低频函数波形发生器(中国矿业大学电子综合设计)
- 格式:docx
- 大小:33.85 KB
- 文档页数:24
波形发生器是一种常用的信号源,广泛地应用于电子电路、自动控制系统和教学实验等领域。
本次课程设计使用的AT89S51 单片机构成的发生器可产生锯齿波、三角波、正弦波等多种波形,波形的周期可以用程序改变,并可根据需要选择单极性输出或双极性输出,具有线路简单、结构紧凑等优点。
在本设计的基础上,加上按钮控制和LED显示器,则可通过按钮设定所需要的波形频率,并在LED上显示频率、幅值电压,波形可用示波器显示。
二、系统设计波形发生器原理方框图如下所示。
波形的产生是通过AT89S51 执行某一波形发生程序,向D/A转换器的输入端按一定的规律发生数据,从而在D/A转换电路的输出端得到相应的电压波形。
在AT89S51的P2口接5个按扭,通过软件编程来选择各种波形、幅值电压和频率,另有3个P2口管脚接TEC6122芯片,以驱动数码管显示电压幅值和频率,每种波形对应一个按钮。
此方案的有点是电路原理比较简单,实现起来比较容易。
缺点是,采样频率由单片机内部产生故使整个系统的频率降低。
1、波形发生器技术指标1)波形:方波、正弦波、锯齿波;2)幅值电压:1V、2V、3V、4V、5V;3)频率:10HZ、20HZ、50HZ、100HZ、200HZ、500HZ、1KHZ;2、操作设计1)上电后,系统初始化,数码显示6个…-‟,等待输入设置命令。
2)按钮分别控制“幅值”、“频率”、“方波”、“正弦波”、“锯齿波”。
3)“幅值“键初始值是1V,随后再次按下依次增长1V,到达5V后在按就回到1V。
4)“频率“键初始值是10HZ,随后在按下依次为20HZ、50HZ、100HZ、200HZ、500HZ、1000HZ循环。
三、硬件设计本系统由单片机、显示接口电路,波形转换(D/A)电路和电源等四部分构成。
电路图2附在后1、单片机电路功能:形成扫描码,键值识别、键处理、参数设置;形成显示段码;产生定时中断;形成波形的数字编码,并输出到D/A接口电路和显示驱动电路。
课程设计报告书波形发生器学院电子与信息学院专业班级学生姓名学生学号指导教师课程编号课程学分 1起始日期 2017波形发生器一、选题背景波形发生器是一种常用的信号源,广泛地应用于电子电路、自动控制系统和教学实验等领域。
函数信号发生器是一种能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路。
函数信号发生器在电路实验和设备检测中具有十分广泛的用途。
通过对函数波形发生器的原理以及构成分析,可设计一个能变换出三角波、正弦波、矩形波的函数波形发生器。
二、方案论证1、设计题目要求1.1、功能要求1.1.1、同时三通道输出,采用正弦波、矩形波、三角波的级联结构;1.1.2、电源由稳压电源供给;1.2、指标要求:1.2.1、输出电压要求正弦波Vp-p>10V、矩形波Vp-p>10V、三角波Vp-p>4V;1.2.2、输出波形频率范围为100Hz—2kHz;1.2.3、通带内输出电压幅度峰峰值误差不大于5%;1.2.4、矩形波占空比可调整,调整范围:10%~90%;2、总体设计方案2.1 设计思路根据模拟电子技术基础课程,可通过RC桥式正弦波振荡电路产生正弦波,通过比较器变换成矩形波,再通过积分电路变换成三角波;或者同过滞回比较器和RC电路组成的矩形波发生电路产生矩形波,通过积分电路变换成三角波,再用滤波法变换成正弦波。
2.2 设计方案满足上述设计功能可以实施的方案很多,现提出以下几种方案:2.2.1方案一①原理框图图2.2.1 方案一原理框图②基本原理通过RC桥式正弦波振荡电路,产生正弦波,改变电阻R和电容C的值实现频率可调;通过单限比较器,产生矩形波,接入参考电压,通过改变与参考电压串联电阻的阻值,实现占空比可调;通过积分电路,产生三角波。
2.2.2方案二①原理框图图2.2.2 方案二原理框图②基本原理通过矩形波发生电路产生矩形波,改变阻值和电容实现频率可调,利用二极管的单向导电性可以引导电流流经不同的通路,改变电位器阻值实现占空比可调;通过积分电路产生三角波;通过低通滤波器产生正弦波。
多功能低频函数信号发生器的设计一、设计任务与要求1、设计任务设计一能产生正弦波、方波、三角波的多功能低频函数信号发生器。
2、基本要求(1)可同时输出正弦波、方波、三角波。
(2)信号频率:10Hz ~ 10KHz 。
(3)频率稳定度:Δf /f < 10-3/日.(4)频率控制方式:通过改变RC 时间常数控制频率(手动方式);通过改变控制电压Vi 实现压控频率,(自动控制方式)。
f=Ψ(Vi ),Vi=1~10V 。
(5)波形精度:方波:如图2-4-1,上升沿和下降沿t r 、t f 时间均应小于2us 。
三角波:如图2-4-2,线性度δ/Vom < 2%。
正弦波:谐波失真度图2-4-1 波形精度测量示意图(b )三角波(a )方波波(V1为基波有效值,Vi 为各次谐波有效值)(6)输出方式:①作电压源输出时,要求:输出幅度连续可调,最大输出电压的峰峰值不小于20V 。
当RL=100Ω~1K Ω时,输出电压相对变化率ΔV0/V0 < 1%(即要求r0<1.1Ω)。
②作功率输出时,要求:最大输出功率大于1W 。
③作电流源输出时,要求:输出电流连续可调,最大输出电流的峰峰值不小于200mA 。
%2122<∑=V V Ni i当RL=0Ω~90Ω时,输出电流相对变化率ΔI0/I0 < 1%(即要求r0> 9K Ω)。
(7)具有输出过载保护功能当因RL 过小而使I0>400mA (峰峰值),输出晶体管自动限流,以免进一步损坏元件。
二、基本工作原理1、波形发生部分(1)方案1方波正弦波三角波图 2-4-2 波形发生方案1先产生三角波-方波,再将三角波变换为正弦波。
其原理框图如图2-4-2所示。
(2)方案2先产生正弦波,然后由比较器产生方波,再将方波通过积分器变换三角波。
其原理框图如图2-4-3所示。
图2-4-3 波形发生方案22、输出方式(1)用作电压源输出和功率输出时,采用电压串联负反馈,如图2-4-4所示。
实验报告课程名称:电子系统综合设计指导老师:周箭成绩:实验名称:低频函数信号发生器(预习报告)实验类型:同组学生姓名:一、课题名称低频函数信号发生器设计二、性能指标(1)同时输出三种波形:方波,三角波,正弦波;(2)频率范围:10Hz~10KHz;(3)频率稳定性:;(4)频率控制方式:①改变RC时间常数;②改变控制电压V1实现压控频率,常用于自控方式,即F=f(V1),(V1=1~10V);③分为10Hz~100Hz,100Hz~1KHz,1KHz~10KHz三段控制。
(5)波形精度:方波上升下降沿均小于2μs,三角波线性度δ/Vom<1%,正弦波失真度;(6)输出方式:a)做电压源输出时输出电压幅度连续可调,最大输出电压不小于20V负载RL =100Ω~1KΩ时,输出电压相对变化率ΔVO/VO<1%b)做电流源输出时输出电流幅度连续可调,最大输出电流不小于200mA负载RL =0Ω~90Ω时,输出电流相对变化率ΔIO/IO<1%c)做功率源输出时最大输出功率大于1W(RL =50Ω,VO>7V有效值)具有输出过载保护功能三、方案设计根据实验任务的要求,对信号产生部分,一般可采用多种实现方案:如模拟电路实现方案、数字电路实现方案、模数结合的实现方案等。
数字电路的实现方案一般可事先在存储器里存储好函数信号波形,再用D/A转换器进行逐点恢复。
这种方案的波形精度主要取决于函数信号波形的存储点数、D/A转换器的转换速度、以及整个电路的时序处理等。
其信号频率的高低,是通过改变D/A转换器输入数字量的速率来实现的。
数字电路的实现方案在信号频率较低时,具有较好的波形质量。
随着信号频率的提高,需要提高数字量输入的速率,或减少波形点数。
波形点数的减少,将直接影响函数信号波形的质量,而数字量输入速率的提高也是有限的。
因此,该方案比较适合低频信号,而较难产生高频(如>1MHz)信号。
模数结合的实现方案一般是用模拟电路产生函数信号波形,而用数字方式改变信号的频率和幅度。
低频三相函数信号发生器制作方案一提到低频三相函数信号发生器,脑海中瞬间涌现出电路图、元件选择、调试过程等一系列关键词。
咱们就围绕这个主题,详细梳理一下整个制作方案。
要明确低频三相函数信号发生器的功能和用途。
它主要用于产生低频三相正弦波信号,广泛应用于电力系统、自动控制、信号处理等领域。
那么,如何制作一款性能稳定、精度高的低频三相函数信号发生器呢?1.设计思路(1)稳定性:确保输出信号的稳定性,降低噪声干扰;(2)精度:提高输出信号的精度,满足实际应用需求;(3)可扩展性:预留一定的扩展空间,方便后续升级和功能拓展。
2.电路设计(1)信号源设计内部集成振荡器、缓冲放大器和稳压电路,简化电路设计;可产生正弦波、三角波和矩形波等多种波形;频率范围宽,可满足低频信号的需求。
(2)分频电路设计为了得到三相信号,我们需要对信号源输出的单相信号进行分频。
这里采用CD4060分频器,将信号源的输出频率分频为1/3,得到三相信号的初始频率。
(3)滤波电路设计滤波电路的作用是消除信号中的噪声和杂波,提高输出信号的纯净度。
我们采用二阶低通滤波器,截止频率设置为所需信号频率的5倍,确保信号在截止频率附近的失真最小。
(4)放大电路设计放大电路用于放大滤波后的信号,使其达到所需的幅值。
这里采用运算放大器组成的非倒数放大电路,根据实际需求调整放大倍数。
3.元件选择(1)ICL8038:集成函数发生器IC,用于产生低频信号;(2)CD4060:分频器,用于得到三相信号的初始频率;(3)运放:用于滤波和放大电路;(4)电阻、电容、二极管、三极管等:用于搭建滤波、放大和稳压电路。
4.调试与测试(1)检查电路连接,确保无短路、断路现象;(2)接通电源,观察信号源输出波形是否正常;(3)调整分频器CD4060的时钟频率,观察三相信号输出是否稳定;(4)调整滤波电路参数,观察滤波效果;(5)调整放大电路参数,观察输出信号幅值是否达到预期;(6)进行长时间运行测试,观察信号稳定性。
低频信号发生器设计报告一.设计要求1. 方案设计,根据设计任务选择合理的设计设计方案。
2. 硬件设计。
选择硬件元件,说明其工作原理及设计过程,使用protel软件画出硬件电路pcb 板。
3. 要求有目录,参考资料,结语。
4. 设计也数不少于20页。
5. 按照规范要求,及时提交课程设计报告,并完成课程设计答辩。
二.设计的作用,目的1. 学习掌握电子电路设计的方法和步骤。
2. 掌握protel等常用设计软件的使用方法。
三•设计的具体实现(一)系统概述根据课题任务,所要设计的低频信号发生器由三大部分组成:⑴正弦信号发生部分⑵信号输出部分⑶稳幅部分其中由正弦信号发生部分的电路产生所需要的正弦信号,由输出电路将信号放大后进行输出,再由稳幅电路部分从输出的信号采样反馈回信号发生部分进行稳幅。
1•正弦信号发生部分可以有以下实现方案:⑴以晶体管为核心元件,加RC (文氏桥或移相式)或LC (变压器反馈式、电感三点式、电容三点式、晶振等)选频网络以及稳幅电路等构成的分立元件正弦波振荡电路。
这种电路的优点是简单、廉价,但由于采用分立元件,稳定性较差,元件较多时调节也较麻烦。
⑵以集成运放为核心元件,加RC (文氏桥或移相式)或LC (变压器反馈式、电感三点式、电容三点式、晶振等)选频网络以及稳幅电路等构成的正弦波振荡电路。
这种电路的优点是更为简单,性价比较好,但频率精度和稳定性较差。
⑶以集成函数信号发生器为核心元件,加适当的外围元件构成正弦波产生电路。
例如函数发生器ICL8038芯片加电阻、电容元件,在一定电压控制下,可以产生一定频率的方波、三角波和正弦波。
这种电路的优点时调节方便,在所采用的外围元件稳定性好的情况下,可以得到较宽频率范围的,且稳定性、失真度和现行度很好的正弦信号。
R s R FF=Rs这种电路主要是利用锁相, 即使现象未同步技术来获得频率高稳定度, 且频率可步进变化的振荡源。
现在已有集成锁相环电路芯片,例如 CC4046,辅以参考频率源、分频器等外围电路后,即可构成频率合成器。
毕业设计低频信号发生器指导教师方华学院名称工程学院专业名称电子信息工程论文提交日期年月论文答辩日期年月答辩委员会主席____________评阅人____________摘要函数信号发生器是一种能够产生多种波形,如三角波、矩形波(含方波)、正弦波的电路。
现今社会上出现的函数信号发生器多种多样,频率的范围也在变得越来越来宽,产生的波形也有多种的波形可供选择。
在电子行业的基础设施和制造等领域,函数发生器都是有效的通用仪器。
它可以生成不同频率和幅度的大量信号,用来评估新电路的运行情况,代替时钟信号,对新产品进行制造测试,及用于许多其它用途。
函数信号发生器长期以来都是模拟电路构成的。
本设计主要介绍了基于单片机的多路信号发生器构造及其原理。
本次设计的主要任务是产生低频的信号源,其产生的波形包括正弦波、三角波和方波,频率从1HZ到1MHZ可调变化,幅度从0V到3V可调变化。
在本次设计中,主要利用单片机采用程序设计方法产生相应的波形,通过键盘来控制三种波形的类型选择、频率变化,并通过不同颜色的LED来区分不同的波形和通过LED数码管显示相应的频率数值,再通过D/A转换器将数字信号转换成模拟信号,滤波放大,最终由示波器显示出来。
系统大致包括信号发生部分、数/模转换部分以及LED显示部分三部分,其中尤其对数/模转换部分和波形产生和变化部分进行详细论述。
设计正文分为前言、系统总体设计、系统硬件设计、系统软件设计和硬件电路制作及调试五大部分。
其中第三、四、五章是本文的中心,它介绍了设计者的思路和系统原理和制作过程。
本次设计所得出的正弦波、三角波和方波失真度较小,波形平滑好看,在显示部分,频率的数值是由4位数码管来显示,波形类型的显示是由3个不同颜色的LED灯来显示,十分的直观且价格实在。
关键词:函数信号发生器单片机数码管按键 D/A转换目录1 前言 (1)1.1 选题背景 (1)1.2 国内外研究现状 (1)2 系统总体设计 (3)2.1 设计任务 (3)2.2 系统总体方案的确定 (3)2.2.1 方案对比 (3)2.2.2 系统功能分工 (5)2.2.3 操作设计 (5)3 系统硬件电路设计 (6)3.1 系统硬件电路的总体框图及原理 (6)3.2 主电路设计及原理 (6)3.2.1 单片机电路模块 (6)3.2.2 D/A转换电路模块 (9)3.2.3 键盘电路模块 (13)3.2.4 显示电路模块 (13)4 系统软件设计 (16)4.1 人机互换模块 (16)4.1.1 显示子模块 (16)4.1.2 键盘处理子模块 (18)4.2 波形产生模块 (18)5 硬件电路制作及调试 (19)5.1 硬件单元电路制作 (19)5.1.1 电路原理图及PCB板制作 (19)5.1.2 硬件电路调试 (20)5.2各模块软件调试 (21)5.2.1 Keil uvision3环境介绍 (21)5.2.2 软件调试 (22)5.3 软硬件联调 (23)5.4调试及测试仪器 (25)6 总结 (26)致谢 (27)参考文献 (28)英文摘要 (29)附录1:各波形在各频率下的波形图附录2:系统完整程序1绪论1.1 选题背景及意义信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。
一、实训背景函数波形发生器是一种能够产生正弦波、方波、三角波等多种周期性波形的电子设备。
在现代电子技术中,波形发生器被广泛应用于通信、信号处理、自动控制等领域。
本实训旨在通过设计和实现一个基于51单片机的函数波形发生器,提高学生对单片机应用系统的设计与实现能力。
二、实训目标1. 掌握51单片机的基本原理和编程方法;2. 了解DAC0832数字模拟转换器的工作原理;3. 学会使用LM324运算放大器进行信号处理;4. 设计并实现一个能够产生正弦波、方波、三角波等多种周期性波形的函数波形发生器。
三、实训内容1. 硬件设计(1)51单片机:作为主控单元,负责控制整个系统的运行。
(2)DAC0832:将51单片机输出的数字信号转换为模拟信号。
(3)LM324运算放大器:对模拟信号进行放大、滤波等处理。
(4)电阻、电容、二极管等元件:构成滤波电路、限幅电路等。
2. 软件设计(1)正弦波发生器:采用查表法实现,将正弦波数据存储在单片机的存储器中,通过定时器产生中断,不断读取数据,经DAC0832输出。
(2)方波发生器:采用比较法实现,通过改变比较器的阈值,使输出波形在0和5V之间切换。
(3)三角波发生器:采用积分法实现,通过不断改变积分器的输入电压,使输出波形在0和5V之间变化。
3. 系统集成与调试将硬件电路连接完毕后,进行软件编程。
在编程过程中,不断调试,确保各个模块能够正常工作。
最后,将各个模块集成在一起,形成一个完整的函数波形发生器。
四、实训过程1. 硬件电路搭建(1)按照设计方案,连接51单片机、DAC0832、LM324运算放大器等元件。
(2)搭建滤波电路、限幅电路等。
2. 软件编程(1)编写正弦波发生器程序,实现正弦波输出。
(2)编写方波发生器程序,实现方波输出。
(3)编写三角波发生器程序,实现三角波输出。
3. 系统调试(1)检查各个模块是否正常工作。
(2)调整参数,使输出波形满足要求。
(3)测试不同频率、幅度下的波形输出。
波形发生器函数信号发生器设计课程设计课程目录设计一、设计要求------------------------------------------------2 二、设计的作用与目的------------------------------------2 三、波形发生器的设计------------------------------------31、函数波形发生器原理和总方案设计-------------------32、方案选择及单元电路的设计---------------------------53、仿真与分析----------------------------------------------9 4、PCB版电路制作-----------------------------------------13四、心得体会-----------------------------------------------15 五、参考文献-----------------------------------------------16 附录1课程设计波形发生器的设计电路函数信号发生器是一种能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路。
函数信号发生器在电路实验和设备检测中具有十分广泛的用途。
通过对函数波形发生器的原理以及构成分析,可设计一个能变换出三角波、正弦波、方波的函数波形发生器。
一、设计要求设计一台波形信号发生器,具体要求如下: 1.该发生器能自动产生正弦波、三角波、方波。
2.指标:输出波形:正弦波、三角波、方波。
频率范围:1Hz_10Hz,10Hz_100Hz ,100Hz_1KHz,1KHz_10KHz。
输出电压:方波VP-P≤24V,三角波VP-P=8V,正弦波VP-P>1V; 3.频率控制方式:通过改变RC时间常数手控信号频率。
4.用分立元件和运算放大器设计的波形发生器要求用EWB进行电路仿真分析,然后进行安装调试。