMass sensitivityAnother example of a theoretical parame-ter often specified is the theoretical mass sensitivity. The theoretical mass sensitivity is a value that depends purely on the funda-mental resonant frequency of the crystal1. The higher the fundamental mode, the higher the theoretical mass sensitivity. A 5 MHz crystal will have a mass sensitivity of 17.7 ng/(cm2∙Hz), and a 10MHz crystal will have a theoretical mass sensitivity of 4.4 ng/ cm2∙Hz). However, it must be considered that the noise level also increases with higher fun-damental resonant frequency, which means that a higher theoretical sensitivity does not necessarily correlate with a better mass detection limit (the useful mass sensitivity) in the actual measurement situation. When assessing the specified sensitivity, it is there-fore not sufficient to only look at the theo-retical number relating to the crystal. To get the useful mass sensitivity which is relevant in a measurement situation, the measurement sensitivity, which determines how many significant decimals that can be resolved, must be considered. So, even if there is a theoretically high mass sensitivity inherent in the high-fundamental mode crystal, this can be significantly impaired by limitations of the hardware and electronics, which reduces how much of the crystal capacity that can be utilized in the actual measurement output.Ask about noise and long-termstabilityWhen evaluating the data quality that theinstrument will deliver, noise and drift aretwo important parameters to consider. Thenoise will, in the end, determine the usefulmeasurement sensitivity, i.e. how many ofthe displayed decimals that will be signifi-cant. The long-term drift will determine ifthe information collected can be trusted, orif the results are ambiguous due to influencefrom other sources such as temperature driftor mechanical stresses. If not specified, it canbe relevant to request information on noiseand stability from the supplier. Comparingspecifications, it is also worth paying atten-tion to the unit of the specified parameter.Knowing how parameters are extracted orcalculated, the unit can sometimes revealwhether the specified parameter is a the-oretical or an actual one. This also allowsfor recalculation of specified parameters tocompare between instruments, where theparameters sometimes can be specified ina different way.How are the parameters measured,and under what conditions are theyvalid?The conditions at which a parameter ismeasured and how calculations are madeare important information and should bespecified by the supplier. For example, atwhat temperature has the specified driftbeen captured? How long was the meas-urement and in what temperature range isthe specification valid? Is it valid in gas phaseor in liquid phase (and in that case whichliquid)? The specified numbers may onlybe valid under certain conditions, which isimportant to be aware of when consideringand comparing instrument specifications.Reference1. G. Sauerbrey; Z. Phys., 155:206-222, 1959Footnotes1. The mass sensitivity, C, is C = t q ∙ρq /f [1], where f is the funda-mental frequency, ρq = 2648 kg/m 3 is the density of quartz,and t q is the thickness of the crystal. The thickness of a crystal of fundamental frequency, f, is obtained via f = υq /(2∙ t q ), where υq = 3340 m/s is the velocity of sound in AT -cut quartz.2. Both the electronic capabilities and the mechanical design willimpact these parameters. The mechanical design is important since it can result in both mechanical- and temperature fluctuations, which both affect the crystal oscillation.************************************R eferencesConcluding remarksWhen about to invest in a new QCM-setup, there are severalaspects that will be considered such as price, hardware design and experimental capabilities. As the overall objective of any experiment is to be able to answer a predefined question with certainty, the data quality is also essential to assess. For example, it is not only of utmost importance to be able to resolve, via the measured signal, what happens, but it is also crucial that the information collected can be trusted. Key parameters relating to the data quality, and which should be kept an eye on, are the resolution, sensitivity, noise, and drift 2. When reading and comparing the specification of QCM instruments, it should be noted which of the specified values are theoretical and which are useful. Also, under what conditions the specified numbers are valid should be considered.AppendixMeasurement characteristics QSense Explorer, Analyzer and ProSetup, Sample handling system and Sensors。
基于FPGA和STM32的脉宽频率测量方法潘宇【摘要】In order to accurately measure the frequency of high frequency signals,overcome the shortcomings of the highest measured frequency is 80 kHz under the STM32F103 input capture mode.The paper proposed to use FPGA to divide the high frequency signal,and use software to adjust the factor of frequency division,the input high frequency signal can be divided and every component is below 80 kHz,then STM32F103 can measure them.In order to improve the measurement precision,we apply the repeated acquisition and bubble sorting,and then remove the maximum and minimum values,and take the average for the remaining values.The method improves the accuracy of frequency measurement.Finally,the measured value can be multiplied with the frequency division of FPGA to get the actual frequency.The test results show that the method is simple and has high precision and high frequency,it has certain practical value.%为准确测量高频信号的频率,克服STM32F103输入捕获模式下测得频率最高为80 kHz的缺点.提出用FPGA对高频信号进行分频,用软件编程调整分频因子,将输入高频信号分频到80 kHz以下,然后输入给STM32F103,采用脉宽测量法测得频率.为提高测量精度,采用多次采集,并冒泡排序,去掉部分最大、最小值,用剩余值取均值的滤波算法提高测量频率的精度.最后将测量值与FPGA的分频倍数相乘即可得到实际频率.测试结果表明:该方法实现简单、测量精度高、频率高,有一定的实用价值.【期刊名称】《实验室研究与探索》【年(卷),期】2017(036)002【总页数】4页(P83-86)【关键词】频率测量;脉宽测量法;均值滤波算法;分频【作者】潘宇【作者单位】白城师范学院物理学院,吉林白城137000【正文语种】中文【中图分类】TP216在仪器仪表应用中,经常要检测信号的频率。
目录1. 设计概述 (1)2. 设计目标 (2)3. 设计思想 (3)4. 系统结构 (4)4.1系统硬件结构框图 (4)4.2系统软件结构框图 (5)5. 系统单元电路的设计 (5)5.1ADC采样模块设计 (5)5.1.1 WM7831芯片简介 (5)5.1.2 WM8731芯片控制 (6)5.1.3 ADC单元硬件电路 (7)5.2FFT模块的设计 (9)5.2.1 FFT算法 (9)5.2.2 FFT算法的FPGA实现整体结构 (10)5.3中断的实现 (11)5.4液晶显示模块的设计 (11)5.4.1 方案论证 (12)5.4.2 方案设计过程 (12)5.5VGA显示模块的设计 (18)5.5.1 VGA显示原理及时序 (18)5.5.2 方案论证 (19)5.5.3 方案设计过程 (20)5.6音频前置放大器的设计 (22)5.7音频输出 (22)6. 系统实验结果分析 (23)6.1分辨率实验 (23)6.2频率的测量范围实验 (24)6.3M ATLAB对正弦波进行频谱分析的仿真结果 (25)6.4音频信号的相关实验 (26)6.5系统运算速度测试 (26)6.6实验结果分析 (26)6.7系统资源使用情况 (26)7. 设计特点与不足 (27)7.1设计特点 (27)7.2设计不足 (27)8. 设计过程中出现的问题及解决 (28)9.总结 (28)参考文献 (29)数字频谱分析仪Digital Spectrum Analyzer(陕西科技大学王鹏,李明艳,刘波指导教师:马令坤)摘要:随着科学技术的发展,频谱分析作为近代的信号分析方法在各个学科研究中已经广泛应用,是从事各种电子产品研发、生产、检验的重要依据。
高分辨率、宽频带实时的数字频谱分析的方法和实现一直是该领域的研究热点,我们设计了一种基于NIOS II的嵌入式频谱分析仪。
充分利用NIOSII强的运算能力和FPGA易于系统集成的特点,实现了硬件开销小、实时性较强和分辨率高的语音频谱分析仪。