实验设计与数据处理 第二章 数据的表图表示方法
- 格式:ppt
- 大小:1.42 MB
- 文档页数:54
试验设计与数据处理复习要点1、引言20世纪20年代,英国生物统计学家及数学家费歇提出了方差分析20世纪50年代,日本统计学家田口玄一将正交设计表格化。
数学家华罗庚的“优选法”。
我国数学家王元和方开泰于1978年首先提出了均匀设计。
常用的统计软件:SAS,SPSS,Origin,Excel等。
试验设计与数据处理的意义。
试验设计的目的:合理地安排试验,力求用较少的试验次数获得较好结果数据处理的目的:通过误差分析,评判试验数据的可靠性;确定影响试验结果的因素主次,抓住主要矛盾,提高试验效率;确定试验因素与试验结果之间存在的近似函数关系,并能对试验结果进行预测和优化;获得试验因素对试验结果的影响规律,为控制试验提供思路;确定最优试验方案或配方。
加权平均值:如果某组试验值用不同的方法获得,或由不同的试验人员得到的,则这组数据中不同的精度或可靠性不一致,为了突出可靠性高的数值,则可采用加权平均值。
绝对误差:试验值与真值之差误差根据其性质或产生原因分为:系统误差,随机误差,过失误差1. 随机误差:以不可预知的规律变化着的误差,绝对误差时正时负,时大时小产生的原因:偶然因素(气温的微小变2.仪器的轻微振动等)2. 系统误差:一定试验条件下,由某个或某些因素按照某一确定的规律起作用而形成的误差产生的原因:多方面(仪器不准或操作者观察终点方法不对)3.过失误差:一种显然与事实不符的误差产生的原因:实验人员粗心大意造成精密度、正确度和准确度的含义与区别。
1.精密度:反映了随机误差大小的程度,在一定的试验条件下,多次试验值的彼此符合程度2.正确度:反映系统误差的大小,精密度高并不意味着正确度也高精密度不好,但当试验次数相当多时,有时也会得到好的正确度3.准确度:反映了系统误差和随机误差的综合,表示了试验结果与真值或标准值的一致程度关于权的选择和绝对误差的选择。
权不是任意给定的,除了依据实验者的经验外,还可以按如下方法给予。
数据分析及优化设计实验指导书(实验报告)实验名称描述性分析实验实验目的1、熟练掌握利用MATLAB软件计算均值、方差、协方差、相关系数、标准差与变异系数、偏度与峰度、中位数、分位数、三均值、四分位极差与极差。
2、熟练掌握jbtest与kstest关于一维数据的正态性检验。
3、掌握统计作图方法。
4、掌握多维数据的数字特征与相关矩阵的处理方法。
实验题答案实验一:1998年到2020年,我国汽车产量相关统计数据如表所示,解决以下问题:1)计算各项指标的平均值、标准差、变异系数、三均值、偏度与峰度;对数据进行读取,并计算各个指标的平均值、标准差、变异系数、三均值、偏度与峰度,代码如下:1.A=xlsread('第二章数据 experiment2_1.xlsx');=["生产产量(万吨)","金属切削机床产量(万台)","汽车产量(万辆)"]3.M=mean(A); %计算各指标(即各列)的均值4.SD=std(A); %计算各指标标准差5.V=SD./abs(M); %计算各指标变异系数6.SM=[0.25,0.5,0.25]*prctile(A,[25;50;75]); %计算各指标(即各列)的三均值7.pd=skewness(A,0); %计算每列数据的偏度8.fd=kurtosis(A,0)-3; %计算每列数据的峰度9.OUT=["数据名称",NAME;"平均值",M;"标准差",SD;"变异系数",V;"三均值",SM;"偏度",pd;"峰度",fd]在编辑器中输入代码,并保存为.m文件,在命令行窗口中输出各个计算结果如下图所示:2)各项指标是否服从正态分布?若服从正态分布,计算概率为1%时的生铁产量、金属切削机床产量及汽车产量;若不服从正态分布,利用Box-Cox 变换将数据进行变换,对变换后的数据进行相应的分析;对各项指标进行JB检验、KS检验和改进KS检验(即Lilliefors检验),并结合QQ图进行分析判断各项对应指标是否服从正态分布,Matlab中代码如下:1.%%-------------------------------绘图-------------------------------%%2.a1=A(:,[1]); %生铁产量(万吨)3.a2=A(:,[2]); %金属切削机床产量(万台)4.a3=A(:,[3]); %汽车产量(万辆)5.subplot(1,3,1),qqplot(a1),title('生铁产量');6.subplot(1,3,2),qqplot(a2),title('金属切削机床产量');7.subplot(1,3,3),qqplot(a3),title('汽车产量');8.h1=jbtest(X); %JB检验9.h2=kstest(X); %KS检验10.h3=lillietest(X); %改进KS检验11.H=[h1;h2;h3];各列指标检验结果如下:可以看出,生铁产量、金属切削机床产量、汽车产量三项指标都满足h1=0,h2=1,h3=0,表示JB检验和Lilliefors检验支持生铁产量、金属切削机床产量、汽车产量三项指标都服从正态分布,KS检验不支持生铁产量、金属切削机床产量、汽车产量三项指标服从正态分布。
《试验设计与数据处理》复习要点第一章误差分析一、真值与平均值1、真值:指在某一时刻和某一状态下,某量的客观值或实际值。
2、平均值(1)算术平均值:x̅=x1+x2+⋯+x nn =∑x in同样试验条件下,多次试验值服从正态分布,算术平均值是这组等精度试验值中的最佳值或最可信赖值。
(2)加权平均值:x̅w=w1x1+w2x2+⋯+w n x nw1+w2+⋯+w n =∑w i x i∑w i(3)对数平均值:x̅L=x1−x2ln x1x2=x2−x1ln x2x1,试验数据的分布曲线具有对称性(4)几何平均值:lg x̅G=∑lg x̅in(5)调和平均值:H=n∑1x i二、误差的基本概念1、绝对误差=测得值-真值,结果可正可负。
2、相对误差=绝对误差/真值≈绝对误差/测得值,结果可正可负。
3、算术平均误差∆=∑|x i−x̅|n4、标准误差(1)样本标准差s=√∑(x i−x̅)2n−1=√∑x i2−(∑x i)2/nn−1(2)总体标准差σ=√∑(x i−x̅)2n =√∑x i2−(∑x i)2/nn三、误差来源及分类根据误差的性质或产生原因,可分为随机误差、系统误差、粗大(过失)误差。
1、随机误差:在一定试验条件下,以不可预知的规律变化着的误差;2、系统误差:在一定试验条件下,由某个或某些因素按照某一确定的规律起作用而形成的误差;3、粗大(过失)误差:一种显然与事实不符的误差。
四、试验数据的精准度1、精密度:反映随机误差大小的程度,是指在一定的试验条件下,多次试验值的彼此符合程度或一致程度;2、正确度:指大量测试结果的(算术)平均值与真值或接受参照值之间的一致程度,反映了系统误差的大小,是指在一定的试验条件下,所有系统误差的综合;3、准确度:反映系统误差和随机误差的综合,表示了试验结果与真值或标准值的一致程度。
五、试验数据误差的统计检验1、随机误差的检验随机误差的大小可用试验数据的精密程度来反映,而精密度的好坏又可用方差来度量,所以对测试结果进行方差检验,即可判断随机误差之间的关系。
优秀数学教案之认识生活中的数据第一章:数据的初步认识一、教学目标:1. 让学生理解数据的概念,掌握数据的基本特征。
2. 培养学生收集、整理数据的能力。
3. 引导学生发现生活中的数据,培养学生的数据意识。
二、教学内容:1. 数据的定义及分类:数值数据、分类数据。
2. 数据的特点:大小、顺序、唯一性等。
3. 数据的收集与整理方法:调查、实验、观察等。
三、教学重点与难点:重点:数据的定义、特点及收集整理方法。
难点:数据的概念及其在生活中的应用。
四、教学方法与手段:1. 采用讲授法、案例分析法、小组讨论法等教学方法。
2. 使用多媒体课件、实物模型等教学手段。
五、教学步骤:1. 导入:通过生活中的实例,如天气预报、商品价格等,引导学生关注数据。
2. 讲解:介绍数据的概念、分类及特点。
3. 实践:让学生分组收集、整理生活中的数据,如身高、体重、年龄等。
4. 讨论:分组汇报收集整理的数据,分析数据的特点及规律。
5. 总结:概括数据的概念、特点及收集整理方法。
一、教学目标:1. 让学生掌握数据的不同表示方法,如表格、图表等。
2. 培养学生运用数据展示方法解决问题的能力。
3. 培养学生分析、处理数据的能力。
二、教学内容:1. 数据表示方法:表格、图表等。
2. 数据展示方法:条形图、折线图、饼图等。
3. 数据处理与分析:平均数、中位数、众数等。
三、教学重点与难点:重点:数据表示方法及数据展示方法的选择。
难点:数据处理与分析的方法及应用。
四、教学方法与手段:1. 采用讲授法、案例分析法、小组讨论法等教学方法。
2. 使用多媒体课件、实物模型等教学手段。
五、教学步骤:1. 导入:通过实例,如学校成绩排名,引导学生了解数据表示与展示的重要性。
2. 讲解:介绍数据表示方法及数据展示方法。
3. 实践:让学生分组收集、整理生活中的数据,并选择合适的表示与展示方法。
4. 讨论:分组汇报收集整理的数据及表示展示方法,分析数据处理与分析的方法。