何首乌_制何首乌及何首乌发酵炮制品致泻作用与抗氧化活性的比较研究_英文_
- 格式:pdf
- 大小:701.83 KB
- 文档页数:5
何首乌与制何首乌写在前面图片中的制何首乌含量二苯乙烯葡萄糖苷2.79%,标准0.70%。
游离蒽醌0.25%,标准0.10%。
制何首乌按照药典标准检测,为合格品。
炮制的作用为增效减毒,上述值与标准相比,仍然很高,对此,我们一起学习一下何首乌的炮制。
药典上的何首乌与制何首乌01基源何首乌:本品为蓼科植物何首乌(Polygonum multiflorum)的干燥块根。
秋、冬二季叶枯萎时采挖,削去两端,洗净,个大的切成块,干燥。
何首乌饮片:除去杂质,洗净,稍浸,润透,切厚片或块,干燥。
制何首乌:取何首乌片或块,照炖法用黑豆汁拌匀,置非铁质的适宜容器内,炖至汁液吸尽;或照蒸法,清蒸或用黑豆汁拌匀后蒸,蒸至内外均呈棕褐色,或晒至半干,切片,干燥。
每100kg何首乌片(块),用黑豆10kg。
黑豆汁制法取黑豆10kg,加水适量,煮约4小时,熬汁约15kg,豆渣再加水煮约3小时,熬汁约10kg,合并得黑豆汁约25kg。
02含量何首乌:本品按干燥品计算,含2,3,5,4′-四羟基二苯乙烯-2-O-β-D-葡萄糖苷(C20H22O9)不得少于1.0%。
结合蒽醌含量=总蒽醌含量-游离蒽醌含量。
本品按干燥品计算,含结合蒽醌以大黄素(C15H10O5)和大黄素甲醚(C16H12O5)的总量计,不得少于0.10%。
何首乌饮片:本品按干燥品计算,含2,3,5,4′-四羟基二苯乙烯-2-O-β-D-葡萄糖苷(C20H22O9)不得少于1.0%。
结合蒽醌同药材,含结合蒽醌以大黄素(C15H10O5)和大黄素甲醚(C16H12O5)的总量计,不得少于0.05%。
制何首乌:照醇溶性浸出物测定法(通则2201)项下的热浸法测定,用乙醇作溶剂,不得少于5.0%。
二苯乙烯苷避光操作。
本品按干燥品计算,含2,3,5,4′-四羟基二苯乙烯-2-O-β-D-葡萄糖苷(C20H22O9)不得少于0.70%。
本品按干燥品计算,含游离蒽醌以大黄素(C15H10O5)和大黄素甲醚(C16H12O5)的总量计,不得少于0.10%。
何首乌炮制的文献研究专业中药学班级分析一班学号0944920 姓名俞苏岚【摘要】何首乌为蓼科植物何首乌Polygonum multiflorum Thunb.的块根。
生首乌功能解毒(截疟)、润肠通便、消痈;制首乌功能补益精血、乌须发、强筋骨、补肝肾。
现临床多用制首乌。
本文章将对何首乌的历史沿革研究、炮制原理探讨、炮制工艺改进、饮片质量控制、发展方向分析等五个方面进行文献研究,以找出何首乌合理的炮制方案,继承发扬其精华, 除去糟粕, 确保临床用药安全有效。
【关键词】何首乌炮制文献研究实验设计【文献研究】1.历史沿革研究唐代:《仙授理伤续断秘方》载有醋煮即醋制法。
宋代:在《本草图经》中有米泔水制。
《证类本草》中有清蒸、酒浸、与酒同服。
《圣济总录》中有炒制、麸炒制、酒炒制、黑豆蒸制、炮去黑皮。
《太平惠民和剂局方》中有泔浸一宿煮过切焙的制法。
《类编朱氏集验方》中有姜、甘草制法。
金代:《儒门事亲》中有米泔水浸,黑豆、大枣蒸制。
元代:《活幼心书》中有去粗皮。
《丹溪心法》有木臼捣碎为末。
明代:《奇效良方》中有黑豆煮制。
《仁术便览》中有酒浸切大片,黑豆一层,何首乌一层,蒸晒各七遍听用。
《本草纲目》中有泔、豆蒸:九蒸九晒。
《景岳全书》中有酒浸蒸极熟焙,及泔、豆、牛膝蒸。
《寿世保元》中有豆、牛膝蒸。
《先醒斋广笔记》中有黑豆、牛膝共蒸后乳浸制。
清代:《良朋汇集》中有以乌羊肉、豆蒸制。
《成方切用》中有牛乳拌蒸制。
《本草求真》中有七次蒸至第九次,破故纸、黑芝麻炒。
近代:何首乌的炮制方法,除了继承传统的酒制、单蒸、酒蒸、黑豆蒸、黑豆酒蒸、单煮、黑豆煮外,还增加了熟地黄汁蒸、黑豆生姜煮、复制等方法。
《中国药典》1963 年版载用黑豆汁与黄酒拌匀,隔水炖。
《中国药典》1977 年版沿用此法,《中国药典》1985 年版改为黑豆拌蒸法,《中国药典》1990 年版改为黑豆汁拌炖或拌蒸、清蒸。
《中国药典》1995 年版与2000 年版载:黑豆拌蒸,清蒸[1]。
浅谈何首乌的炮制方法及其临床应用何首乌为蓼科植物何首乌Polygonum multiflorum Thunb的干燥块根,是我国历代常用的中药。
其生用与制后用作用有所不同,生首乌有润肠通便、解疮毒作用,有一定毒性;经过炮制的制首乌有补肝肾,益精血,乌须发作用。
古往今来,有关何首乌的炮制方法很多。
【炮制方法】一、净制除去杂质二、切制除去杂质,洗净,稍浸,润透,切厚片或块,干燥三、炮炙制首乌1.黑豆、黄酒制(1)取何芮乌块倒入盆内,用黑豆汁与黄酒拌匀,置罐内或适宜容器内,密闭,坐水锅中,隔水炖至汁液吸尽,取出,晒干即得。
每何首乌100kg,用黑豆10kg,黄酒25kg。
黑豆汁的制法取黑豆10kg,加水煮约4小时,熬汁约15kg,豆渣冉加水煮约3小时,熬汁约10kg,两次共熬汁约25kg(2)取首乌片或块,先用黑豆汁拌匀,隔水加热,蒸8小时,焖8小时,至表面黑褐色时,取出,晾干。
再用黄酒拌匀,蒸8小时,取出,晒干。
每何首乌片100kg,用黑豆10kg,黄酒20kg。
黑豆汁制法取黑豆10kg,加水适量,约点4小时,熬汁约15kg,豆渣再加水煮约3小时,熬汁约10kg,合并得豆汁25kg2.蒸制(1)将原只生于何首乌,除去杂质分档,浸12-24小时,洗净,捞起,大只劈开,中途淋水,润透,置蒸笼内,每天蒸足8小时(以上汽后算起),焖过夜,翌晨上下翻动1次,再蒸,如此反复蒸制4天,焖4夜,至内外都呈滋润黑色。
取出。
晒至半干,切薄片,将蒸时所得之原汁拌入,使之吸尽,干燥,筛去灰屑(2)取原药材,洗净,煮沸4-6小时,至中心至粘性,晒半干,切去茎基及尾梢,反复晒至发硬,再浸4小时后,加水盖过药面,煮沸8小时,焖1夜,晒半干,再蒸8小时,焖15小时。
再如前法操作1次,趁热切9-12mm方块,晒干3.酒制(1)取何首乌片或块,用黄酒拌匀,润4-6小时,放笼屉内蒸6小时,取出稍晾,再加入锅内汁水,候汁吸尽,捞起再蒸,以蒸黑为度,取出晒干或烘干。
何首乌经枯草杆菌发酵后体外生理活性的变化首乌(Radix Polygoni Multiflori)是一种重要的中药材,具有明显的生理活性和药用价值。
首乌经过发酵后,其体外生理活性会有所变化。
本文将探讨首乌经枯草杆菌发酵后的体外生理活性的变化,并对其可能的机制进行探讨。
枯草杆菌是一种常用的微生物菌种,具有较强的生物降解能力。
通过对首乌进行枯草杆菌发酵,可以促进首乌中的活性成分的释放和转化。
研究表明,首乌经过枯草杆菌发酵后,其多糖、黄酮类和萜类化合物等活性成分含量明显增加,这表明发酵可以显著提高首乌的药效成分含量,从而增强其药用价值。
发酵还可以改变首乌中活性成分的结构和性质。
以首乌多糖为例,经过枯草杆菌发酵后,其分子量减小,结构变得更为复杂。
这种结构的变化可以影响首乌多糖的生物利用度和生理活性,使其在体外具有更好的溶解性和生物活性。
发酵可以提高首乌中活性成分的生物利用度和生理活性,增强其药效。
枯草杆菌发酵还可以促进首乌中活性氧化酶的产生,并改善其抗氧化活性。
研究表明,首乌经过枯草杆菌发酵后,其超氧化物歧化酶(SOD)和过氧化物酶(POD)活性显著增强,同时抗氧化活性也得到了提高。
这说明发酵可以增强首乌的抗氧化能力,减轻其对自由基的损害,从而更好地发挥其保健作用。
枯草杆菌发酵还可以促进首乌中活性成分的释放和溶解,使其更易被人体吸收。
研究表明,首乌经过发酵后,其活性成分在体外的释放速度更快,溶解度更高。
这说明发酵可以提高首乌的生物利用度,增强其对人体的功效。
首乌经过枯草杆菌发酵后,其体外生理活性发生明显变化,包括药效成分含量的增加、结构和性质的改变、抗氧化活性的提高以及生物利用度的增强等。
这些变化使得发酵后的首乌在药用和保健方面具有更好的应用前景。
关于首乌发酵后的生理活性的调节机制尚不十分清楚,需要进一步的研究来阐明其机理,为首乌的发酵加工和应用提供科学依据。
不同炮制工艺对何首乌功效和活性的影响
刘素标
【期刊名称】《临床合理用药杂志》
【年(卷),期】2017(10)19
【摘要】目的分析不同炮制后的何首乌药物功效、活性情况。
方法通过高效液相色谱法对不同炮制后何首乌中成分及含量进行检测,同时对药物活性进行检测。
结果高压蒸制何首乌中二苯乙烯苷、大黄甲醚、大黄素含量较蒸制何首乌含量高,差异均有统计学意义(P<0.05)。
空白组细胞抗衰老率为16.5%,蒸制28.7%,高压蒸制为37.9%,蒸制何首乌、高压蒸制何首乌较空白细胞抗衰老率高,差异均有统计学意义(P<0.05)。
结论不同方式炮制的何首乌其有效成分二苯乙烯苷、大黄甲醚、大黄素含量会出现变化,临床需对炮制过程进行研究,从而提高药物治疗效果。
【总页数】2页(P100-101)
【作者】刘素标
【作者单位】湖北省崇阳县中医院
【正文语种】中文
【中图分类】R286.0
【相关文献】
1.不同炮制工艺对何首乌中成分含量的影响
2.不同炮制工艺对何首乌有效成分含量的影响
3.不同炮制工艺对何首乌中二苯乙烯苷含量的影响
4.HPLC测定不同产区生
何首乌和不同炮制工艺制何首乌中蒽醌类成分含量5.不同炮制工艺对何首乌中成分含量的影响
因版权原因,仅展示原文概要,查看原文内容请购买。
何首乌不同炮制品的质量标准研究中国药科大作业实验目的1.掌握何首乌的炮制方法。
2.通过何首乌不同炮制品化学成分的研究,了解不同炮制品对何首乌质量的影响。
实验原理何首乌系蓼科植物何首乌(polonum multo-rum Thunb.)之块根,其有效成分蒽醌类能促进肠蠕动、抑制三酰甘油(TG)及胆固醇在肠道中的吸收,从而降低血脂;其另一有效成分二苯乙烯苷具有降胆固醇功能。
何首乌炮制前后用法各异,作用亦不同,有必要探明其在炮制前后主要成分的变化。
本文采用紫外分光光度法测定何首乌炮制前后蒽醌类和二苯乙烯苷的含量。
本实验应用比色法测定何首乌炮制后大黄素和二苯乙烯苷的含量,比较不同炮制方法对何首乌质量的影响。
仪器压力锅电炉 721型分光光度计烧杯(4个500ml, 2个1000ml)容量瓶(10,20,50ml)吸量管(0.5,1,2,5ml)量筒(50,100ml)称量瓶索氏提取去溶剂回收装置吸管圆底烧瓶(150,200ml)漏斗分液漏斗锥形瓶(250ml)滤纸玻璃棒脱脂棉笼屉药品:0.5%醋酸镁甲醇液氯仿乙醇黑豆汁黄酒生何首乌制何首乌实验内容炮制:1.黑豆制首乌:取净首乌片或块,用黑豆汁拌匀,置适宜容器内,隔水加热,蒸至汁液被吸尽。
每100kg何首乌块(片),用黑豆10kg。
黑豆汁制法:取黑豆10kg,加水煮约4小时,煮汁约15kg,豆渣再加水煮约3小时,煮汁约10kg,合并得黑豆汁约25kg。
2.酒制何首乌:取何首乌片或块,用黄酒拌匀,润4-6小时,放笼屉内蒸6小时,取出稍晾,再加入锅内汁水,候汁吸尽,捞起再蒸,以蒸黑为度,取出晒干或烘干。
每何首500g,用黄酒60g 。
吸收光谱的绘制大黄素吸收光谱的绘制精密量取大黄素0.5 mg于10mL量瓶中。
用0.5%Mg(Ac)2溶液显色,并加0.5%Mg(Ac)2至刻度,在紫外分光光度计上,以0.5%Mg(Ac)2为空白对照,在波长400~700nm范围内扫描,得吸收图谱。
何首乌的炮制研究
常明向;王福霞;刘小平;李信炯
【期刊名称】《中草药》
【年(卷),期】1988(0)7
【摘要】本文依据钼蓝-分光光度法测定磷的原理,测定了何首乌炮制前后总磷的含量。
结果表明,何首乌经炮制后总磷含量增加36.9%。
【总页数】2页(P17-18)
【关键词】何首乌;总磷;含量测定
【作者】常明向;王福霞;刘小平;李信炯
【作者单位】湖北中医学院附属医院;武汉市药品检验所
【正文语种】中文
【中图分类】R283
【相关文献】
1.基于PBL的中药炮制课程单元教学设计——以何首乌的炮制为例 [J], 李林;李伟东;殷放宙;邵怡;陆兔林
2.医院煎药机炮制何首乌与市售制何首乌的成分比较 [J], 陈建斌;林钦
3.何首乌、制何首乌及何首乌发酵炮制品致泻作用与抗氧化活性的比较研究 [J], 俞捷;谢洁;毛晓健;卫华;赵声兰;马雅鸽;李娜;赵荣华
4.炮制工艺和炮制时间对何首乌成分含量的影响研究 [J], 李琴
5.不同炮制方法炮制的何首乌的质量标准探讨 [J], 李卫先;张琦;王国仁;林雪兰;彭玉婷
因版权原因,仅展示原文概要,查看原文内容请购买。
何首乌生制品对比何首乌(Polygonum multiflorum Thunb)为蓼科植物何首的根块,生品具有解毒、消痈、润肠通便之功效;经炮制后为制何首乌,具有补肝肾、益精血、乌须发等功效[1],二者均为临床常用中药饮片=但人们对何首乌炮制前、后药性变化机制还未完全明确。
一.生品与制品化学成分对比多糖的含量测定1 对照品溶液的制备精密称取干燥恒重的葡萄糖对照品10.5rng,加水溶解并定容至1OOml,作对照品溶液(0.105mg/m1)。
2 换算因子的测定分别精密称取生首乌及制首乌总多糖样品19.9、19.6mg,置于100m容量瓶中,加蒸馏水溶解并稀释至刻度(储备液)。
吸取储备液lml,按“2.2.4”操作测定吸光度。
由回归方程求出供试液中葡萄糖的含量,按式f—m/(pD)计算换算因数,式中,m为多糖的质量(tLg);P为供试液中葡萄糖的含量(tLg);D为多糖的稀释因数。
经计算可得生乌及制首乌f生一1.356,f制一1.355。
为计算方便统一取f一1.3563 多糖的含量测定分别精确称取样品粉末0.5g,用200mL石油醚(沸程60~90℃)索氏回流至无色,药物挥于溶媒后,再加80 乙醇100ml回流提取1h,趁热过滤,残渣用80 乙醇洗涤(10ml×3)。
残渣连同滤纸置于烧瓶中,加蒸馏水100ml,加热提取1h,趁热过滤,残渣用热水洗涤(10ml×3),洗液并人滤液,放冷后移人250m1容量瓶中,稀释至刻度,备用,作为供试品液备用。
吸取适量供试品液,加蒸馏水至1ml,按“2.2.4”项测定吸光度,总糖含量一pDf/m×100 (m 为样品质量,tLg;P为样品液中葡萄糖的含量,tLg;D为样品液的稀释因数,f为换算因子生制品多糖含量测定结果如下:生首乌X%=14.28 RSD%=3.91 制首乌 X%=19.03 RSD%=2.53结论1.何首乌为药食两用之佳品,具有多种保健功能,现代食品工业中亦通过提取其水溶性总多糖制成各种保健食品,以满足人们的健康需求 ]。
中药何首乌炮制前后化学成分分析-化学工程论文-工业论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——摘要:目的:观察分析中药何首乌炮制前后特征化学成分的变化。
方法:取5kg新鲜何首乌药材,清洗切片烘干后随机分为A、B、C、D、E五组,A组进一步进行黑豆汁蒸,B组进一步进行黑豆汁炖,C组进一步进行清蒸、D组进一步进行黑豆汁加黄酒蒸,E组进一步进行黑豆汁加甘草蒸,比较炮制与炮制前后何首乌化学成分变化情况。
结果:五组炮制后何首乌所含二苯乙烯苷以及儿茶素水平明显降低,没食子酸、大黄素、大黄素甲醚水平明显提高,差异具有统计学意义(P0.05)。
结论:何首乌炮制可有效提高何首乌中所含没食子酸、大黄素、大黄素甲醚等化学成分水平,降低二苯乙烯苷以及儿茶素水平。
关键词:中药何首乌;炮制;化学成分何首乌属于蓼科植物何首乌的干燥块根,生品名为“何首乌”,炮制品名为“制何首乌”,自古至今,国人认为何首乌生、制作用不同,《中国药典》记录生品何首乌具有消痈解毒、润肠通便的作用,制何首乌具有补益肝肾、强筋壮骨的作用[1,2]。
现代药理研究显示何首乌主要化学成分有二苯乙烯苷、蒽醌类以及鞣质成分,目前可测的物质主要为二苯乙烯苷、没食子酸、大黄素、大黄素甲醚、儿茶素等[3]。
本次研究分别将何首乌依次用黑豆汁蒸、黑豆汁炖、清蒸、黑豆汁加黄酒蒸以及黑豆汁加甘草蒸等五种方法炮制后比较炮制前后化学成分的变化情况。
1资料与方法1.1一般资料:本次研究随机选取5kg新鲜何首乌,经食品药品鉴定为蓼科植物何首乌的块根,采用超声波清洗器对所有药材进行清洗,清洗干净后对其进行干燥,而后将所有何首乌切成厚度1.2~1.5厘米片状,随机均分为A、B、C、D、E五组,每组均有1kg何首乌。
1.2方法:取黑豆425g,将黑豆与8倍水共煮4h后,熬汁约650g,提取豆渣加6倍水再煮3h,熬汁约425g后,合并得黑豆汁约1075g,备用。
A组将1kg何首乌与适量黑豆汁放入非铁质蒸制容器充分拌匀(不密封),炮制12h后将黑豆汁蒸何首乌使用50℃烘箱吹至含水量小于12%。
何首乌生品及不同炮制品的抗氧化活性研究
古今;刘萍;马凤彩
【期刊名称】《中国药房》
【年(卷),期】2005(016)011
【摘要】目的:研究何首乌生品及不同炮制品的抗氧化活性.方法:采用化学发光法对何首乌生品及不同炮制品清除自由基的能力进行比较.结果:以发光抑制率表示超氧化物歧化酶的活性,结果发光抑制率从高到低依次为生品、黑豆制品、清蒸品、黑豆加酒制品,即何首乌生品的抗氧化活性最高.结论:如果能采取一种炮制方法仅破坏何首乌的泻下成分而保留其有效成分,则能增强其补益效果,充分发挥其抗衰老作用.
【总页数】2页(P875-876)
【作者】古今;刘萍;马凤彩
【作者单位】解放军总医院药材处中药房,北京市,100853;解放军总医院药材处中药房,北京市,100853;解放军总医院药材处中药房,北京市,100853
【正文语种】中文
【中图分类】R283.1
【相关文献】
1.何首乌9生品及不同炮制品中大黄素含量测定 [J], 黄玉剑;王秦勇;丁瑾;卫培峰
2.丹参生品及不同炮制品的体外抗菌活性研究 [J], 李昌勤;赵琳;杨宇婷;康文艺
3.何首乌生品及不同炮制品中大黄素含量的测定结果分析 [J], 赵红霞
4.决明子生品及炮制品的抗氧化活性研究 [J], 孔祥密;王培卿;康文艺
5.丹参生品及炮制品的抗氧化活性研究 [J], 王培卿;孔祥密;康文艺
因版权原因,仅展示原文概要,查看原文内容请购买。
63 Chinese Journal of Natural Medicines 2012, 10(1): 0063−0067doi: 10.3724/SP.J.1009.2012.00063Chinese Journal of Natural MedicinesComparison of laxative and antioxidant activities of raw, processed and fermented Polygoni Multiflori RadixYU Jie, XIE Jie, MAO Xiao-Jian, WEI Hua, ZHAO Sheng-Lan, MA Ya-Ge,LI Na, ZHAO Rong-Hua *The Key Modern Research Laboratory for Ethno-pharmacognosy of Yunnan Higher School, Yunnan University of Traditional Chinese Medicine, Kunming 650500, ChinaAvailable online 20 Jan. 2012[ABSTRACT] AIM: To observe the anti-oxidative activity and adverse laxative effect of raw, traditional processed and fermented products of Polygoni Multiflori Radix (PMR), and furthermore, to evaluate the fermentation method used in the processing procedure of PMR. METHODS: In vitro ferric reducing antioxidant power (FRAP) assay was carried out to evaluate the anti-oxidative activity. Modulation of normal defecation and effect on gastrointestinal motility in mice were carried out to investigate their adverse laxative effect. RESULTS: Fermented PMR induced less severe laxative adverse effect than Polygoni Multiflori Radix Praeparata (PMRP). PMR fermented with Rhizopus sp. (FB) could modulate the defecation significantly. The gastrointestinal motility was inhibited by PMRP and PMR fermented with Rhizopus oryzae (FA). FA and FB showed better antioxidant activity than PMRP in 50% and 95% ethanol group. Contents of 2, 3, 5, 4’-tetrahydroxy-stilbene-2-O -β-D-glucoside (TSG) were reduced significantly after traditional proc-essing but maintained after fermentation. Emodin and physcion were increased after traditional processing and fermented with Rhizopus oryzae. CONCLUSION: All processing procedure, including fermentation, might reduce its anti-oxidative activity. How-ever, most of the processed products could lessen the adverse effect on gastrointestinal tract compared to PMR. Fermentation with Rhizopus oryzae was considered as a promising processing method of PMR. [KEY WORDS] Polygoni Multiflori Radix; Fermented; Laxative; Antioxidative[CLC Number] R965 [Document code] A [Article ID] 1672-3651(2012)01-0063-051 IntroductionFermentation, one of the most frequently used process-ing procedures of traditional Chinese medicine, showed out-standing foreground in the research of traditional Chinese medicines, especially in researches aiming at improving pharmacological effect and reducing adverse effect. Nowa-days, fermentation by pure fungus or other microorganisms has been investigated and applied more [1-2]. New application of fermentation mainly focused on improving bioavailability of crude drug and increasing yield of chemical constitu- [Received on] 10-June-2011[Research funding] This project was supported by the NationalNatural Science Foundation of China (Nos. 30760312, 81060337), Natural Science Foundation of Yunnan Province, China (No. 2010ZC105) and Key project of Science foundation by Department of Education, Yunnan Province, China (No. 0920044).[*Corresponding author] ZHAO Rong-Hua Prof., Tel.: 86-871-5918033, E-mail: kmzhaoronghua@These authors have no any conflict of interest to declare.ents [3-5].Fermentations of PMR and Rhei Radix et Rhizoma havebeen investigated by our research group for several years [6-10].Fermentation showed some advantages compared to tradi-tional processing procedures. We found that the contents of conjugated anthraquinones, which were presumed to have laxative adverse effect inducing ingredients, could be reducedafter fermentation. Importantly, the content of TSG , one of the most important active ingredients, could be maintained after fermentation, while the content of TSG might reduce significantly after traditional processing in PMRP.Most researches showed that the laxative potency was correlated with the content of conjugated anthraquinone. The conjugated anthraquinone contents in Polygonum multiflorum were much lower than those in Rheum tanguticum Maxim. ex Reg, Reynoutria japonica Houtt, Rheum palmatum L., Rheum officinale Baill. and Catsia tora Linn. The laxative activities of Polygonum multiflorum were correspondingly lower thanthe other crude drugs [11]. The laxative potency of PMR wassignificantly reduced after steamed under high pressure and64 Chin J NatMed Jan. 2012 V ol. 10 No. 12012年1月 第10卷 第1期high temperature, with the content of conjugated an-thraquinone being reduced from 3.31 mg ·g -1 to about 1.95 mg ·g -1 after 12 h [10].Antioxidant activity was considered as the crucial phar-macological effect of PMR [12-13]. TSG [14-16], flavonoid gly-cosides [17] and polysaccharides [18-19] in PMR all exhibited outstanding antioxidant activity in vitro and in vivo . Re-searches indicated the anti-oxidative activity of PMR might be a cooperative effect of these constituents.In this research, the anti-oxidative activity and adverse laxative effect of raw, traditional processed and fermented products of PMR were tested in order to estimate the effect of processing procedure on pharmacological effects and adverse effects. Furthermore, the evaluation of fermentation of PMRwas carried out.2 Materials and Methods2.1 Plant materialPolygoni Multiflori Radix was collected in Luquan County of Yunnan Province by the authors. The plants were authenticated as root of Polygonum multiflorum Thunb. by Prof. Zhao, Yunnan University of Traditional Chinese Medi-cine.2.2 Chemicals and microorganismsTSG , emodin and physcion were purchased from Na-tional Institute for the Control of Pharmaceutical and Bio-logical Products, China. Structures of TSG, emodin andphysicon are listed in Fig. 1.Fig. 1 Structures of major constituents in PMR and PMRP: emodin, physcion and TSG2, 4, 6-Tris(-2-pyridyl)-s-triazine (TPTZ) was purchased from Sigma, USA. Other chemical substances in this research were of analytical grade.Microorganisms used in the fermentation of PMR were isolated and identified by the authors as Rhizopus oryzae , Aspergillus niger , Penicillium sp., Fusarium sp. and Asper- gillus fumigatus . Further PCR based identification was still under investigation.2.3 Processing procedures of Ploygoni Multiflori RadixPMRP was processed from PMR with black bean decoc-tion according to the method recorded in the Pharmacopoeia of People’s Republic of China (2010 edition)[20].Fermented products A, B, C, D, E were obtained from PMR by Rhizopus oryzae , Aspergillus niger , Penicillium sp ., Fusarium sp ., and Aspergillus fumigatus (FA, FB, FC, FD and FE), respectively. Microorganisms were inoculated in 250 mL sterilized potato liquid medium and incubated for 48 h (120 r ·min -1, 28 °C). 300 g PMR powder (0.3 mm) and 150 g bran were completely mixed and sterilized. After that, 10% microorganism solution was added with 360 mL sterilized water for fermentation under 28 °C, 120 r ·min -1 for 72 h. 2.4 Laxative adverse activity assay25 g PMR and PMRP were ultrasonically extracted with 75 mL water for 1 h. The same procedure was carried out with 37.5 g fermentation product (equivalent to 25 g PMR powder) by 112.5 mL water. The extraction was collected after centrifuging at 7 500 r ·min -1 for 10 min. Sedimentation was ultrasonically extracted with water for another 1 h. Ex-tractions were combined and evaporated to 20 mL in 40 °C, and conserved in refrigerator for analysis.Kunming mice of either sex (provided by Experimental Animal Center of Yunnan University of Traditional Chinese Medicine), aged 8 weeks and weighing 20−22 g, were used inthe experiments. Every five mice with the same sex were housed in stainless steel cages containing sterile paddy husk as bedding in ventilated animal rooms. They were acclimated in the controlled environment (temperature (22 ± 1) °C; hu-midity (60 ±10)% and light 12 h light/dark cycle) with free access to water and a commercial laboratory complete food. All animal experiments were performed in compliance with the local ethics committee.2.4.1 Modulation of normal defecation in mice80 Kunming mice of either sex were randomly divided into 8 groups of ten in each. The control group orally re-ceived physiological saline. The other groups orally received the water extracts of PMR, PMRP, FA, FB, FC, FD and FE (0.02 mL ·g -1). After administration, animals were placed separately in polythene cages with filter paper. The onset time of wet feces and the total counts of wet feces in 6 h were recorded.2.4.2 Effect on gastrointestinal motility80 Kunming mice of either sex were randomly divided into 8 groups of ten in each. The control group orally re-ceived physiological saline. The other groups orally received the test extracts of PMR, PMRP, FA, FB, FC, FD and FE (0.02 mL ·g -1). 30 min later, animals were given orally about 0.4 mL of charcoal meal (0.2 mL/10 g body weight). After another 20 min, animals were sacrificed and the movement of charcoal from pylorus to caecum was measured. The charcoal movement in the intestine was expressed in terms of per-centage.2.5 Antioxidant activity assay1.5 g powder of PMR, PMRP, FA, FB, FC, FD and FE were immersed with 30 mL water, 50% ethanol and 95%ethanol under room temperature for 24 h. The extraction was collected after centrifuging at 7 000 r·min-1 for 15 min. FRAP value was tested with the water extraction after 10 times dilu-tion, 50% ethanol extraction after 20 times dilution and 95% ethanol extraction without dilution.0.3 mL tested sample was added to 2.7 mL TPTZ work solution (0.3 mol·L-1 sodium acetate: 10 mmol mol·L-1 TPTZ: 20 mmol mol·L-1 FeCl3 = 10 : 1 : 1, V/V/V) preheated to 37 °C. Absorption in 593 nm was observed 10 min later for trip-licate assays. Standard curve was calculated with FeSO4 so-lution (25−400 μg·L-1). Corresponding FeSO4 concentration (with the same absorption value) was recorded as the FRAP value of the tested sample (x± s).Fe3+-TPTZ in the working solution could be reduced to Fe2+, which showed the maximum absorption in 593 nm, by antioxidant constituents in the tested sample. The higher the FRAP value was, the higher antioxidant activity the sample showed.2.6 Chemical analysis of PMR and its processed products.Concentrations of TSG, emodin and physcion were ana-lyzed with Dionex Ultimate 3000 HPLC system (Dionex Technologies, USA), which included a binary pump, an au-tosampler, a column oven and a diode array detector plus on-line degasser. Data were analyzed with Chromeleon 6.8.The separation of PMR, PMRP and FA extractions was achieved on Zorbax SB-C18 analytical column (4.6 mm × 250 mm, I.D., 5 μm particle diameter, supplied by Agilent Tech-nologies, USA).Gradient elution with mobile phase consisting of (A) 0.1% H3PO4 and (B) methanol methanol was used. The nonlinear gradient elution program was utilized. Methanol percentage was 40% (in the initial time), 70% (5 min), 80% (10 min), 85% (15 min) and 90% (20-25 min). Detection wavelength was set at 254 nm. The oven temperature was set at 30 °C and the flow rate was set at 1.0 mL·min-1.10 mg of extraction of PMR, PMRP and FA mentioned in text 2.3 was accurately weighed and resolved in 10 mL methanol for analyses after filtering with 0.45 μm filter membrane. A 10 μL injection value was used in all analyses. The peaks of TSG, emodin and physcion were identified by comparing their retention time (R t) values and UV spectra with those of standards.3 Results3.1 Laxative adverse activities of PMR and its processed productsRaw PMR induced obvious adverse laxative effect com-pared to the control group. Most of the processed products showed significant inhibition effect on gastrointestinal motil-ity compared to PMR in the wet feces assay (Table 1). The onset time of wet feces was shortened from 360 min to 116.9 min after taking raw PMR. The adverse laxative effect made it necessary to process PMR in clinic use. PMRP could not shorten the onset time of the first wet feces but could reduce the total counts of wet feces compared to PMR. All the fer-mented PMR showed better laxative inhibition activity than PMRP. FB could prolong the onset time of wet faeces sig-nificantly (P < 0.001).Table 1 Results of PMR and its processed products induced diarrhea. (x± s, n = 10)Groupsfaeces (min) faeces (n/rat) Control 360 ± 0 0PMR 116.9 ± 57.9 ### 3.8 ± 1.8 ###PMRP 181.8 ± 125.1 ### 1.7 ± 1.6 *##FA 222.7 ± 136.5 *## 1.5 ± 1.6 **##FB 307.4 ± 111.4 *** 0.2 ± 0.4 ***FC 269.2 ± 146.2 ** 1.0 ± 1.8 **FD 269.4 ± 145.9 ** 0.6 ± 1.0 ***FE 236.4 ± 159.7 *# 0.7 ± 1.1 ****P < 0.05, **P < 0.01, ***P < 0.001 vs PMR group#P < 0.05, ##P < 0.01, ###P < 0.001 vs control groupAll the processed PMR could inhibit the gastrointestinal motility in mice (Table 2). PMRP and FA showed the best inhibition effect. The results displayed fine correspondence with previous reports, that the processing procedure could diminish its adverse laxative effect.Judging from the above data, FA and FB showed great inhibition effect on activity of gastrointestinal motility.3.2 Antioxidant activities of PMR and its processed productsThe FRAP values of raw, traditional processed and fer-mented PMR extraction are listed in Table 3.Table 2 Effects of PMR and its processed products on gas-trointestinal motility (x± s, n = 10)Groups Distance traveled by charcoal meal (%)Control 62.07 ± 5.03PMR 76.44 ± 6.22 ###PMRP 62.06 ± 8.36 ***FA 64.68 ± 5.41 ***FB 66.91 ± 9.82 *FC 65.63 ± 9.67 **FD 62.52 ± 9.49 *FE 65.28 ± 13.31 ***P < 0.05, **P < 0.01, ***P < 0.001 vs PMR group#P < 0.05, ##P < 0.01, ###P < 0.001 vs control groupRaw PMR showed the strongest antioxidant activity compared to its traditional processed or fermented products. The results indicated all processing procedures might lead to the degradation of the reductive constituents.FA and FB showed better antioxidant activity than PMRP in 50% ethanol and 95% ethanol group, which indi-cated fermentation by Rhizopus oryzae and Rhizopus sp. might be promis ing processing methods for PMR.6566 Chin J NatMed Jan. 2012 V ol. 10 No. 12012年1月 第10卷 第1期Table 3 FRAP values of various processed products of PMR (x ± s , n = 3)FRAP (μmol ·L -1) Water extraction(10 times dilu-tion)50% ethanolextraction(20 times dilu-tion) 95% ethanolextraction (without dilution)PMR 982.65 ± 22.07 886.82 ± 44.32973.32 ± 23.01 PMRP 821.48 ± 69.41** 556.32 ± 8.40*** 571.32 ± 23.75***FA 734.82 ± 21.18*** 733.32 ± 34.94**917.98 ± 10.97*FB 429.98 ± 5.48*** 643.65 ± 23.44** 744.48 ± 13.73***FC 424.82 ± 16.06*** 312.32 ± 10.40*** 409.48 ± 23.53***FD 724.15 ± 35.19*** 457.65 ± 11.79*** 191.82 ± 6.53***FE432.98 ± 10.79*** 424.15 ± 27.42***261.98 ± 7.52****P < 0.05, **P < 0.01, ***P < 0.001 vs PMR group3.3 Chemical constituents of PMR and its processed prod-uctsConcentrations of TSG , emodin and physcion in PMR, PMRP and FA were analyzed. Other fermentation products were not analyzed considering the similar chemical composi-tion and relative indistinctive pharmacological effects. HPLC-DAD profiles are shown in Fig. 2 and Table 4.The linear relationships between the injection quantities (mg/10 μL, x -axis) and peak area (y -axis) were y = 6 109.3 x + 0.821 20 for TSG (r 2 = 0.999 9), y = 62 930 x − 0.992 40 for emodin (r 2 = 0.999 9), and y =10 758 x − 0.273 80 for physcion (r 2 = 0.999 9).Contents of TSG were reduced significantly after tradi-tional processing but maintained after fermentation. Emodin and physcion were increased after traditional processing and fermented with Rhizopus oryzae.Fig. 2 HPLC profiles of PMR and its processed products(A) Water extraction of PMR (B) Water extraction of PMRP (C) Water extraction of FATable 4 Concontrations of TSG , emodin and physcion in PMR and its processed productsConcentration (mg/g crude drug)SampleTSG Emodin PhyscionPMR 86.51 2.862 4.914 PMRP 62.91 6.072 11.33 FA 86.196.86410.65According to the results, the content of TSG was not the single factor affecting the antioxidant activity. The increases of free anthraquinones, hydrolyzed from conjunct an-thraquinones, were directly related with the reduction of laxative activity.4 DiscussionPMR and PMRP were used in China for centuries. PMR and PMRP had different pharmacological effects and were used for the treatment of different diseases. PMR was used for the treatment of constipation while PMRP for early gray-ing and hyperlipemia because it was regarded as tonic of liver and kidney. Various methods were used in the PMR process-ing procedure. Steaming and steaming with black soybean decoction were most frequently used methods recorded by Pharmacopoeia of People’s Republic of China (2010 edition) [20]. However, the content of TSG , the active ingredient of PMR, was reduced after the traditional processing procedure.In this research, we evaluated various kinds of process-ing methods including the traditional processing method and fermentation method in order to choose one that could reduce the potential adverse laxative effect risk while maintaining its antioxidant effect.Antioxidant activity was significantly depressed after processing in the study. Similar results were obtained by other research group [21]. Normal processing methods could weaken the antioxidant activity of PMR possibly due to the destroying of active ingredients by high temperature in the processing. However, PMR fermented with Rhizopus oryzae showed better antioxidant activity than that of PMPP in 50% ethanol and 95% ethanol extraction group in the study.In the research, the adverse laxative effect was lessened after processing, with both traditional and fermented proc-essing methods were used. FB exhibited the most outstanding defecation modulation effect, which would not induce the wet feces at all. Although FA might still induce the adverse effect of diarrhea, but better meliorated than that of PMR and PMRP.Fermentation with Rhizopus oryzae was considered as a promising processing method of PMR. The laxative adverse effect of PMR was conspicuously lessened after processing with Rhizopus oryzae . In the meantime, FA possessed notable antioxidant activity even better than that of PMRP in 50% ethanol and 95% ethanol extraction group.References[1] Gao H, Jia TZ. Comparative research on quality of variousshenqu fermented with different pure inoculation [J]. China J Chin Mat Med, 2008, 33(20): 2323-2325.[2] Cai K, Feng H, Tian WY. Effects of pure breed fermentation onmajor effective component in semen sojae praeparatum [J]. J Gansu Coll Trad Chin Med, 2006, 23(5): 39-41.[3] Zhang LQ, Guo B, Li HY, et al. Preliminary study on the isola-tion of endophytic fungus of Catharanthus roseus and its fer-mentation to produce products of therapeutic value [J]. Chin Trad Herb Drug, 2000, 31(11): 805-807.[4] Tang XL, Xu ZL, Xia B, et al. Optimization of spontaneousfermentation and acid hydrolysis of extracting diosgenin from the rhizome of Dioscorea zingiberensis [J]. J Plant Res Envi, 2004, 13(3): 35-37.[5] Coward L. Chemical modification of isoflavones in soyfoodsduring cooking and processing [J]. Am J Clin Nutr, 1998, 68(6 Suppl): 1486S.[6] Du CH, Wang XH, Zhao RH, et al. The primary studies onpreparation of Polygonum multiflorum Thunb by fermentation method [J]. Nat Prod Res Dev, 2008, 20(3): 540-544.[7] Dai WS, Zhao RH. Effect of fermentation on the an-thraquinones content in Radix et Rhizoma Rhei [J]. Yunnan J Trad Chin Med Mat Med, 2005, 26(1): 38-39.[8] Zhao SL, Zhao RH, Xie FJ, et al. Optimization of extractingprocess of Polygonum multiflorum [J]. Chin Trad Herb Drug, 2006, 37(10): 1496-1499[9] Zhao RH, Zhao SL, Xie FJ, et al. Research on the process ofRadix Polygoni Multiflori steaming [J]. Chin Trad Herb Drug, 2007, 38(2): 210-212.[10] Zhao RH, Zhao SL, Mao XJ, et al. Study on the correlationshipbetween the content of combined anthraquinone and purgative action of steamed Polygonum multiflorum Thunb [J]. LishizhenMed Mat Med Res, 2008, 19(11): 2654-2655.[11] Qu Y, Wang JB, Li HF, et al. Study on relationship of laxativepotency and anthraquinones content traditional Chinese drugs containing [J]. China J Chin Mat Med, 2008, 33(7): 806-808. [12] Fang W, Qin YW, Wang LY, et al. The protecting effect ofPMTG on the atherosclerotic lesion formation [J]. Chin J Drug Appl Moni, 2005, 2(1): 48-51.[13] Shen H, Lin Q. Antioxidant activity of extracts from radix andcauliset Polygonum multiflorum Thunb [J]. Strait Pharm J, 2010, 22(2): 65-67.[14] Ryu G, Ju JH, Park YJ, et al. The radical scavenging effects ofstilbene glucosides from Polygonum multiflorum [J]. Arch Pham Res, 2002, 25(5): 636-639.[15] Lv LS, Gu XH, Tang J, et al. Antioxidant activity of stilbeneglycoside from Polygonum multiflorum Thunb in vivo [J]. Food Chem, 2007, 104(4): 1678-1681.[16] Lv LS, Gu XH, Ho CT, et al. Stilbene glycosides from the rootsof Polygonum multiflorum Thunb and their in vitro antioxidant activities [J]. J Food Lipids, 2006, 13(2): 131-144.[17] Kim IJP, Kim DH, Kim GE, et al. Active compounds from theaerial parts of Polygonum multiflorum Thunberg [J]. Yakhak Hoechi, 2006, 50(6): 351-357.[18] Xu AX, Zhang ZM, Ge B, et al. Study on effect of polysaccha-ride in Polygonum Multiflorum Thunb. on free radicals and ac-tivities of antioxidant enzymes [J]. China Pharmacist, 2005, 8(11): 900-902.[19] Miao, MS, Fang XY. Research on the anti-oxidative activity ofpolysaccharide in Radix Polygoni Multiflori Praeparatum on aging mouse model [J]. Pharm & Clin Chin Mat Med, 2002, 18(5): 23-24.[20] Pharmacopoeia of the Peoples Republic of China (2010). V ol 1[S]. 2010, 164-165[21] Gu J, Liu P, Ma FC. Study on the antioxidation activity ofdifferent processed products of Polygonum Multiflorum Thunb and its crude [J]. China Pharmacy, 2005, 16(11): 875-876.何首乌、制何首乌及何首乌发酵炮制品致泻作用与抗氧化活性的比较研究俞捷, 谢洁, 毛晓健, 卫华, 赵声兰, 马雅鸽, 李娜, 赵荣华*云南中医学院, 云南省高校民族药现代研究重点实验室, 昆明650500【摘要】 目的:比较何首乌生品、传统炮制品及发酵炮制品的抗氧化活性及致泻副作用的差异, 评价发酵法在何首乌炮制中的应用。