北京版九年级数学第一学期期末复习二
- 格式:ppt
- 大小:547.50 KB
- 文档页数:22
九年级数学期末复习—解直角三角形一. 教学内容: 期末复习——解直角三角形及概率求法二. 教学目标:1. 复习本章所学知识要点。
2. 综合应用所学知识解决问题,并提高分析问题的能力。
三. 教学重点、难点: 综合应用知识解决问题四. 教学过程: (一)知识点⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧∆⎪⎪⎩⎪⎪⎨⎧∆应用理论基础定义解性质锐角的正切锐角的余弦锐角的正弦锐角三角函数解Rt Rt【典型例题】例:填空1. 在Rt ΔABC 中,∠C=90°,AB=5,AC=4,则sinA 的值为__________。
2. 在ΔABC 中,∠C=90°,cosB=23,3a =,则b=__________。
3. 在Rt ΔABC 中,∠C=90°,BC=4,AC=3,则cosA 的值为__________。
4. 直线4-=kx y 与y 轴相交所成的锐角的正切值为21,则k 的值为__________。
5. 如图,身高1.6m 的小丽用一个两锐角分别为30°和60°的三角尺测量一棵树的高度,已知她与树之间的距离为6m ,那么这棵树高大约为__________(结果精确到0.1m ,其中小丽眼睛距离地面高度近似为身高)。
6. 如图是利用四边形的不稳定性制作的菱形晾衣架,已知其中每个菱形的边长为20cm ,在墙上悬挂晾衣架的两个铁钉A 、B 之间的距离为320cm ,则∠A=__________。
A B7. 一棵树BC 的高10米,一只小鸟在地面上的A 处沿着倾斜角为30°的方向直飞向树梢B 处,则小鸟飞行的路程为__________米。
8. 若︒=+90βα,且3cos sin =+βα,则α=__________。
9. 如图,Rt ΔABC 中,∠C=90°,D 是BC 上一点,∠DAC=30°,BD=2,32AB =,则AC=__________。
北京市密云区2023-2024学年第一学期期末考试九年级数学试卷2024.1考生须知1.本试卷共7页,共3道大题,28道小题,满分100分,考试时间120分钟.2.在试卷和答题卡上准确填写学校、班级、姓名和考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效,作图必须使用......2.B .铅笔...4.考试结束,请将本试卷和答题纸一并交回.一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个..选项是符合题意的.1.二次函数y =3(x +1)2-4的最小值是()A .1B.-1C .4D .-42.已知⊙O 的半径为6,点P 在⊙O 内,则线段OP 的长度可以是()A .5B .6C .7D .83.中国瓷器,积淀了深厚的文化底蕴,是中国传统艺术文化的重要组成部分.瓷器上的图案设计精美,极富变化.下面瓷器图案中,既是轴对称图形又是中心对称图形的是()A .B .C .D .4.下列事件中,为必然事件的是()A .等腰三角形的三条边都相等;B .经过任意三点,可以画一个圆;C .在同圆或等圆中,相等的圆心角所对的弧相等;D .任意画一个三角形,其内角和为360°.5.在下列方程中,有一个方程有两个实数根,且它们互为相反数,这个方程是()A .x +2=0B .x 2-x =0C .x 2-4=0D .x 2+4=06.如图,四边形ABCD 内接于⊙O ,若∠A =60°,⊙O 的半径为3,则的长为()A .πB .2πC.3πD .6π7.如图,在正方形网格中,A ,B 两点在格点上,线段AB 绕某一点逆时针旋转一定角度后得到线段A'B',点A'与点A 对应,其旋转中心是()A .点B B .点GC .点ED .点F8.某种幼树在相同条件下进行移植试验,结果如下:移植总数n 400750150035007000900014000成活数m 364651133031746324807312620成活的频率0.9100.8680.8870.9070.9030.8970.901下列说法正确的是()A .由于移植总数最大时成活的频率是0.901,所以这种条件下幼树成活的概率为0.901;B .由于表格中成活的频率的平均数约为0.90,所以这种条件下幼树成活的概率为0.90;C .由于表格中移植总数为1500时成活数为1330,所以移植总数3000时成活数为2660;D .由于随着移植总数的增大,幼树移植成活的频率越来越稳定在0.90左右,所以估计幼树成活的概率为0.90.二、填空题(本题共16分,每小题2分)9.若关于x 的方程(k +3)x 2-6x +9=0是一元二次方程,则k 的取值范围是.10.将抛物线y=x 2向下平移1个单位长度,再向右平移2个单位长度后,得到抛物线的解析式为.11.用配方法解一元二次方程x 2-4x =1时,将原方程配方成(x -2)2=k 的形式,则k 的值为.12.如图,AB 、AC 为⊙O 的切线,B 、C 为切点,连接OC 并延长到D ,使CD =OC ,连接AD .若∠BAD =75°,则∠AOC 的度数为.mnB D13.若点A (-2,y1),B (-1,y 2),C (3,y 3)三点都在二次函数y =-3x 2的图象上,则y 1、y 2、y 3的大小关系是(按从小到大的顺序,用“<”连接).14.请写出一个常数a 的值,使得二次函数y =x 2+4x +a 的图象与x 轴没有交点,则a 的值可以是.15.如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的半径为4,则正六边形ABCDEF 的面积为_________.16.在平面直角坐标系xOy 中,点A 、点B 的位置如图所示,抛物线y =ax 2-2ax 经过A 、B 两点,下列四个结论中:①抛物线的开口向上②抛物线的对称轴是x =1③A 、B 两点位于对称轴异侧④抛物线的顶点在第四象限所有不.正确..结论的序号是.三、解答题(本题共68分,其中17-22每题5分,23-26每题6分,27、28题每题7分)17.解方程:x 2+8x -20=0.18.下面是小宁设计的“作平行四边形的高”的尺规作图过程.已知:平行四边形ABCD .求作:AE ⊥BC ,垂足为E .作法:如图所示,①连接AC ,分别以点A 和点C 为圆心,大于的长为半径作弧,两弧相交于P ,Q 两点;②作直线PQ ,交AC 于点O ;③以点O 为圆心,OA 长为半径作圆,交线段BC 于点E (点E 不与点C 重合),连接AE .所以线段AE 就是所求作的高.12AC根据小宁设计的尺规作图过程,解决问题:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AP=CP,AQ=,∴点P、Q都在线段AC的垂直平分线上,∴直线PQ为线段AC的垂直平分线,∴O为AC中点.∵AC为直径,⊙O与线段BC交于点E,∴∠AEC=°.()(填推理的依据)∴AE⊥BC.19.已知:二次函数y=x2+bx-3的图象经过点A(2,5).(1)求二次函数的解析式;(2)求该函数的顶点坐标.20.二十四节气是中华民族农耕文明的智慧结晶,是专属中国人的独特时间美学,被国际气象界誉为“中国第五大发明”.如图,小文购买了四张形状、大小、质地均相同的“二十四节气”主题邮票,正面分别印有“立春”“立夏”“秋分”“大暑”四种不同的图案,背面完全相同,他将四张邮票洗匀后正面朝下放在桌面上.(1)小文从中随机抽取一张,抽出的邮票恰好是“大暑”的概率是___________;(2)若印有“立春”“立夏”“秋分”“大暑”四种不同图案的邮票分别用A,B,C,D 表示,小文从中随机抽取一张(不放回),再从中随机抽取一张,请用画树状图或列表的方法求小文抽到的两张邮票恰好是“立春”和“立夏”的概率.21.2023年10月,第三届“一带一路”国际合作高峰论坛在北京召开,回顾了十年来共建“一带一路”取得的丰硕成果.为促进经济繁荣,某市大力推动贸易发展,2021年进出口贸易总额为60000亿元,2023年进出口贸易总额为86400亿元.若该市这两年进出口贸易总额的年平均增长率相同,求这两年该市进出口贸易总额的年平均增长率.22.玉环为我国的传统玉器,通常为正中带圆孔的扁圆形器物.据《尔雅·释器》记载:“肉好若一,谓之环”,其中“肉”指玉质部分(边),“好”指中央的孔.结合图1,“肉好若一”的含义可以表示为:中孔直径d=2h.图2是一枚破损的汉代玉环,为修复原貌,需推算出该玉环的孔径尺寸.如图3,文物修复专家将破损玉环的外围边缘表示为弧AB,设弧AB所在圆的圆心为O,测得弧所对的弦长AB为6cm,半径OC⊥AB于点D,测得CD=1cm,连接OB,求该玉环的中孔半径的长.图1图2图323.已知关于x的一元二次方程x2-5x+m=0(m<0).(1)判断方程根的情况,并说明理由;(2)若方程的一个根为6,求m的值和方程的另一个根.24.如图,⊙O是△ABC的外接圆,∠ABC=45°,连接OC交AB于点E,过点A作OC的平行线交BC延长线于点D.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为4,AD=6,求线段CD的长.25.某景观公园计划修建一个人工喷泉,从垂直于地面的喷水枪喷出的水流路径可以看作是抛物线的一部分.记喷出的水流距喷水枪的水平距离为x m,距地面的竖直高度为y m,获得数据如下:x(米)00.5 2.0 3.55y(米) 1.67 2.25 3.00 2.250小华根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小华的探究过程,请补充完整:(1)在平面直角坐标系xOy中,描出以表中各对对应值为坐标的点,并用平滑的曲线画出该函数的图象;(2)直接写出水流最高点距离地面的高度为米;(3)求该抛物线的表达式,并写出自变量的取值范围;(4)结合函数图象,解决问题:该景观公园准备在距喷水枪水平距离3m处修建一个大理石雕塑,使喷水枪喷出的水流刚好落在雕塑顶端,则大理石雕塑的高度约为m(结果精确到0.1m).26.在平面直角坐标系xOy中,点(2,m)和(5,n)在抛物线y=x2+2bx上,设抛物线的对称轴为x=t.(1)若m=0,求b的值;(2)若mn<0,求该抛物线的对称轴t的取值范围.27.如图,在Rt△ABC中,∠ACB=90°,AC=BC.点D为AB边上的一点,将线段CD绕点C逆时针旋转90°得到线段CE,连接AE、BE.(1)依据题意,补全图形;(2)直接写出∠ACE+∠BCD的度数;(3)若点F为BD中点,连接CF交AE于点P,用等式表示线段AE与CF之间的数量关系,并证明.28.在平面直角坐标系xOy中,已知⊙O的半径为1,点A的坐标为(-1,0).点B是⊙O上的一个动点(点B不与点A重合).若点P在射线AB上,且AP=2AB,则称点P 是点A关于⊙O的2倍关联点.(1)若点P是点A关于⊙O的2倍关联点,且点P在x轴上,则点P的坐标为_______;(2)直线l经过点A,与y轴交于点C,∠CAO=30°.点D在直线l上,且点D是点A关于⊙O的2倍关联点,求D点的坐标;(3)直线y=x+b与x轴交于点M,与y轴交于点N,若线段MN上存在点A关于⊙O的2倍关联点,直接写出b的取值范围.北京市密云区2023-2024学年第一学期期末考试九年级数学试卷参考答案及评分标准2024.1一、选择题(本题共16分,每小题2分)题号12345678选项D A B C C B C D二、填空题(本题共16分,每小题2分)9.k≠-3;10.y=(x-2)2-1;11.k=5;12.65°;13.y3<y1<y2;14.6;(答案不唯一,大于4均可)15.16.①④.三、解答题(本题共68分.其中17~22题每题5分,23~26题每题6分,27、28题每题7分)说明:与参考答案不同,但解答正确相应给分.17.解:x2+8x-20=0(x+10)(x-2)=0………………………………2分∴x+10=0或x-2=0………………………………3分∴x=-10或x=2………………………………4分∴x1=-10,x2=2………………………………5分18.(1)………………………………2分(2)CQ………………………………3分90°,直径所对的圆周角是直角.………………………………5分19.(1)解:将点A(2,5)代入y=x2+bx-3解析式4+2b-3=5………………………………1分2b=4b=2………………………………2分∴二次函数的解析式为y=x2+2x-3………………………………3分(2)解:y=x2+2x-3=(x+1)2-4………………………………4分∴该函数的顶点坐标是(-1,-4)………………………………5分20.(1)14………………………………1分(2)根据题意,可以画出如下树状图:………………………………3分由树状图可知,所有可能出现的结果共有12种,即AB,AC,AD,BA,BC,BD,CA,CB,CD,DA,DB,DC,并且它们出现的可能性相等.其中,恰好抽到的两张邮票是“立春”和“立夏”(记为事件A)的结果有2种,即AB或BA.………………………………4分∴()21 126P A==.………………………………5分21.解:设这两年该市进出口贸易总额的年平均增长率为x,则:………………………………1分60000(1+x)2=86400………………………………2分(1+x)2=36251+x=65±解得:x1=0.2,x2=-2.2………………………………4分经检验:x=-2.2不符实际意义,舍去∴x=0.2=20%答:这两年该市进出口贸易总额的年平均增长率为20%.………………………………5分22.解:∵OC是⊙O的半径,且OC⊥AB∴AD=BD∵AB=6∴BD=3………………………………1分设⊙O的半径为x,则OC=OB=x∵CD=1∴OD=x-1………………………………2分在Rt△ODB中∵OD2+BD2=OB2∴(x-1)2+32=x2………………………………3分x=5∴OB=5………………………………4分∵玉环的中孔直径d=2h∴玉环的中孔半径为2.5cm.………………………………5分23.(1)该方程有两个不相等的实数根,理由如下:………………………………1分解:△=(-5)2-4m………………………………2分=25-4m∵m<0∴-4m>0∴25-4m>0即△>0………………………………3分∴方程有两个不相等的实数根(2)解:将x=6代入原方程∴36-30+m=0∴m=-6………………………………4分原方程为x2-5x-6=0(x-6)(x+1)=0解得:x1=6,x2=-1………………………………5分∴方程的另一个根为-1.………………………………6分24.(1)证明:连接OA………………………………1分∵⊙O是△ABC的外接圆,且∠ABC=45°∴∠AOC=90°………………………………2分∵OC//AD∴∠AOC+∠OAD=180°∴∠OAD=90°∴AD是⊙O的切线………………………………3分(2)解:过点C作CF⊥AD于点F,∴∠AFC=90°∴∠AOC=∠OAD=∠AFC=90°∴四边形AOCF是矩形∵OC=OA∴矩形AOCF是正方形∵⊙O的半径为4∴AF=CF=OC=4………………………………4分∵AD=6∴FD=AD-AF=2………………………………5分在Rt△CFD中CD==∴线段CD的长为………………………………6分25.(1)………………………………1分(2)3;………………………………2分(3)解:设y=a(x-2)2+3(a<0)………………………………3分∵将(5,0)代入函数表达式,则9a+3=0a=∴………………………………4分自变量的取值范围为:0≤x≤5.………………………………5分(4)2.7m(误差均可)………………………………6分26.(1)解:当m=0时,将(2,0)代入y=x2+2bx∴4+4b=0………………………………1分4b=-4∴b=-1………………………………2分(2)解:由题意,抛物线经过点(2,m)和(5,n)∵a>0∴抛物线开口向上,且经过坐标原点(0,0)如果t≤0,那么当x≥t时,y随x的增大而增大∴m>0,n>0,与mn<0不符,舍去如果t≥5,那么当x≤t时,y随x的增大而减小∴m<0,n<0,与mn<0不符,舍去∴0<t<5∵mn<0∴函数图象示意图为:图1图213-21(2)33y x=--+0.1±由图1,当0<t <2时作(0,0)关于x=t 的对称点(x 0,0)∵抛物线为轴对称图形∴点(x 0,0)在抛物线上∴x 0=2t∵a >0∴x ≥t 时,y 随x 的增大而增大∵m <0<n ∴2<2t <5………………………………3分∴512t <<∴12t <<………………………………4分由图2,当2≤t <5时作(5,n )关于x=t 的对称点(x 1,n )∵抛物线为轴对称图形∴点(x 1,n )在抛物线上∴x 1=2t -5∵a >0∴x ≤t 时,y 随x 的增大而减小∵m <0<n ∴2t -5<0<2………………………………5分其中0<2恒成立,解2t -5<0得t <52∴522t ≤<综上所述,512t <<………………………………6分27.(1)………………………………1分(2)∠ACE+∠BCD=180°………………………………2分(3)AE与CF之间的数量关系为:AE=2CF………………………………3分证明:延长CF至H,使FH=CF∵点F为BD中点∴DF=BF∵∠DFH=∠CFB∴△DFH≅△CFB………………………………4分∴DH=BC,∠H=∠BCF∵AC=BC∴DH=AC∵∠H=∠BCF∴DH//BC∴∠DCB+∠CDH=180°∵∠DCB+∠ACE=180°∴∠CDH=∠ACE………………………………5分∵CD=CE∴△CDH≅△ECA………………………………6分∴CH=AE∵CH=2CF∴AE=2CF………………………………7分28.(1)(3,0)………………………………1分(2)解:当直线l 与y 轴正半轴交于点C 时∵点D 在直线l 上,且点D 是点A 关于⊙O 的2倍关联点,∴直线l 与⊙O 的另一个交点为点B ,点D 在射线AB 上,满足AD =2AB 过点O 作OE ⊥AB ∴AB =2AE………………………………2分在Rt △AOE 中,∠CAO =30°,OA=1∴OE =12∴2AE ==∴AB =2∵AD =2AB∴AD =………………………………3分过点D 作DF ⊥x 轴,交x 轴于点F ∵在Rt △AOE 中,∠CAO =30°∴DF ,3AF ==∴OF =2∴D (2)………………………………4分同理可证,当直线l 与y 轴负半轴交于点C 时,D (2,……………………5分综上所述,D 点坐标为(2,)或(2,)(3)1b -≤≤或11b <≤………………………………7分。
北京市朝阳区2022 ~ 2023学年度第一学期期末检测九年级数学参考答案及评分标准(选用) 2022.12一、选择题二、填空题 三、解答题17. 解:244 1.x x ++=()22 1.x += 2 1.x +=±11x =−,23x =−.18. 解:(1)根据题意,二次函数图象的顶点为(1,-4).设该二次函数的表达式为()21 4.y a x =−− 把(3,0)代入,得04 4.a =−∴ 1.a =∴二次函数的表达式为()21 4.y x =−− (2)1 3.x −≤≤19.解:2(1)5a a a a −++225a a a a =−++ 224.a a =+∵1x =是关于x 的方程2223x ax a ++=的一个根, ∴2123a a ++=. ∴22 2.a a +=∴原式22(2) 4.a a =+=20.解:①CD ,②∠CAB ,③直径所对的圆周角是直角,④ OA ,⑤经过半径的外端并且垂直于这条半径的直线是圆的切线.21.解:根据题意,得△ABC ≌△DEC .∴AB =DE ,AC =DC . ∵AC =3, ∴DC =3. ∵BC =4, ∴BD =1.在Rt △ABC 中,根据勾股定理,得22 5.AB AC BC =+= ∴DE =5.22.解:如图,作OC ⊥AB 于点C ,连接OA .∴∠ACO =90°,1.2AC AB = ∵AB =0.8,∴AC =0.4.在Rt △ACO 中,根据勾股定理,得220.3OC OA AC =−=. ∴0.3+0.5=0.8.∴水的最大深度为0.8 m.23. 解:(1)依题意得 ∆=16-4(2m -1)>0.∴ m <52. (2) ∵m 为正整数, ∴m =1或2.当m =1时,方程2410x x −+=的根23x =±不是整数;当m=2时,方程2430x x −+=的根1213x x ==,都是整数. 综上所述,m =2.24. (1)证明:∵OC ⊥AB ,∴∠ODB =90°. ∴∠O +∠B =90°. ∵∠O =2∠A , ∴2∠A +∠B =90°.(2)解:∵AC ∥BE ,∴∠CAB =∠B . ∵2∠CAB +∠B =90°, ∴3∠B =90°. ∴∠B =30°. ∴∠CAB =30°. ∵EF 是⊙O 的切线, ∴∠FEB =90°. ∵EF =4, ∴BF =8.在Rt △BEF 中,根据勾股定理,得224 3.BE BF EF =−= ∴2 3.OC OB == ∴ 3.OD CD == ∴2 3.AC =25.解:如图,建立平面直角坐标系xOy .则B (0,3.85),C (2,3.05). 设抛物线的表达式为y =ax 2+3.85. ∵该抛物线经过C (2,3.05), 代入得a =-0.2.∴抛物线的表达式为y =-0.2x 2+3.85. 当x =-3时,y =2.05. 2.05-1.75-0.15=0.15.∴球出手时,他跳离地面的高度是0.15 m.26. 解:(1)当1a =时,函数表达式为22.y x x =−当x =2时,0.m = 当x =4时, 8.n =(2)由44168m a n a =−=−,,m n <得44168.a a −−<∴1.3a >根据题意,抛物线的对称轴为1x a=. ∵0a >,∴10 3.a <<当113a<<时,当x =0时,y =0;当x =1时,y =a -2. ∵001x ≤≤,y 随x 的增大而减小, ∴20.a −< ∵m t n <<,∴440168 2.a a a −−−<且>∴21.5a << 当101a<≤时,总有t m n ≤<,不符合题意.综上,a 的取值范围是21.5a <<27. (1)∠B =∠ACD .证明:根据题意,∠BCD =180°-α.∴∠ACD +∠BCA =180°-α. ∵∠A =α,∴∠B +∠BCA =180°-α. ∴∠B =∠ACD .(2)①DM = EM .证明:延长CA至点N,使CN=BA.∵CB=CD,∠B=∠ACD,∴△ABC≌△NCD.∴AC=ND,∠N=∠BAC.∵AC=CE,∴CE=ND∵∠ACE=∠BAC=α,∴∠ACE=∠N.∵∠CME=∠NMD,∴△CME≌△NMD.∴DM=EM.②1.2 AM b a=−28. 解:(1)(-2,-1),(-1,0);(2)①2;②22 2222 +−(,),22 2222−+(,).。
2023-2024学年北京市九年级数学第一学期期末达标测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)1.如图,已知抛物线和直线.我们约定:当x 任取一值时,x 对应的函数值分别为y 1、y 2,若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M= y 1=y 2.下列判断: ①当x >2时,M=y 2;②当x <0时,x 值越大,M 值越大;③使得M 大于4的x 值不存在;④若M=2,则x=" 1" .其中正确的有A .1个B .2个C .3个D .4个2.教育局组织学生篮球赛,有x 支球队参加,每两队赛一场时,共需安排45场比赛,则符合题意的方程为( )A.B .C .D .3.下列说法正确的是( )A .随机抛掷一枚均匀的硬币,落地后反面一定朝上。
B .从1,2,3,4,5中随机取一个数,取得奇数的可能性较大。
C .某彩票中奖率为,说明买100张彩票,有36张中奖。
D .打开电视,中央一套正在播放新闻联播。
4.如图是我们学过的反比例函数图象,它的表达式可能是( )21y x 4x =-+2y 2x =()11452x x -=()11452x x +=()145x x -=()145x x +=36%A .B .C .D .5.下列图案中,是中心对称图形的是( )A .B .C .D .6.⊙O 的半径为5cm ,弦AB//CD ,且AB=8cm,CD=6cm,则AB 与CD 之间的距离为()A .1 cmB .7cmC .3 cm 或4 cmD .1cm 或7cm 7.已知关于的一元二次方程有两个相等的实数根,则锐角等于( )A .B .C .D .8.小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么,小李获胜的概率为( )A.B .C .D .9.下列关系式中,y 是x 的反比例函数的是( )A .y =4xB .=3C .y =﹣D .y =x 2﹣110.如图,⊙O 的直径长10,弦AB=8,M 是弦AB 上的动点,则OM 的长的取值范围是( )A .3≤OM≤5B .4≤OM≤5C .3<OM <5D .4<OM <511.如图所示的工件的主视图是( )22y x =4y x =3y x =-3y x=-x 2cos 0x α+=α15 30 45 601325122542512y x 1xA .B .C .D .12.若△ABC ~△A ′B 'C ′,相似比为1:2,则△ABC 与△A 'B ′C '的周长的比为( )A .2:1B .1:2C .4:1D .1:4二、填空题(每题4分,共24分)13.若弧长为4π的扇形的圆心角为直角,则该扇形的半径为 .14.因式分解:_______;15.如图,在平面直角坐标系中,已知经过点,且点O 为坐标原点,点C 在y 轴上,点E 在x 轴上,A (-3,2),则__________.16.矩形ABCD 中,AB=6,BC=8.点P 在矩形ABCD 的内部,点E 在边BC 上,满足△PBE ∽△DBC ,若△APD 是等腰三角形,则PE 的长为数___________.17.已知关于的方程的一个根为-2,则方程另一个根为__________.18.在中,,,在外有一点,且,则的度数是__________.三、解答题(共78分)19.(8分)如图,有一个斜坡,坡顶离地面的高度为20米,坡面的坡度为,求坡面的长度.20.(8分)如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为“匀称三角形”,这条中线为“匀称中线”.()()2a b b a ---=A E B O C 、、、tan OBC ∠=x 230x mx m ++=ABC ∆AC BC =90C ∠=︒ABC ∆M MA MB ⊥AMC ∠AB B BC AB 25AB(1)如图①,在Rt △ABC 中,∠C =90°,AC >BC ,若Rt △ABC 是“匀称三角形”.①请判断“匀称中线”是哪条边上的中线,②求BC :AC :AB 的值.(2)如图②,△ABC 是⊙O 的内接三角形,AB >AC ,∠BAC =45°,S △ABC =,将△ABC 绕点A 逆时针旋转45°得到△ADE ,点B 的对应点为D ,AD 与⊙O 交于点M ,若△ACD 是“匀称三角形”,求CD 的长,并判断CM 是否为△ACD的“匀称中线”.21.(8分)某班为推荐选手参加学校举办的“祖国在我心中”演讲比赛活动,先在班级中进行预赛,班主任根据学生的成绩从高到低划分为A ,B ,C ,D 四个等级,并绘制了不完整的两种统计图表.请根据图中提供的信息,回答下列问题:(1)a 的值为 ;(2)求C 等级对应扇形的圆心角的度数;(3)获得A 等级的4名学生中恰好有1男3女,该班将从中随机选取2人,参加学校举办的演讲比赛,请利用列表法或画树状图法,求恰好选中一男一女参加比赛的概率.22.(10分)如图,在中,,,,将线段绕点按逆时针方向旋转到线段.由沿方向平移得到,且直线过点.ABC 90C ∠=︒10AB =8AC =AB A 90︒AD EFG ABC CB EF D(1)求的大小;(2)求的长.23.(10分)如图,把Rt △ABC 绕点A .逆时针旋转40°,得到在Rt △ABʹCʹ,点Cʹ恰好落在边AB 上,连接BBʹ,求∠BBʹCʹ的度数.24.(10分)只有1和它本身两个因数且大于1的正整数叫做素数.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是:每个大于2的偶数都可以表示为两个素数的和,如16=3+ 1.(1)若从7, 11, 19, 23中随机抽取1个素数,则抽到的素数是7的概率是_______;(2)若从7, 11, 19, 23中随机抽取1个素数,再从余下的3个数字中随机抽取1个素数,用面树状图或列表的方法求抽到的两个素数之和大于等于30的概率,25.(12分)(1)计算: (2)化简:26.已知抛物线的顶点坐标为(1,2),且经过点(3,10)求这条抛物线的解析式.参考答案一、选择题(每题4分,共48分)1、B【解析】试题分析:∵当y 1=y 2时,即时,解得:x=0或x=2,1∠AE 201224((18--+-⨯--2291(1)693x x x x -⋅+-++2x 4x 2x -+=∴由函数图象可以得出当x >2时, y 2>y 1;当0<x <2时,y 1>y 2;当x <0时, y 2>y 1.∴①错误.∵当x <0时, -直线的值都随x 的增大而增大,∴当x <0时,x 值越大,M 值越大.∴②正确.∵抛物线的最大值为4,∴M 大于4的x 值不存在.∴③正确;∵当0<x <2时,y 1>y 2,∴当M=2时,2x=2,x=1;∵当x >2时,y 2>y 1,∴当M=2时,,解得.∴使得M=2的x 值是1或.∴④错误.综上所述,正确的有②③2个.故选B .2、A 【分析】先列出x 支篮球队,每两队之间都比赛一场,共可以比赛x (x-1)场,再根据题意列出方程为.【详解】解:∵有x 支球队参加篮球比赛,每两队之间都比赛一场,∴共比赛场数为,故选:A .本题是由实际问题抽象出一元二次方程,主要考查了从实际问题中抽象出相等关系.3、B【解析】A 、掷一枚硬币的试验中,着地时反面向上的概率为,则正面向上的概率也为,不一定就反面朝上,故此选项错误;B 、从1,2,3,4,5中随机取一个数,因为奇数多,所以取得奇数的可能性较大,故此选项正确;C 、某彩票中奖率为36%,说明买100张彩票,有36张中奖,不一定,概率是针对数据非常多时,趋近的一个数并不能说买100张该种彩票就一定能中36张奖,故此选项错误;D 、中央一套电视节目有很多,打开电视有可能正在播放中央新闻也有可能播放其它节目,故本选项错误.故选B .4、B【分析】根据反比例函数图象可知,经过第一三象限,,从而得出答案.【详解】解:A 、为二次函数表达式,故A 选项错误;B 、为反比例函数表达式,且,经过第一三象限,符合图象,故B 选项正确;21y x 4x =-+2y 2x =()221y x 4x x 24=-+=--+2x 4x 2-+=12x 2x 2=+=-2+()11452x x -=()11452x x -=12120k >22y x =4y x=0k >C 、为反比例函数表达式,且,经过第二四象限,不符合图象,故C 选项错误;D 、为一次函数表达式,故D 选项错误.故答案为B .本题考查了反比例函数的图象的识别,掌握反比例函数的图象与性质是解题的关键.5、C【解析】根据中心对称图形的概念即可得出答案.【详解】A 选项中,不是中心对称图形,故该选项错误;B 选项中,是轴对称图形,不是中心对称图形,故该选项错误;C 选项中,是中心对称图形,故该选项正确;D 选项中,不是中心对称图形,故该选项错误.故选C本题主要考查中心对称图形,掌握中心对称图形的概念是解题的关键.6、D【分析】分AB 、CD 在圆心的同侧和异侧两种情况求得AB 与CD 的距离.构造直角三角形利用勾股定理求出即可.【详解】当弦AB 和CD 在圆心同侧时,如图①,过点O 作OF ⊥CD ,垂足为F ,交AB 于点E ,连接OA ,OC ,∵AB ∥CD ,∴OE ⊥AB ,∵AB=8cm ,CD=6cm ,∴AE=4cm ,CF=3cm ,∵OA=OC=5cm ,∴EO=3cm ,OF=4cm ,∴EF=OF-OE=1cm ;当弦AB 和CD 在圆心异侧时,如图②,过点O 作OE ⊥AB 于点E ,反向延长OE 交AD 于点F ,连接OA ,OC ,∵AB ∥CD,3y x=-0k <3y x =-∴OF ⊥CD ,∵AB=8cm ,CD=6cm ,∴AE=4cm ,CF=3cm ,∵OA=OC=5cm ,∴EO=3cm ,OF=4cm ,∴EF=OF+OE=7cm .故选D .本题考查了垂径定理、勾股定理;熟练掌握垂径定理和勾股定理,根据题意画出图形是解题的关键,要注意有两种情况.7、D【分析】根据一元二次方程根的判别式等于零,求出的值,进而即可得到答案.【详解】∵关于的一元二次方程有两个相等的实数根,∴∆=,解得:,∴=.故选D .本题主要考查一元二次方程根的判别式以及特殊角三角函数,掌握一元二次方程根的判别式与根的关系,是解题的关键.8、A【分析】画出树状图,共有25个等可能的结果,两人出拳的手指数之和为偶数的结果有13个,即可得出答案.【详解】解:画树状图如图:共有25个等可能的结果,两人出拳的手指数之和为偶数的结果有13个,∴小李获胜的概率为;故选A .cos αx 2cos 0x α-+=2(41cos 0α-⨯⨯=1cos 2α=α60 1325本题考查了列表法与树状图法以及概率公式;根据题意画出树状图是解题的关键.9、C【分析】根据反比例函数的定义逐一判断即可.【详解】A 、y =4x 是正比例函数;B 、=3,可以化为y =3x ,是正比例函数;C 、y =﹣是反比例函数;D 、y =x 2﹣1是二次函数;故选:C .本题考查反比例函数的定义,掌握反比例函数的定义是解题的关键.10、A【详解】解:的直径为10,半径为5,当时,最小,根据勾股定理可得,与重合时,最大,此时,所以线段的的长的取值范围为,故选A .本题考查垂径定理,掌握定理内容正确计算是本题的解题关键.11、B【解析】从物体正面看,看到的是一个横放的矩形,且一条斜线将其分成一个直角梯形和一个直角三角形.故选B .12、B【分析】根据相似三角形的周长比等于相似比即可得出结论.【详解】解:∵∽,相似比为1:1,∴与的周长的比为1:1.故选:B .此题考查的是相似三角形的性质,掌握相似三角形的周长比等于相似比是解决此题的关键.二、填空题(每题4分,共24分)13、1.【分析】根据扇形的弧长公式计算即可,【详解】∵扇形的圆心角为90°,弧长为4π,∴,即4π=,则扇形的半径r=1.y x1x O OM AB ⊥OM 3OM =OM OA OM 5OM =OM 35OM ≤≤ABC A B C '''V ABC A B C '''V r l 180n π=90•180r π故答案为1考点:弧长的计算.14、(a-b )(a-b+1)【解析】原式变形后,提取公因式即可得到结果.【详解】解:原式=(a -b )2+(a -b )=(a -b )(a -b +1),故答案为:(a -b )(a -b +1)此题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.15、【解析】分别过A 点作x 轴和y 轴的垂线,连接EC ,由∠COE =90°,根据圆周角定理可得:EC 是⊙A 的直径、,由A 点坐标及垂径定理可求出OE 和OC ,解直角三角形即可求得.【详解】解:如图,过A 作AM ⊥x 轴于M ,AN ⊥y 轴于N ,连接EC ,∵∠COE =90°,∴EC 是⊙A 的直径,∵A (−3,2),∴OM =3,ON =2,∵AM ⊥x 轴,AN ⊥y 轴,∴M 为OE 中点,N 为OC 中点,∴OE =2OM =6,OC =2ON =4,∴=.本题主要考查了同弧所对的圆周角相等、垂径定理和锐角三角函数定义,熟练掌握定理是解本题的关键.16、3或1.2【分析】由△PBE ∽△DBC ,可得∠PBE=∠DBC ,继而可确定点P 在BD 上,然后再根据△APD 是等腰三角形,分DP=DA 、AP=DP 两种情况进行讨论即可得.【详解】∵四边形ABCD 是矩形,∴∠BAD=∠C=90°,CD=AB=6,BC=8,∴BD=10,23∠=∠OBC CEO tan OBC ∠tan OBC ∠42tan 63∠===OC CEO OE∵△PBE ∽△DBC ,∴∠PBE=∠DBC ,∴点P 在BD 上,如图1,当DP=DA=8时,BP=2,∵△PBE ∽△DBC ,∴PE :CD=PB :DB=2:10,∴PE :6=2:10,∴PE=1.2;如图2,当AP=DP 时,此时P 为BD 中点,∵△PBE ∽△DBC ,∴PE :CD=PB :DB=1:2,∴PE :6=1:2,∴PE=3;综上,PE 的长为1.2或3,故答案为1.2或3.本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P 在线段BD 上是解题的关键.17、1【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:,解方程得:.故答案为:1.本题考查的知识点是解一元二次方程,根据方程的一个解求出方程中参数的值是解此题的关键.24120x x --=122,6x x =-=18、、【分析】由,可知A 、C 、B 、M 四点共圆,AB 为圆的直径,则是弦AC 所对的圆周角,此时需要对M 点的位置进行分类讨论,点M 分别在直线AC 的两侧时,根据同弧所对的圆周角相等和圆内接四边形对角互补可得两种结果.【详解】解:∵在中,,,∴∠BAC =∠ACB =45°,∵点在外,且,即∠AMB =90°∵∴A 、C 、B 、M 四点共圆,①如图,当点M 在直线AC 的左侧时,,∴;②如图,当点M 在直线AC 的右侧时,∵,∴,故答案为:135°或45°.本题考查了圆内接四边形对角互补和同弧所对的角相等,但解题的关键是要先根据题意判断出A 、C 、B 、M 四点共圆.三、解答题(共78分)19、米【分析】根据坡度的定义可得,求出AB ,再根据勾股定理求135︒45︒90C ∠=︒MA MB ⊥AMC ∠ABC ∆AC BC =90C ∠=︒M ABC ∆MA MB ⊥180∠+∠=︒AMB C 180∠+∠=︒AMC ABC 180********∠=︒-∠=︒-︒=︒AMC ABC AC AC =45∠=∠=︒AMC ABC 25BC AC =AB =【详解】∵坡顶离地面的高度为20米,坡面的坡度为即, ∴米由勾股定理得答:坡面的长度为米.考核知识点:解直角三角形应用.把问题转化为解直角三角形是关键.20、(1)① “匀称中线”是BE ,它是AC 边上的中线,②BC :AC :AB;(2)CDa ,CM 不是△ACD 的“匀称中线”.理由见解析.【分析】(1)①先作出Rt △ABC 的三条中线AD 、BE 、CF ,然后利用匀称中线的定义分别验证即可得出答案;②设AC =2a ,利用勾股定理分别把BC,AB 的长度求出来即可得出答案.(2)由②知:AC :AD :CD ,设AC ,则AD =2a ,CD ,过点C 作CH ⊥AB ,垂足为H,利用的面积建立一个关于a 的方程,解方程即可求出CD 的长度;假设CM 是△ACD 的“匀称中线”,看能否与已知的定理和推论相矛盾,如果能,则说明假设不成立,如果不能推出矛盾,说明假设成立.【详解】(1)①如图①,作Rt△ABC 的三条中线AD、BE 、CF ,∵∠ACB =90°,∴CF =,即CF 不是“匀称中线”.又在Rt △ACD 中,AD >AC >BC ,即AD 不是“匀称中线”.∴“匀称中线”是BE ,它是AC 边上的中线,②设AC =2a ,则CE =a ,BE =2a ,在Rt △BCE 中∠BCE =90°,∴BC ,在Rt △ABC 中,AB ,∴BC :AC :AB (2)由旋转可知,∠DAE =∠BAC =45°.AD =AB >AC ,B BC AB 2525BC AC =2025AC =50AC =AB ==AB :2:7:2ABC 12AB AB ≠==:2:2a =∴∠DAC =∠DAE +∠BAC =90°,AD >AC ,∵Rt △ACD 是“匀称三角形”.由②知:AC :AD :CD设AC,则AD =2a ,CD ,如图②,过点C 作CH⊥AB ,垂足为H ,则∠AHC =90°,∵∠BAC =45°,∴ ∵解得a =2,a =﹣2(舍去),∴判断:CM 不是△ACD 的“匀称中线”.理由:假设CM 是△ACD 的“匀称中线”.则CM =AD =2AM =4,AM =2,∴又在Rt △CBH 中,∠CHB =90°,CH ,BH =4,∴即这与∠AMC =∠B相矛盾,∴假设不成立,2CH AH ===11222ABC S AB CH a ==⨯= CD ==tan AC AMC AM ∠===tan tan CH B AMC BH ===≠∠B AMC∠≠∠∴CM 不是△ACD 的“匀称中线”.本题主要为材料理解题,掌握匀称三角形和匀称中线的意义是解题的关键.21、(1)8 ;(2);(3)【分析】(1)根据D 等级的人数除以其百分比得到班级总人数,再乘以B 等级的百分比即可得a 的值;(2)用C 等级的人数除以班级总人数即可得到其百分比,用360°乘以其百分比得到其扇形圆心角度数;(3)画树状图可知,共有12种均等可能结果,恰好选中一男一女的有6种.然后根据概率公式求解即可【详解】解:(1)班级总人数为 人,B 等级的人数为 人,故a 的值为8;(2)∴C 等级对应扇形的圆心角的度数为.(3)画树状图如图:(画图正确)由树状图可知,共有12种均等可能结果,恰好选中一男一女的有6种.∴P (一男一女) 答:恰好选中一男一女参加比赛的概率为.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 的结果数目m ,然后利用概率公式计算事件A的概率为.也考查了统计图.22、(1);(2)【分析】(1)根据旋转的性质可求得,AD=AB=10,∠ABD=45°,再由平移的性质即可得出结论;(2)根据平移的性质及同角的余角相等证得∠DAE=∠CAB ,进而证得△ADE ∽△ACB ,利用相似的性质求出AE 即可.【详解】解:(1)∵线段AD 是由线段AB 绕点A 按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB ,∴∠ABD=∠ADB=45°,∵△EFG 是由△ABC 沿CB 方向平移得到,∴AB ∥EF ,∴∠1=∠ABD=45°;(2)由平移的性质得,AE ∥CG ,∴∠EAC=180°-∠C=90°,144︒121230%40÷=4020%8⨯=16360144 40⨯︒=︒ 144︒61122==12m n45︒12.5AE =∴∠EAB+∠BAC=90°,由(1)知∠DAB=90°,∴∠DAE+∠EAB=90°,∴∠DAE=∠CAB ,又∵∠ADE=∠ADB+∠1=90°,∠ACB=90°,∴∠ADE=∠ACB ,∴△ADE ∽△ACB ,∴,∵AC=8,AB=AD=10,∴AE=12.5.本题为平移的性质,旋转的性质,相似三角形的判定与性质的综合考查,熟练掌握基础的性质与判定是解题的关键.23、20°【分析】利用旋转的性质及等腰三角形的性质可得∠ABBʹ,再根据直角三角形两锐角互余可得解.【详解】解:由旋转可知:∠BABʹ=40°,AB=ABʹ.∴∠ABBʹ=∠ABʹB .∴∠ABBʹ==70°.∴∠BBʹCʹ=90°-70°=20°.本题考查了三角形的旋转,灵活利用旋转对应边相等,对应角相等且等于旋转角的性质是解题的关键.24、(1);(2)【分析】(1)直接根据概率公式计算可得;(2)画树状图得出所有等可能结果,再从中找到符合条件的结果数,利用概率公式计算可得.【详解】解: (1) 因为7, 11, 19, 23共有4个数,其中素数7只有1个,所以从7, 11, 19, 23中随机抽取1个素数,则抽到的素数是7的概率是,故答案为. (2)由题意画树状图如下:AD AE AC AB=00180402-14231414由树状图可知,共有12种等可能的结果,其中抽到的两个素数之和大于等于30的结果有8种,故所求概率本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.25、(1)1;(2)【分析】(1)根据实数的混合运算法则计算即可;(2)根据分式的运算法则计算即可.【详解】解:(1)原式=2+ =1; (2).本题考查了实数的混合运算,以及分式的混合运算,熟练掌握运算法则是解答本题的关键.26、y =1(x ﹣1)1+1.【分析】根据题意设抛物线解析式为y =a (x ﹣1)1+1,代入(3,10)求解即可.【详解】解:根据题意设抛物线解析式为y =a (x ﹣1)1+1,把(3,10)代入得a (3﹣1)1+1=10,解得a =1,所以抛物线解析式为y =1(x ﹣1)1+1.本题考查了抛物线的问题,掌握抛物线的性质以及解析法、待定系数法是解题的关键.82123P ==43x x +-201222()(18--++⨯--11--1442291(1)693x x x x -⋅+-++()()()2334•33x x x x x +-+=+-43x x +=-。
张卡片,除所标注文字不同外无其他差别.其中,写有“珍稀濒危植.随机摸出一张卡片写有“珍的扇形作圆锥的侧面,记扇形的半径为R,所在一定范围内变化时,l与S都随R的变第12题图第14题图试题13.某科技公司开展技术研发,在相同条件下,对运用新技术生产的一批产品的合格率进行检测,下表是检测过程中的一组统计数据:估计这批产品合格的产品的概率为.14.如图,AB 是半圆O 的直径,将半圆O 绕点A 逆时针旋转30°,点B 的对应点为B ',连接A B ',若AB =8,则图中阴影部分的面积是_______.15.对于向上抛的物体,在没有空气阻力的条件下,上升高度h ,初速度v ,抛出后所经历的时间t ,这三个量之间有如下关系:221gt vt h -=(其中 g 是重力加速度,g 取10m/s 2).将一物体以v=21m/s 的初速度v 向上抛,当物体处在离抛出点18m 高的地方时,t 的值为 .16.已知函数y 1=kx +4k -2(k 是常数,k ≠0),y 2=ax 2+4ax -5a (a 是常数,a ≠0),在同一平面直角坐标系中,若无论k 为何值,函数y 1和y 2的图象总有公共点,则a 的取值范围是_______.三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.解方程x 2-1 =6x .18.关于x 的一元二次方程x 2-(m +4)x +3(m +1)=0 .(1)求证:该方程总有两个实数根;(2)若该方程有一根小于0,求m 的取值范围.抽取的产品数n 5001000150020002500300035004000合格的产品数m 476967143119262395288333673836合格的产品频率nm0.9520.9670.9540.9630.9580.9610.9620.959图2图3图1图1 图2试题北京市朝阳区2023~2024学年度第一学期期末检测九年级数学试卷参考答案及评分标准(选用)2024.1一、选择题(共16分,每题2分)题号12345678答案DABCACAC二、填空题(共16分,每题2分)三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,27-28题,每题7分)17.解:方程化为x 2 -6x =1.x 2 -6x+9 =10.1032=-)(x .103±=-x .1031+=x ,1032-=x .18.(1)证明:依题意,得=[-(m +4)]2-4×3(m +1) =(m -2)2.∵(m -2)2≥0,∴0≥∆∴该方程总有两个实数根.(2)解:解方程,得x =.∴x 1= m +1,x 2=3.依题意,得m +1<0.∴m <-1.19.解:(1)根据题意,设该二次函数的解析式为 y 2=a (x -1)2+4.当x =0时,y 2 =3∴a =-1.∴y 2=-x 2+2x +3.题号9101112答案x 1=3,x 2=-3相切(1,3)140题号13141516答案答案不唯一,如0.9593438+π1.2或3a <0或a ≥52线段垂直平分线上的点与这条线段两个端点的距离相等.三角形的外角等于与它不相邻的两个内角的和.由题意可知,抛物线顶点C ),(9254.设抛物线对应的函数解析式)4(2+-=x a y试题26. 解:(1)由题意知,a +b +c = 9a +3b +c .∴b = -4a .∴22=-=a b t . (2)∵a >0,∴当x ≥t 时,y 随x 的增大而增大;当x ≤t 时,y 随x 的增大而减小.设抛物线上的四个点的坐标为A (t -1,m A ) ,B (t ,m B ),C (2,n C ),D (3,n D ).点A 关于对称轴x =t 的对称点为A'(t +1,m A )∵抛物线开口向上,点B 是抛物线顶点,∴m A >m B .ⅰ 当t ≤1时,n C < n D∴t +1≤2.∴m A ≤n C ,∴不存在m >n ,不符合题意.ⅱ 当1<t ≤2时,n C < n D∴2<t +1≤3.∴m A >n C .∴存在m >n ,符合题意.ⅲ当2<t ≤3时,∴n 的最小值为m B .∵m A >m B .. ∴存在m >n ,符合题意.ⅳ 当3<t <4时,n D <n C .∴2<t -1<3.∴m A >n D .∴存在m >n ,符合题意.ⅴ 当t ≥4时,n D <n C .∴t -1≥3.∴m A ≤n D ,∴不存在m >n ,不符合题意.综上所述,t 的取值范围是1<t <4.)解:补全图1,如图.证明:延长AF到点G,使得GF=AF,连接,连接GE并延长,与AB的延长。
2022北京初三(上)期末数学汇编二次函数一、单选题1.(2022·北京石景山·九年级期末)在平面直角坐标系xOy 中,抛物线)(20y ax bx c a =++≠的示意图如图所示,下列说法中正确的是( )A .0a <B .0b <C .0c >D .0∆>2.(2022·北京朝阳·九年级期末)对于二次函数()21y x =--的图象的特征,下列描述正确的是( ) A .开口向上 B .经过原点 C .对称轴是y 轴D .顶点在x 轴上3.(2022·北京东城·九年级期末)如图,线段AB =5,动点P 以每秒1个单位长度的速度从点A 出发,沿线段AB 运动至点B ,以点A 为圆心,线段AP 长为半径作圆.设点P 的运动时间为t ,点P ,B 之间的距离为y ,⊙A 的面积为S ,则y 与t ,S 与t 满足的函数关系分别是( )A .正比例函数关系,一次函数关系B .一次函数关系,正比例函数关系C .一次函数关系, 二次函数关系D .正比例函数关系,二次函数关系4.(2022·北京西城·九年级期末)抛物线2y ax bx c =++的顶点为()2,A m ,且经过点()5,0B ,其部分图象如图所示.对于此抛物线有如下四个结论:⊙0ac <;⊙0a b c -+>;⊙90m a +=;⊙若此抛物线经过点(),C t n ,则4t +一定是方程2ax bx c n ++=的一个根.其中所有正确结论的序号是( )A .⊙⊙B .⊙⊙C .⊙⊙D .⊙⊙二、填空题5.(2022·北京丰台·九年级期末)中国跳水队在第三十二届夏季奥林匹克运动会上获得7金5银12枚奖牌的好成绩.某跳水运动员从起跳至人水的运动路线可以看作是抛物线的一部分.如图所示,该运动员起跳点A 距离水面10m ,运动过程中的最高点B 距池边2.5m ,入水点C 距池边4m ,根据上述信息,可推断出点B 距离水面______m .6.(2022·北京门头沟·九年级期末)若将二次函数y =x 2﹣2x +3配方为y =(x ﹣h )2+k 的形式,则y =___________.7.(2022·北京平谷·九年级期末)某地的药材批发公司指导农民养植和销售某种药材,经市场调研发现1-8月份这种药材售价(元)与月份之间存在如下表所示的一次函数关系,同时,每千克的成本价(元)与月份之间近似满足如图所示的抛物线,观察两幅图表,试判断_____ 月份出售这种药材获利最大.月份 ... 3 6 ... 每千克售价 ...86...8.(2022·北京房山·九年级期末)已知二次函数26y x =-+的图象上两点()11,A a b ,()22,B a b ,若120a a <<,则1b ___________ 2b (填“>”,“<”或“=”).9.(2022·北京密云·九年级期末)请写出一个开口向上,并且与y 轴交于点(0,-5)的抛物线的表达式________.10.(2022·北京海淀·九年级期末)若点1(1,)A y -,2(2,)B y 在抛物线22y x =上,则1y ,2y 的大小关系为:1y ________2y (填“>”,“=”或“<”).11.(2022·北京东城·九年级期末)写出一个开口向上,并且与y 轴交于点(0,2)的抛物线的解析式________________.12.(2022·北京东城·九年级期末)抛物线23(1)2y x =--+的顶点坐标是_________.13.(2022·北京朝阳·九年级期末)某件商品的销售利润y (元)与商品销售单价x (元)之间满足267y x x =-+-,不考虑其他因素,销售一件该商品的最大利润为______元.14.(2022·北京朝阳·九年级期末)将抛物线22y x =向上平移一个单位长度,得到的抛物线的表达式为______. 三、解答题15.(2022·北京房山·九年级期末)对某一个函数给出如下定义:如果存在实数M ,对于任意的函数值y ,都满足y ≤M ,那么称这个函数是有上界函数.在所有满足条件的M 中,其最小值称为这个函数的上确界.例如,图中的函数()232y x =--+是有上界函数,其上确界是2.(1)函数⊙221y x x =++和⊙()232y x x =-≤中是有上界函数的为____________(只填序号即可),其上确界为____________;(2)如果函数()2,y x a x b b a =-+≤≤>的上确界是b ,且这个函数的最小值不超过21a +,求a 的取值范围;(3)如果函数()22215y x ax x =-+≤≤是以3为上确界的有上界函数,求实数a 的值.16.(2022·北京大兴·九年级期末)在平面直角坐标系xOy 中,二次函数2y x bx c =++的图象经过点(0,3-),(3,0).(1)求二次函数的表达式;(2)将二次函数2y x bx c =++的图象向上平移()0n n >个单位后得到的图象记为G ,当502x ≤≤时,图象G 与x 轴只有一个公共点,结合函数的图象,直接写出n 的取值范围.17.(2022·北京石景山·九年级期末)如图,排球运动场的场地长18m ,球网高度2.24m ,球网在场地中央,距离球场左、右边界均为9m .一名球员在场地左侧边界练习发球,排球的飞行路线可以看作是对称轴垂直于水平面的抛物线的一部分.某次发球,排球从左边界的正上方发出,击球点的高度为2m ,当排球飞行到距离球网3m 时达到最大高度2.5m .小石建立了平面直角坐标系xOy (1个单位长度表示1m ),求得该抛物线的表达式为215722y x =-+.根据以上信息,回答下列问题: (1)画出小石建立的平面直角坐标系; (2)判断排球能否过球网,并说明理由.18.(2022·北京朝阳·九年级期末)在平面直角坐标系xOy 中,点()11,y -,()21,y ,()32,y 在抛物线2y ax bx =+上.(1)若1a =,2b =-,求该抛物线的对称轴并比较1y ,2y ,3y 的大小; (2)已知抛物线的对称轴为x t =,若2310y y y <<<,求t 的取值范围.19.(2022·北京门头沟·九年级期末)在美化校园的活动中,某兴趣小组借助如图所示的直角墙角(墙角两边DC 和DA 足够长),用28m 长的篱笆围成一个矩形花园ABCD (篱笆只围AB 和BC 两边).设m AB x =,2m ABCD S y =矩形.(1)求y 与x 之间的关系式,并写出自变量的取值范围; (2)当矩形花园的面积为2192m 时,求AB 的长;(3)如果在点P 处有一棵树(不考虑粗细),它与墙DC 和DA 的距离分别是15m 和6m ,如果要将这棵树围在矩形花园内部(含边界),直接写出矩形花园面积的最大值. 20.(2022·北京丰台·九年级期末)小朋在学习过程中遇到一个函数()2132y x x =-. 下面是小朋对其探究的过程,请补充完整:(1)观察这个函数的解析式可知,x 的取值范围是全体实数,并且y 有______值(填“最大”或“最小”),这个值是______;(2)进一步研究,当0x ≥时,y 与x 的几组对应值如下表: x 0121322523724 …y 0 2516 2 2716 1 516 0 7162 … 结合上表,画出当0x ≥时,函数()2132y x x =-的图像;(3)结合(1)(2)的分析,解决问题: 若关于x 的方程()21312x x kx -=-有一个实数根为2,则该方程其它的实数根约为______(结果保留小数点后一位).21.(2022·北京顺义·九年级期末)已知抛物线2(1)21y m x mx m =--++. (1)求证:该抛物线与x 轴有两个交点; (2)求出它的交点坐标(用含m 的代数式表示); (3)当两交点之间的距离是4时,求出抛物线的表达式.22.(2022·北京通州·九年级期末)在平面直角坐标系xOy 中,二次函数2y x mx n =++的图象经过点()()0,1,3,4A B .求此二次函数的表达式及顶点的坐标.23.(2022·北京石景山·九年级期末)在平面直角坐标系xOy 中,)(11,A m y -,)(23,B y 是抛物线2224y x mx m =-+-上两点.(1)将2224y x mx m =-+-写成)(2y a x h k =-+的形式; (2)若0m =,比较1y ,2y 的大小,并说明理由; (3)若12y y <,直接写出m 的取值范围.24.(2022·北京海淀·九年级期末)在平面直角坐标系xOy 中,点(4,3)在抛物线23(0)y ax bx a =++>上. (1)求该抛物线的对称轴;(2)已知0m >,当222+m x m -≤≤时,y 的取值范围是13y -≤≤,求a ,m 的值;(3)在(2)的条件下,是否存在实数n ,当2n x n -<<时,y 的取值范围是3335n y n -<<+,若存在,直接写出n 的值;若不存在,请说明理由.25.(2022·北京海淀·九年级期末)在平面直角坐标系xOy 中,抛物线231()y a x =--经过点(2,1). (1)求该抛物线的表达式;(2)将该抛物线向上平移_______个单位后,所得抛物线与x 轴只有一个公共点.26.(2022·北京东城·九年级期末)在平面直角坐标系xOy 中,点(1,m )和(2,n )在抛物线2y x bx =-+上.(1)若m =0,求该抛物线的对称轴;(2)若mn <0,设抛物线的对称轴为直线x t =, ⊙直接写出t 的取值范围;⊙已知点(-1,y 1),(32,y 2),(3,y 3)在该抛物线上.比较y 1,y 2,y 3的大小,并说明理由.27.(2022·北京通州·九年级期末)已知关于x 的二次函数24y x x m =-+.(1)如果二次函数24y x x m =-+的图象与x 轴交于A ,B 两点(点A 在点B 的左侧),且AB =2,求m 的值;(2)若对于每一个x 值,它所对应的函数值都不小于1,求m 的取值范围.28.(2022·北京东城·九年级期末)为了改善小区环境,某小区决定在一块一边靠墙(墙长25m )的空地上修建一个矩形小花园ABCD ,小花园一边靠墙,另三边用总长40m 的栅栏围住,如下图所示.若设矩形小花园AB 边的长为x m ,面积为ym 2. (1)求y 与x 之间的函数关系式;(2)当x 为何值时,小花园的面积最大?最大面积是多少?29.(2022·北京西城·九年级期末)已知二次函数243y x x =++. (1)求此函数图象的对称轴和顶点坐标; (2)画出此函数的图象;(3)若点()10,A y 和()2,B m y 都在此函数的图象上,且12y y <,结合函数图象,直接写出m 的取值范围. 30.(2022·北京东城·九年级期末)如图,在平面直角坐标系xOy 中,抛物线y =ax 2+2x +c 的部分图象经过点A (0,-3),B (1,0) . (1)求该抛物线的解析式;(2)结合函数图象,直接写出y <0时,x 的取值范围.参考答案1.A【分析】根据抛物线开口方向可得0a <,可对A 进行判断;根据对称轴位置可得b >0,可对B 进行判断;根据抛物线与y 轴交点位置可得c <0,可对C 进行判断;根据抛物线与x 轴无交点可得⊙<0,可对D 进行判断;综上即可得答案. 【详解】⊙抛物线开口向下, ⊙0a <,故A 选项正确, ⊙对称轴在y 轴右侧, ⊙2ba->0, ⊙b >0,故B 选项错误, ⊙抛物线与y 轴交于y 轴负半轴, ⊙c <0,故C 选项错误, ⊙抛物线与x 轴无交点, ⊙⊙<0,故D 选项错误, 故选:A .【点睛】本题考查二次函数图象与系数的关系,当a =0时,抛物线开口向上,当a <0时,开口向下;当对称轴在y 轴左侧时,a 、b 同号,当对称轴在y 轴右侧时,a 、b 异号;c 的符号由图象与y 轴的交点位置决定;当⊙>0时,图象与x 轴有2个交点,当⊙=0时,图象与x 轴有1个交点;⊙<0时,图象与x 轴没有交点;熟练掌握相关知识是解题关键. 2.D【分析】根据二次函数2()y a x h =-的性质判断即可. 【详解】在二次函数()21y x =--中, ⊙10a =-<,⊙图像开口向下,故A 错误; 令0x =,则2(01)10y =--=-≠, ⊙图像不经过原点,故B 错误;二次函数()21y x =--的对称轴为直线1x =,故C 错误; 二次函数()21y x =--的顶点坐标为(1,0), ⊙顶点在x 轴上,故D 正确. 故选:D .【点睛】本题考查二次函数2()y a x h =-的性质,掌握二次函数相关性质是解题的关键. 3.C【分析】根据题意分别列出y 与t ,S 与t 的函数关系,进而进行判断即可.【详解】解:根据题意得AP t =,5PB AB AP t =-=-, 即5y t =-()05t ≤≤,是一次函数;⊙A 的面积为S =22AP t ππ⨯=,即2S t π=()05t ≤≤,是二次函数 故选C【点睛】本题考查了列函数表达式,一次函数与二次函数的识别,根据题意列出函数表达式是解题的关键. 4.B【分析】利由抛物线的开口方向和位置可对⊙进行判断;利用抛物线的对称性得到抛物线与x 轴的一个交点坐标为(-1,0),代入解析式则可对⊙进行判断;由抛物线的顶点坐标以及对称轴可对⊙进行判断;抛物线的对称性得出点(),C t n 的对称点是()4,-C t n ,则可对⊙进行判断. 【详解】解:⊙抛物线开口向下, ⊙a <0,⊙抛物线与y 轴交于正半轴, ⊙c >0,⊙0ac <,故⊙正确;⊙抛物线2y ax bx c =++的顶点为()2,A m ,且经过点()5,0B , ⊙抛物线2y ax bx c =++与x 轴的另一个交点坐标为(-1,0), ⊙0a b c -+=,故⊙错误; ⊙抛物线的对称轴为直线x =2, ⊙22ba-=,即:b =-4a , ⊙0a b c -+=, ⊙c =b -a =-5a , ⊙顶点()2,A m ,⊙244ac b m a -=,即:()()24544a a a m a⋅---=, ⊙m =-9a ,即:90m a +=,故⊙正确;⊙若此抛物线经过点(),C t n ,抛物线的对称轴为直线x =2, ⊙此抛物线经过点()4,-C t n , ⊙()()244-+-+=a t b t c n ,⊙4t -一定是方程2ax bx c n ++=的一个根,故⊙错误. 故选B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置.5.454【分析】如图建立平面直角坐标系,求出抛物线解析式,再求顶点坐标即可.【详解】解:建立平面直角坐标系如图:根据题意可知,点A 的坐标为(3,10),点C 的坐标为(5,0),抛物线的对称轴为直线x =3.5, 设抛物线的的解析式为y =ax 2+bx +c ,把上面信息代入得,931025503.52a b c a b c b a⎧⎪++=⎪++=⎨⎪⎪=-⎩,解得,53550a b c =-⎧⎪=⎨⎪=-⎩,抛物线解析式为:253550y x x =-+-,把 3.5x =代入得,454y =; 故答案为:454 【点睛】本题考查了二次函数的应用,解题关键是建立平面直角坐标系,求出二次函数解析式,利用二次函数解析式的性质求解.6.2(1)2y x =-+【分析】利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【详解】y =x 2﹣2x +3=(x 2﹣2x +1)+2=(x ﹣1)2+2故本题答案为:y =(x ﹣1)2+2.【点睛】本题考查了把二次函数的一般式化为顶点式,关键是配方法的运用.7.5【分析】分别求出售价与月份之间的函数关系式、成本与月份之间的函数关系式以及利润与售价、成本之间的关系,根据二次函数的性质即可得到结论.【详解】解:设每千克的售价是y 元,月份为x ,则可设y kx b =+把(3,8),(6,6)代入得,3866k b k b +=⎧⎨+=⎩解得,2310k b ⎧=-⎪⎨⎪=⎩ ⊙2103y x =-+ 设每千克成本是z 元,根据图象可设2(6)1z a x =-+把(3,4)代入2(6)1z a x =-+,得2(36)1=4a -+ ⊙13a = ⊙214133z x x =-+ ⊙设利润为w ,则有:222111610(413)(5)3333w y z x x x x =-=-+--+=--+ ⊙103-< ⊙2116(5)33w x =--+有最大值, ⊙当x =5时,w 有最大值,⊙5月份出售这种药材获利最大.故答案为:5【点睛】本题主要考查二次函数的应用,熟练掌握待定系数求函数解析式、由相等关系得出利润的函数解析式、利用二次函数的图象与性质是解题的关键.8.<【分析】根据抛物线开口方向及对称轴可得x <0时y 随x 增大而增大,进而求解.【详解】解:⊙26y x =-+,⊙抛物线开口向下,对称轴为y 轴,⊙x <0时,y 随x 增大而增大,⊙120a a <<,⊙12<b b ,故答案为:<.【点睛】本题考查了二次函数的性质,解题的关键是掌握二次函数的性质.9.2--5y x x =(答案不唯一)【分析】设2y ax bx c =++,根据题意,c = -5,a >0,符合题意即可.【详解】设2y ax bx c =++,根据题意,c = -5,a >0,⊙25y x x =--,故答案为:25y x x =--.【点睛】本题考查了二次函数解析式与各系数之间的关系,解答时,符合题意即可.10.<【分析】利用二次函数图象上点的坐标特征可得出y 1,y 2的值,比较后即可得出结论.【详解】解:∵若点A (−1,y 1),B (2,y 2)在抛物线y =2x 2上,y 1=2×(-1)2=2,y 2=2×4=8,∵2<8,∴y 1﹤y 2.故答案为:﹤.【点睛】本题考查了二次函数图象上点的坐标特征,利用二次函数图象上点的坐标特征求出y 1,y 2的值是解题的关键.11.22y x =+(答案不唯一)【分析】根据题意,写出一个0,2a c >=的解析式即可【详解】解:根据题意,0,2a c >=故22y x =+符合题意故答案为:22y x =+(答案不唯一)【点睛】本题考查了二次函数各系数与函数图象之间的关系,掌握二次函数的图象的性质是解题的关键.12.(1,2)【分析】直接根据顶点公式的特点求顶点坐标即可得答案.【详解】⊙23(1)2y x =--+是抛物线的顶点式,⊙顶点坐标为(1,2).故答案为:(1,2)【点睛】本题主要考查了求抛物线的顶点坐标、对称轴及最值的方法.解题的关键是熟知顶点式的特点. 13.2【分析】2267(3)2y x x x =-+-=--+知y 的最大值在3x =时取得,值为2.【详解】解:267y x x =-+-2(3)2y x =--+根据函数图像性质可知在3x =时,y 最大且取值为2故答案为:2.【点睛】本题考查了二次函数实际应用中的最值问题.解题的关键将二次函数化成顶点式.14.221y x =+【分析】根据“左加右减,上加下减”的平移规律即可得答案.【详解】⊙抛物线22y x =向上平移1个单位长度,⊙抛物线平移后的表达式为221y x =+,故答案为:221y x =+.【点睛】本题考查二次函数图象的平移,熟练掌握“左加右减,上加下减”的平移规律是解题关键.15.(1)⊙,1;(2)11a -≤<(3)2.4.【分析】(1)分别求出两个函数的最大值即可求解;(2)由题意可知:22b y a -+≤≤-+,再由2a b -+=,221b a -+≤+,b a >,即可求a 的取值范围; (3)当1a ≤时,27103a -=,可得 2.4a =(舍);当5a ≥时,323a -=,可得0a =(舍);当13a 时,27103a -=,可得 2.4a =;当35a <<时,323a -=,可得0a =.(1)⊙()222110y x x x =++=≥+,⊙⊙无上确界;⊙()232y x x =-≤,⊙1y ≤,⊙⊙有上确界,且上确界为1,故答案为:⊙,1;(2)⊙2y x =-+,y 随x 值的增大而减小,⊙当a x b ≤≤时,22b y a -+≤≤-+,⊙上确界是b ,⊙2a b -+=,⊙函数的最小值不超过21a +,⊙221b a -+≤+,⊙1a ≥-,⊙b a >,⊙2a a -+>,⊙1a <,⊙a 的取值范围为:11a -≤<;(3)222y x ax =-+的对称轴为直线x a =,当1a ≤时,y 的最大值为251022710a a -+=-,⊙3为上确界,⊙27103a -=,⊙ 2.4a =(舍);当5a ≥时,y 的最大值为12232a a -+=-,⊙3为上确界,⊙323a -=,⊙0a =(舍);当13a 时,y 的最大值为251022710a a -+=-,⊙3为上确界,⊙27103a -=,⊙ 2.4a =;当35a <<时,y 的最大值为12232a a -+=-,⊙3为上确界,⊙323a -=,⊙0a =,综上所述:a 的值为2.4.【点睛】本题是二次函数的综合题,熟练掌握二次函数的图象及性质,根据所给范围分类讨论求二次函数的最大值是解题的关键.16.(1)223y x x =--;(2))74≤n <3或n =4 【分析】(1)利用待定系数法即可求解;(2)根据二次函数的平移规律可写出平移后的二次函数解析式,再结合图象即可得出结论,注意避免漏答案.【详解】解:(1)⊙该二次函数的图象经过点(0,-3),( 3,0),⊙ 300093c b c -=++⎧⎨=++⎩, 解得:23b c =-⎧⎨=-⎩⊙二次函数的表达式为223y x x =--.(2)将该二次函数向上平移n (n >0)个单位后得到的二次函数解析式为G :223y x x n =--+,当抛物线G 经过点5(0)2,时,即2550()2322n =-⨯-+, 解得:74n =, ⊙抛物线G 解析式为2524y x x =--,如图1G 即为其图象,此时当0≤x ≤52时,图象G 与x 轴只有一个公共点;当抛物线G 经过点(00),时,即0003n =--+, 解得:3n =,⊙抛物线G 解析式为22y x x =-,如图2G 即为其图象,此时当0≤x ≤52时,图象G 与x 轴刚刚有两个公共点.⊙当734n ≤<时,图象G 与x 轴只有一个公共点. 当抛物线G 经过点(0)1,时,即0123n =--+, 解得:4n =,⊙抛物线G 解析式为221y x x =-+,如图3G 即为其图象,此时当0≤x ≤52时,图象G 与x 轴有一个公共点.综上可知,当74≤n <3或n = 4时满足条件. 【点睛】本题考查利用待定系数法为求二次函数解析式,二次函数的平移.掌握二次函数的平移规律以及利用数形结合的思想是解答本题的关键.17.(1)见解析;(2)排球能过球网,理由见解析【分析】(1)根据该抛物线的表达式为215722y x =-+,可得抛物线的顶点坐标为50,2⎛⎫ ⎪⎝⎭,从而得到小石建立的平面直角坐标系是以O 为坐标原点,OB 所在的直线为x 轴,OA 所在的直线为y 轴,即可求解; (2)根据题意得:当3x = 时,2153 2.375 2.24722y =-⨯+=> ,即可求解. 【详解】解:(1)如图,⊙该抛物线的表达式为215722y x =-+, ⊙抛物线的顶点坐标为50,2⎛⎫ ⎪⎝⎭ ,⊙当排球飞行到距离球网3m 时达到最大高度2.5m .根据题意得:点A 的坐标为50,2⎛⎫ ⎪⎝⎭,⊙小石建立的平面直角坐标系是以O 为坐标原点,OB 所在的直线为x 轴,OA 所在的直线为y 轴,如下图:(2)排球能过球网,理由如下:根据题意得:点B 的横坐标为3,⊙当3x = 时,2153 2.375 2.24722y =-⨯+=> , ⊙排球能过球网.【点睛】本题主要考查了建立二次函数的图象和性质,建立适当的平面直角坐标系,熟练掌握二次函数的图象和性质是解题的关键.18.(1)对称轴为直线x =1,y 2<y 3<y 1;(2)12<t <1【分析】(1)根据二次函数的图象与性质求解即可;(2)由题意,该抛物线过原点,分a >0和a <0,根据二次函数的对称性和特殊点的函数值求解即可.【详解】解:(1)当1a =,2b =-时,该抛物线的解析式为222(1)1y x x x =-=--,则该抛物线的对称轴为直线x =1,⊙点()11,y -,()21,y ,()32,y 在抛物线上,⊙y 1=3,y 2=-1,y 3=0,⊙y 2<y 3<y 1;(2)由题意,当x =0时,y =0,故该抛物线过原点,当a >0时,⊙抛物线的对称轴为直线x t =,⊙t =1时,y 3=0,t =12时,y 1=y 3, ⊙2310y y y <<<, ⊙12<t <1; 当a <0时,不满足2310y y y <<<,故t 的取值范围为12<t <1.【点睛】本题考查二次函数的图象与性质,熟练掌握二次函数的性质是解答的关键.19.(1)228,028y x x x =-+<<(2)AB 的长为12米或16米(3)当13x =时,面积的最大值为195米2【分析】(1)依题意,按照矩形面积公式,列式化简,即可;(2)对(1)中的关系式赋值,求解对应方程的解,即可;(3)结合(1)中的函数关系式,及到墙边的距离限制进行求解,即可;(1)由题意得()22828y x x x x =-=-+. ⊙ 028x <<. (2)由题意结合(1)可得:228192x x -+=.解得112x =,216x =.答:AB 的长为12米或16米.(3)结合(1)中的函数关系式可得:2228(14)196y x x x =-+=--+;又树到墙CD 的距离为15m ,所以2815x -≥,即为13x ≤;结合二次函数的性质,⊙ 当13x =时,面积的最大值为195米2.【点睛】本题主要考查二次函数的性质及其最值得求解,难点在于结合实际情况进行解答;20.(1)最小;0(2)见解析(3)4.2【分析】(1)根据解析式()2132x x -0≥,即可求解; (2)根据描点法画函数图像;(3)根据图像法求解即可,作经过点()()0,1,2,1-的直线,与()2132y x x =-的另一个交点的横坐标即为方程的解(1)解:⊙()2132x x -0≥, ⊙y 有最小值,这个值是0;故答案为:最小;0(2)根据列表,描点连线,如图,(3) 依题意,()21312x x kx -=-有一个实数根为2, 则过点()2,1()21312x x kx -=-的解即为()2132y x x =-与1y kx =-的交点的横坐标, 且1y kx =-过点()0,1-如图,作过点()()0,1,2,1-的直线,与()2132y x x =-交于点A根据函数图像的交点可知点A 的横坐标约为4.2则该方程其它的实数根约为4.2故答案为:4.2【点睛】本题考查了绝对值与平方的非负性,根据列表描点连线画函数图像,根据函数图像的交点求方程的解,数形结合是解题的关键.21.(1)见解析(2)(1, 0)和(11m m +- , 0) (3)215322y x x =-+ 或21322y x x =--+ 【分析】(1)求出b 2-4ac 的值,根据根与系数的关系求出即可;(2)求出方程2(1)21=0m x mx m --++的解即可;(3)根据距离公式求出m 的值,即可求出抛物线的解析式.(1)证明:根据题意得1m ≠,⊙Δ=b 2-4ac =(-2m )2-4•(m -1)•(m +1)=4>0,⊙该抛物线与x 轴有两个交点.(2)解:令y =0 ,则2(1)21=0m x mx m --++,⊙[(m -1)x -(m +1)](x -1)=0,⊙x 1=1,x 2=11m m +-, ⊙交点坐标为:(1,0)和(11m m +-,0); (3)解:由题意得,|11m m +--1|=4, 解得m =12或m =32, 经检验m =12或m =32符合题意, ⊙215322y x x =-+ 或21322y x x =--+. 【点睛】本题主要考查对二次函数图象与坐标轴的交点,解一元二次方程,数轴上两点间的距离等知识点的理解和掌握,熟练掌握各知识点是解此题的关键.22.221y x x =-+,()1,0【分析】直接把点A 、B 的坐标代入二次函数解析式进行求解,然后求出对称轴,最后问题可求解.【详解】解:⊙二次函数2y x mx n =++的图象经过点()()0,1,3,4A B ;⊙1934n m n =⎧⎨++=⎩, 解得:21m n =-⎧⎨=⎩, ⊙221y x x =-+⊙对称轴为直线2121x -=-=⨯, ⊙21210y =-+=,⊙顶点的坐标为()1,0.【点睛】本题主要考查二次函数的图象与性质,熟练掌握利用待定系数法求解函数解析式是解题的关键. 23.(1)()24y x m =--;(2)12y y <;(3)2m <或4m >.【分析】(1)利用完全平方公式可直接得出;(2)当0m =时,确定函数解析式,将点()11,A y -,()23,B y ,代入确定1y ,2y ,然后比较大小即可; (3)()11,A m y -,()23,B y ,代入函数解析式,令21z y y =-,当0z =时,求解可得12m =,24m =,结合函数图象可得0z >时,m 的取值范围,即为12y y <时,m 的取值范围.【详解】解:(1)2224y x mx m =-+-,()24y x m =--; (2)当0m =时,24y x =-,()11,A y -,()23,B y ,∴()21143y =--=-, 22345y =-=,∴12y y <;(3)由题意可得:()21143y m m =---=-, ()2234y m =--, 令()()222134331z y y m m =-=--+=--当0z =时,()2310m --=,解得:12m =,24m =,结合函数图象可得:当0z >时,2m <或4m >,∴当12y y <时,m 的取值范围为:2m <或4m >.【点睛】题目主要考查二次函数化为顶点式,函数值比较大小解不等式等,理解题意,熟练运用顶点式是解题关键.24.(1)2x =;(2)1a =,1m =;(3)存在,1n =.【分析】(1)利用对称点与对称轴的关系:对称点的横坐标之和等于对称轴的2倍,即可求出该抛物线的对称轴.(2)分别讨论222+m x m -≤≤的取值范围与对称轴的位置,分别求出不同情况下y 取最大值与最小值时,对应的x 的取值,进而求出求a ,m 的值.(3)由于y 的取值范围是3335n y n -<<+,取不到最大值和最小值,故2n x n -<<不包含对称轴,分别讨论2n x n -<<在对称轴的左右两侧即可.【详解】(1)解:依题意,⊙ 抛物线23y ax bx =++过点(0,3),(4,3),⊙ 该抛物线的对称轴为直线2x =.(2)解:⊙ 抛物线23y ax bx =++对称轴为直线2x =, ⊙ 22b a-=,即4b a =- ⊙. ⊙ 0m >,⊙ 2222m m -<<+.⊙ 0a >,抛物线开口向上,⊙ 当2x =时,函数值在222m x m -≤≤+上取得最小值1-.即 4231a b ++=- ⊙.联立⊙⊙,解得1a =,4b =-.⊙ 抛物线的表达式为243y x x =-+,即()221y x =--. ⊙0m >,⊙ 当22m x -≤≤时,y 随x 的增大而减小,当2x m =-时取得最大值,当222x m ≤≤+时,y 随x 的增大而增大,当22x m =+时取得最大值,⊙对称轴为2x =,⊙2x m =-与2x m =+时的函数值相等.⊙2222m m <+<+,⊙ 当22x m =+时的函数值大于当2x m =+时的函数值,即2x m =-时的函数值.⊙ 当22x m =+时,函数值在222m x m -≤≤+上取得最大值3.代入有2413m -=,舍去负解,得1m =.(3)解:存在,1n =.当2n x n -<<时,y 的取值范围是3335n y n -<<+,y 无法取到最大值与最小值,∴关于x 的取值范围一定不包含对称轴,⊙当2n ≤时,2n x n -<<在对称轴的左侧,二次函数开口向上,2x n ∴=-时,y 有最大值,x n =时,y 有最小值,由题意可知:22(2)4(2)3354333n n n n n n ⎧---+=+⎨-+=-⎩,解得:1n =, 故1n =,⊙当22n -≥时,2n x n -<<在对称轴的右侧,二次函数开口向上,2x n ∴=-时,y 有最小值,x n =时,y 有最大值,由题意可知:22(2)4(2)3334335n n n n n n ⎧---+=-⎨-+=+⎩,此时n 无解, 故不符合题意,∴1n =.【点睛】本题主要是考查了对称点与对称轴的关系,以及二次函数的最值求解,熟练通过分类讨论,分别讨论对称轴与x 的取值范围的关系,进而确定函数取最值时的x 的取值,是求解该题的关键.25.(1)22(3)1y x =--;(2)1【分析】(1)将(2,1)代入抛物线解析式,即可求出a 的值,进而求出抛物线的表达式.(2)利用顶点坐标的位置,判断抛物线向上平移的单位即可.【详解】(1)解:⊙ 抛物线()231y a x =--经过点(2,1),⊙ 11a -=.解得:2a =.⊙ 该抛物线的表达式为22(3)1y x =--.(2)解:抛物线的顶点为(3,1-),若抛物线与x 轴只有一个公共点,则只需向上平移1个单位,顶点变为(3,0),此时满足题意.【点睛】本题主要是考查了待定系数法求解二次函数表达式以及函数图像的平移,熟练利用待定系数法求解函数表达式,根据顶点坐标的平移确定函数图像整体平移的情况,是解决该题的关键.26.(1)12x =;(2)⊙112t <<;⊙312y y y <<,见解析 【分析】(1)把点(1,m ),m =0,代入抛物线2y x bx =-+,利用待定系数法求解解析式,再利用公式求解抛物线的对称轴方程;(2)⊙先判断,m n 异号,求解抛物线2y x bx =-+的对称轴为:1,212bx b t 抛物线与x 轴的交点坐标为:0,0,,0,b 根据点(1,m )和(2,n )在抛物线2y x bx =-+上,则0,0,m n 可得12,b 从而可得答案;⊙设点(-1,y 1)关于抛物线的对称轴x t =的对称点为01(,)x y ,再判断023x <<.结合抛物线开口向下,当x t >时,y 随x 的增大而减小,从而可得答案.【详解】解:(1)⊙点(1,m )在抛物线2y x bx =-+上,m =0,⊙10b -+=.⊙1b =.所以抛物线为:2,y x x⊙该抛物线的对称轴为()11212x =-=⨯-. (2)⊙0,mn 则,m n 异号, 而抛物线2y x bx =-+的对称轴为:1,212b xb t 令0,y = 则20,x bx解得:120,,x x b 所以抛物线与x 轴的交点坐标为:0,0,,0,b点(1,m )和(2,n )在抛物线2y x bx =-+上,0,0,m n12,b111,22b 即1 1.2t <<⊙312y y y <<.理由如下:由题意可知,抛物线过原点.设抛物线与x 轴另一交点的横坐标为x ´.⊙抛物线经过点(1,m ),(2,n ),mn <0⊙1<x <2. ⊙112t <<. 设点(-1,y 1)关于抛物线的对称轴x t =的对称点为01(,)x y .⊙点(-1,y 1)在抛物线上,⊙点01(,)x y 也在抛物线上.由0(1)x t t -=-- 得021x t =+. ⊙112t <<, ⊙1<2t <2.⊙2<2t +1<3.⊙023x <<.由题意可知,抛物线开口向下.⊙当x t >时,y 随x 的增大而减小.⊙点(32,y 2),01(,)x y ,(3,y 3)在抛物线上,且0332t x <<<, ⊙312y y y <<【点睛】本题考查的是利用待定系数法求解抛物线的解析式,抛物线的对称轴方程,抛物线的对称性与增减性,掌握“利用抛物线的增减性判断二次函数值的大小”是解本题的关键.27.(1)3m =;(2)5m ≥【分析】(1)求出抛物线的对称轴直线,根据AB =2求出A 、B 点坐标,代入函数关系式求出m 的值即可;(2)求出函数图象的顶点坐标,根据“对于每一个x 值,它所对应的函数值都不小于1”列出不等式,求出m 的取值范围即可.【详解】解:(1)二次函数图象的对称轴为直线4221x -=-=⨯, ⊙A ,B 两点在x 轴上(点A 在点B 的左侧),且AB =2,⊙A (1,0),B (3,0)把点(1,0)代入24y x x m =-+中,⊙21410m ⨯-+=,⊙3m =.(2)⊙对称轴为直线2x =,。
2023~2024学年北京市九年级上期末数学分类——二次函数一.二次函数的性质(共16小题)1.(2023秋•东城区期末)关于二次函数y=2(x﹣1)2+2,下列说法正确的是()A.当x=1时,有最小值为2B.当x=1时,有最大值为2C.当x=﹣1时,有最小值为2D.当x=﹣1时,有最大值为22.(2023秋•丰台区期末)抛物线y=(x﹣1)2﹣2的顶点坐标是()A.(﹣1,﹣2)B.(1,﹣2)C.(﹣1,2)D.(1,2)3.(2024•海淀区)抛物线y=﹣(x﹣1)2+2的顶点坐标是()A.(1,﹣2)B.(1,2)C.(﹣1,﹣2)D.(﹣1,2)4.(2024•房山区)抛物线y=(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(1,2)C.(﹣1,﹣2)D.(1,﹣2)5.(2023秋•门头沟区期末)二次函数y=ax2+bx+c(a≠0)的图象是一条抛物线,自变量x与函数y的部分对应值如表:x…﹣2﹣10123…y…0﹣2﹣3﹣3﹣20…有如下结论:①抛物线的开口向上②抛物线的对称轴是直线③抛物线与y轴的交点坐标为(0,﹣3)④由抛物线可知ax2+bx+c<0的解集是﹣2<x<3其中正确的是()A.①②B.①②③C.①②④D.①②③④6.(2023秋•大兴区期末)抛物线y=(x﹣2)2+1的对称轴是()A.x=2B.x=﹣2C.x=1D.x=﹣17.(2023•西城区)下列关于函数y=x2﹣1的结论中,正确的是()A.y随x的增大而减小B.当x>0时,y随x的增大而增大C.当x<0时,y随x的增大而增大D.当x>0时,y随x的增大而减小8.(2023秋•通州区期末)下列关于二次函数y=3x2的说法正确的是()A.它的图象经过点(﹣1,﹣3)B.它的图象的对称轴是直线x=3C.当x<0时,y随x的增大而减小D.当x=0时,y有最大值为09.(2023秋•东城区期末)已知二次函数y=﹣x2+8x+3,当x>m时,y随x的增大而减小,则m的值可以是(写出一个即可).10.(2023秋•丰台区期末)已知二次函数y=x2+bx,当x>1时,y随x的增大而增大.写出一个满足题意的b的值为.11.(2023秋•朝阳区期末)抛物线y=x2﹣2x+4的顶点坐标是.12.(2023秋•朝阳区期末)已知函数y1=kx+4k﹣2(k是常数,k≠0),(a是常数,a≠0),在同一平面直角坐标系中,若无论k为何值,函数y1和y2的图象总有公共点,则a的取值范围是.13.(2023秋•门头沟区期末)二次函数y=2(x﹣1)2+3的顶点坐标为.14.(2023秋•大兴区期末)写出一个过点(0,1)且当自变量x>0时,函数值y随x的增大而增大的二次函数的解析式.15.(2024•平谷区)已知二次函数y=x2+2x﹣3.(1)求该抛物线的顶点坐标;(2)求该二次函数图象与x轴、y轴的交点坐标;(3)在平面直角坐标系xOy中,画出二次函数y=x2+2x﹣3的图象.16.(2024•房山区)已知二次函数y=x2+2x﹣3.(1)在平面直角坐标系中画出它的图象,并写出它的对称轴;(2)结合图象直接写出当﹣1<x<1时,y的取值范围.17.(2023秋•石景山区期末)在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a≠0)的顶点为P(﹣1,k),且经过点A(﹣3,0),其部分图象如图所示,下面四个结论中,①a<0;②b=﹣2a;③若点M(2,m)在此抛物线上,则m<0;④若点N(t,n)在此抛物线上且n<c,则t>0.所有正确结论的序号是.18.(2023秋•昌平区期末)已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)的对称轴是直线x=1,其部分图象如图,则以下四个结论中:①abc>0;②2a+b=0;③3a+c<0;④4a+b2>4ac,其中,正确结论的序号是.19.(2023秋•大兴区期末)如图,在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a<0)的图象经过点(0,1),(2,1).给出下面三个结论:①2a﹣b=0;②a+b+c>1;③关于x的一元二次方程ax2+bx+c ﹣m=0(m<1)有两个异号实数根.上述结论中,所有正确结论的序号是.20.(2024•平谷区)已知:二次函数y=ax2+bx+c(a≠0)的图象上部分对应点坐标如表,m的值为()x…﹣1﹣0.5 2.535…y…0﹣3.5﹣3.5m24…A.1B.2C.﹣5D.021.(2023秋•石景山区期末)在平面直角坐标系xOy中,若点(4,y1),(6,y2)在抛物线y=a(x﹣3)2+1(a>0)上,则下列结论正确的是()A.1<y1<y2B.1<y2<y1C.y2<y1<1D.y1<y2<1 22.(2023•西城区)若抛物线y=x2+3x+c经过点(0,2),则c的值为()A.2B.1C.0D.﹣223.(2024•海淀区)已知y是x的二次函数,表中列出了部分y与x的对应值:x012y01﹣1则该二次函数有(填“最小值”或“最大值”).24.(2023秋•大兴区期末)在平面直角坐标系xOy中,若点(2,y1),(4,y2)在抛物线y=2(x﹣3)2﹣4上,则y1y2(填“>”,“=”或“<”).25.(2023秋•密云区期末)若点A(﹣2,y1),B(﹣1,y2),C(3,y3)三点都在二次函数y=﹣3x2的图象上,则y1,y2,y3的大小关系是(按从小到大的顺序,用“<”连接).四.二次函数图象与几何变换(共13小题)26.(2024•平谷区)将抛物线y=向下平移1个单位长度,得到的抛物线是()A.B.C.D.27.(2023秋•朝阳区期末)把抛物线y=3x2向左平移2个单位长度,再向上平移5个单位长度,得到的抛物线的解析式为()A.y=3(x﹣5)2+2B.y=3(x+5)2+2C.y=3(x+2)2+5D.y=3(x﹣2)2+528.(2024•房山区)将二次函数y=x2的图象向上平移5个单位,得到的函数图象的表达式是()A.y=x2+5B.y=x2﹣5C.y=(x+5)2D.y=(x﹣5)229.(2023秋•门头沟区期末)如果将抛物线y=x2向上平移3个单位长度,向左平移1个单位长度,得到新的抛物线的表达式是()A.y=(x+1)2﹣3B.y=(x+1)2+3C.y=(x﹣1)2﹣3D.y=(x﹣1)2+330.(2023秋•石景山区期末)将抛物线y=3x2向左平移1个单位长度,平移后抛物线的解析式为()A.y=3(x+1)2B.y=3(x﹣1)2C.y=3x2+1D.y=3x2﹣131.(2023秋•昌平区期末)将抛物线y=2x2向左平移2个单位长度,再向下平移3个单位长度,所得到的抛物线的表达式为()A.y=2(x+2)2+3B.y=2(x﹣2)2+3C.y=2(x﹣2)2﹣3D.y=2(x+2)2﹣332.(2023秋•大兴区期末)在平面直角坐标系xOy中,将抛物线y=3x2先向右平移4个单位长度,再向上平移1个单位长度,得到的抛物线是()A.y=3(x+4)2﹣1B.y=3(x+4)2+1C.y=3(x﹣4)2﹣1D.y=3(x﹣4)2+133.(2023秋•通州区期末)在平面直角坐标系中,将抛物线y=2x2先向左平移3个单位长度,再向下平移4个单位长度后所得到的抛物线的表达式为()A.y=2(x﹣3)2+4B.y=2(x﹣3)2﹣4C.y=2(x+3)2+4D.y=2(x+3)2﹣434.(2024•顺义区)若将抛物线y=2x2向右平移2个单位长度,则所得抛物线的表达式为.35.(2023秋•东城区期末)将抛物线y=2x2向下平移3个单位长度,得到新的抛物线的解析式是.36.(2024•海淀区)在平面直角坐标系xOy中,将抛物线y=3x2向下平移1个单位,得到的抛物线表达式为.37.(2023秋•密云区期末)将抛物线y=x2先向下平移1个单位长度,再向右平移2个单位长度后,得到的新抛物线解析式为.38.(2023•西城区)已知二次函数y=2x2﹣4x+5.(1)将y=2x2﹣4x+5化成y=a(x﹣h)2+k的形式;(2)抛物线y=2x2﹣4x+5可以由抛物线y=2x2经过平移得到,请写出一种平移方式.五.二次函数的最值(共1小题)39.(2023秋•密云区期末)二次函数y=3(x+1)2﹣4的最小值是()A.1B.﹣1C.4D.﹣4六.待定系数法求二次函数解析式(共7小题)40.(2024•顺义区)将二次函数y=﹣x2+2x+3化为y=a(x﹣h)2+k的形式,则所得表达式为()A.y=(x+1)2﹣4B.y=﹣(x﹣1)2+4C.y=﹣(x+1)2+2D.y=﹣(x﹣1)2+241.(2023秋•昌平区期末)写出一个开口向下且过(0,1)的抛物线的表达式.42.(2023•西城区)写出一个开口向上,且过原点的抛物线的表达式:.43.(2023秋•石景山区期末)已知二次函数y=﹣x2+bx+c的图象过点A(1,0)和B(0,﹣3).(1)求这个二次函数的解析式;(2)当1<x<4时,结合图象,直接写出函数值y的取值范围.44.(2023秋•昌平区期末)已知二次函数y=ax2+bx+c(a≠0)的y与x的部分对应值如表:x…﹣3﹣113…y…﹣3010…(1)求这个二次函数表达式;(2)在平面直角坐标系中画出这个函数图象;(3)当x的取值范围为时,y>﹣3.45.(2023秋•大兴区期末)已知抛物线y=x2+bx+c经过点(1,0),(0,﹣3).(1)求抛物线的解析式;(2)求该抛物线的顶点坐标.46.(2023秋•通州区期末)已知二次函数几组x与y的对应值如下表:x…﹣3﹣2﹣1134…y…1250﹣405…(1)写出此二次函数图象的对称轴;(2)求此二次函数的表达式.七.抛物线与x轴的交点(共9小题)47.(2024•海淀区)在平面直角坐标系xOy中,抛物线y=ax2+bx+c如图所示,则关于x的方程ax2+bx+c =0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.有实数根D.没有实数根48.(2023秋•石景山区期末)若抛物线y=x2+2mx+9与x轴只有一个交点,则m的值为()A.3B.﹣3C.D.±349.(2024•平谷区)若抛物线y=x2﹣2x+k﹣1与x轴有交点,则k的取值范围是.50.(2023秋•密云区期末)请写出一个常数a的值,使得二次函数y=x2+4x+a的图象与x轴没有交点,则a的值可以是.51.(2024•顺义区)已知二次函数y=ax2+bx﹣2的图象经过点A(﹣1,0),B(2,0).(1)求二次函数的表达式;(2)直接写出y>0时,x的取值范围.52.(2023秋•丰台区期末)已知二次函数y=ax2+bx+c(a≠0)图象上部分点的横坐标x,纵坐标y的对应值如下表所示:x…﹣10124…y…830﹣13…(1)求二次函数的解析式及顶点坐标;(2)直接写出当y>0时,x的取值范围.53.(2023秋•门头沟区期末)已知二次函数y=x2+2x﹣3.(1)求此二次函数图象的顶点坐标;(2)求此二次函数图象与x轴的交点坐标;(3)当y>0时,直接写出x的取值范围.54.(2023秋•石景山区期末)已知二次函数y=x2+2x﹣3.(1)将y=x2+2x﹣3化成y=a(x﹣h)2+k(a≠0)的形式,并写出其图象的顶点坐标;(2)求此函数图象与x轴交点的坐标;(3)在平面直角坐标系xOy中,画出此函数的图象.55.(2023•西城区)在平面直角坐标系xOy中,抛物线y=x2﹣2x+c与x轴的一个交点为A(﹣1,0).(1)c=;(2)画出函数y=x2﹣2x+c的图象;(3)当﹣2<x≤2时,结合函数图象直接写出y的取值范围.八.二次函数与不等式(组)(共4小题)56.(2023•西城区)如图,抛物线y=ax2+bx+c(a≠0)经过点(﹣1,0).下面有四个结论:①a>0;②2a+b<0;③4a+2b+c>0;④关于x的不等式ax2+(b﹣c)x>0的解集为﹣1<x<0.其中所有正确结论的序号是()A.①②B.②③C.③④D.②③④57.(2024•顺义区)已知二次函数y=ax2+bx+c的部分图象如图所示,写出一个满足不等式ax2+bx+c<﹣1的x的值,这个值可以是.58.(2023秋•东城区期末)在平面直角坐标系xOy中,二次函数y=x2+bx的图象过点A(3,3).(1)求该二次函数的解析式;(2)用描点法画出该二次函数的图象;(3)当0<x<3时,对于x的每一个值,都有kx>x2+bx,直接写出k的取值范围.59.(2023秋•朝阳区期末)已知一次函数y1=mx+n(m≠0)和二次函数,下表给出了y1,y2与自变量x的几组对应值:x…﹣2﹣101234…y1…543210﹣1…y2…﹣503430﹣5…(1)求y2的解析式;(2)直接写出关于x的不等式ax2+bx+c>mx+n的解集.。
2024北京西城初三(上)期末数 学注意事项1.本试卷共7页,共两部分,28道题.满分100分.考试时间120分钟.2.在试卷和答题卡上准确填写学校、班级、姓名和学号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,请将考试材料一并交回.第一部分 选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1. 若抛物线23y x x c =++经过点()0,2,则c 的值为( ) A. 2 B. 1 C. 0 D. 2−2. 北京城区的胡同中很多精美的砖雕美化了生活环境,砖雕形状的设计采用了丰富多彩的图案.下列砖雕图形中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D. 3. 不透明的袋子中装有2个白球和3个黑球,除颜色外,这5个小球无其他差别.随机从袋子中摸出3个球,下列事件中是必然事件的是( )A. 3个球都是白球B. 至少有1个黑球C. 3个球都是黑球D. 有1个白球2个黑球4. 下列关于函数21y x =−的结论中,正确的是( )A. y 随x 的增大而减小B. 当0x >时,y 随x 的增大而增大C. 当0x <时,y 随x 的增大而增大D. 当0x >时,y 随x 的增大而减小 5. 小云从正面观察三星堆青铜太阳轮(如图所示),发现它的正面图形可近似地看作是将圆五等分得到的图中角α的度数为( )A. 60°B. 70°C. 72°D. 75°6. 某城区采取多项综合措施降低降尘量提升空气质量,降尘量由2020年的5.2吨/平方公里下降至2022年的3.6吨/平方公里月,若设降尘量的年平均下降率为x ,则可列出关于x 的方程为( )A. ()3.612 5.2x +=B. ()5.212 3.6x −=C. ()23.61 5.2x +=D. ()25.21 3.6x −= 7. 如图,AB 为O 的直径,弦CD 交AB 于点E ,BE BC =.若40CAB ∠=︒,则BAD ∠的大小为( )A. 45︒B. 50︒C. 55︒D. 65︒8. 如图,抛物线2y ax bx c =++()0a ≠经过点()1,0−.下面有四个结论:①0a >;②20a b +<;③420a b c ++>;④关于x 的不等式()20ax b c x +−>的解集为10x −<<.其中所有正确结论的序号是( )A. ①②B. ②③C. ③④D. ②③④第二部分 非选择题二、填空题(共16分,每题2分)9. 在平面直角坐标系中,点()3−2,关于原点的对称点坐标为 ___________. 10. 一元二次方程2250x −=的解为__________.11. 已知O 的半径为6cm ,点P 在O 外,则OP ___6cm (填“>”、“ <”或“=” )12. 若关于x 的一元二次方程260x x k −+=有两个相等的实数根,则k 的值为______.13. 写出一个开口向上,并且经过原点的抛物线的解析式,y =________.14. 如图,四边形ABCD 内接于O ,110A ∠=︒,则C ∠=________°,依据是________.15. 中国邮政集团公司曾发行《二十四节气》特殊版式小全张(图1),其中的24枚邮票大小相同,上面绘制了代表二十四节气风貌的图案,这24枚邮票组成了一个圆环,传达了四季周而复始、气韵流动的理念和中国传统文化中圆满、圆融的概念,以“大雪”节气单枚邮票为例(图2),该邮票的“上圆弧”的长为l ,“直边长”为d ,“下圆弧”的长为x ,则x =________(用含l ,d 的式子表示).16. 如图,在三角尺ABC 中,90ACB ∠=︒,30ABC ∠=︒,1AC =.把CB 边放在直尺l 上,让三角尺在桌面上沿直尺l 按顺时针方向无滑动地滚动,直到CB 边再一次落到直尺l 上时停止滚动.三角尺的第一次滚动可看成将三角尺绕点B 顺时针旋转了150︒ ,记为(),150B ︒.有以下三个结论:①第一次滚动的过程中,点C 运动的路径长为2π;②第二次滚动可记为(),120A ︒;③点A ,点B ,点C 在滚动全程中,运动路径最长的是点B .上述结论中,所有正确结论的序号是________.三、解答题(共68分,第17-18题,每题5分,第19题6分,第20-23题,每题5分,第24-26题,每题6分,第27-28题,每题7分)17. 解方程:2630x x −+=.18. 已知二次函数2245y x x =−+.(1)将2245y x x =−+化成()2y a x h k =−+的形式;(2)抛物线2245y x x =−+可以由抛物线22y x =经过平移得到,请写出一种平移方式.19. 两个质地均匀的正方体M 和N ,正方体M 的六个面分别标有数字“0”,“1”,“2”,“3”,“4”,“5;正方体N 的六个面分别标有数字“0”,“1”,“2”,“6”,“7”,“8”.掷小正方体后,观察朝上一面的数字.(1)掷一次正方体M 时,出现奇数的概率是多少;(2)如果先掷一次正方体M ,再掷一次正方体N 得到两个数字,如先后挪到“0”和“1”记为01,可表示某月的01日;先后掷到“5”和“8”记为58,不能表示某月的日期.求先后各掷一次正方体M 和正方体N ,得到的两个数字能组成一月的一个日期的概率.20. 在平面直角坐标系xOy 中,抛物线22y x x c =−+与x 轴的一个交点为()1,0A −.(1)c =________;(2)画出函数22y x x c =−+的图像;(3)当22x −<≤时,结合函数图像直接写出y 的取值范围.21. 已知关于x 的一元二次方程2(2)10x m x m −+++=.(1)求证:无论m 取何值,方程总有两个实数根;(2)若方程的一个实数根是另一个实数根的两倍,求m 的值.22. 如图,AB 是O 的弦,半径OC AB ⊥,垂足为D .120ACB ∠=︒,6AB =,求O 的半径.23. 在平面直角坐标系xOy 中,ABC 的三个顶点的坐标分别为()2,5A −,()3,0B −,()1,2C .将ABC 绕原点O 顺时针旋转90°得到A B C ''',点A ,B ,C 的对应点分别为A ',B ',C '.(1)画出旋转后的A B C ''';(2)直接写出点C '的坐标;(3)记线段B C ''与线段BC 的交点为G ,直接写出BGC '∠的大小.24. 如图,AB 是O 的直径,AB BC =,AC 交O 于点D ,点F 在OD 的延长线上且12FAD ABC ∠=∠.(1)求证:AF 是O 的切线;(2)若8AF =,4DF =,求AC 的长.25. 如图,小云在生活中观察到一个拱门,拱门的上方拱线M 和下方拱线N 的最高点均为点C ,拱门的跨径间对称分布有8根立柱.他搜集到两条拱线的相关数据,拱线N 的跨径AB 长为14m ,高HC 为6.125m .HC 右侧的四根立柱在拱线N 上的端点D ,E ,F ,B 的相关数据如下表所示.根据以上信息,解答下列问题:(1)选取拱线M 上的任意三点,通过尺规作图作出拱线M 所在的圆;(2)建立适当的平面直角坐标系,选取拱线N 上的点,求出拱线N 所在的抛物线对应的函数解析式,并验证拱线N 上的其他已知点都在抛物线上,写出验证过程(不添加新的字母). 26. 在平面直角坐标系xOy 中,()1,A t y ,()21,B t y +,()33,C t y +三点都在抛物线224y ax ax =−+(0a >)上.(1)这个抛物线的对称轴为直线________.(2)若132y y y >≥,求t 的取值范围;(3)若无论t 取任何实数,点A ,B ,C 中都至少有两个点在x 轴的上方,直接写出a 的取值范围. 27. 在ABC 中,90ACB ∠=︒,AC BC =,CM AB ⊥于点M .点P 在射线CM 上,连接AP ,作CD AP ⊥于点D .连接MD ,作CE MD ⊥于点E ,作DF AB 交直线CE 于点F ,连接MF .(1)当点P 在线段CM 上时,在图1中补全图形,并直接写出ADM ∠的度数;(2)当点P 在线段CM 的延长线上时,利用图2探究线段DF 与AM 之间的数量关系,并证明; (3)取线段MF 的中点K ,连接BK ,若8AC =,直接写出线段BK 的长的最小值.28. 如图,在平面直角坐标系xOy 中,点()1,0S −,()1,0T .对于一个角α(0180α︒<≤︒),将一个图形先绕点S 顺时针旋转α,再绕点T 逆时针旋转α,称为一次“α对称旋转”.(1)点R 在线段ST 上,则在点()1,1A −,()3,2B −,()2,2C −,()0,2D −中,有可能是由点R 经过一次“90︒对称旋转”后得到的点是________;(2)x 轴上的一点P 经过一次“α对称旋转”得到点Q .①当60α=︒时,PQ =________;②当30α=︒时,若QT x ⊥轴,求点P 的坐标;(3)以点O 为圆心作半径为1的圆.若在O 上存在点M ,使得点M 经过一次“α对称旋转”后得到的点在x 轴上,直接写出α的取值范围.参考答案第一部分 选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1. 【答案】A【分析】本题考查二次函数图象与性质,熟记二次函数一般式的常数项c 就是抛物线23y x x c =++与y 轴的交点()0,2,熟记二次函数图象与性质是解决问题的关键. 【详解】解:抛物线23y x x c =++经过点()0,2,∴c 的值为2,故选:A .2. 【答案】A【分析】本题考查轴对称图形及中心对称图形的定义与判断,根据中心对称图形定义:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心;轴对称图形定义:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,逐项验证即可得到答案.熟练掌握轴对称图形及中心对称图形的定义是解决问题的关键.【详解】解:A 、该图形既是轴对称图形,又是中心对称图形,符合题意;B 、该图形是轴对称图形,不是中心对称图形,不符合题意;C 、该图形不是轴对称图形,是中心对称图形,不符合题意;D 、该图形是轴对称图形,不是中心对称图形,不符合题意;故选:A .3. 【答案】B【分析】本题考查必然事件,涉及事件的分类与概念,熟记事件分类及相应概念是解决问题的关键.【详解】解:不透明的袋子中装有2个白球和3个黑球,除颜色外,这5个小球无其他差别.随机从袋子中摸出3个球,则A 、“3个球都是白球”是不可能事件,不符合题意;B 、“至少有1个黑球”是必然事件,符合题意;C 、“3个球都是黑球”是随机事件,不符合题意;D 、“有1个白球2个黑球”是随机事件,不符合题意;故选:B .4. 【答案】B【分析】本题主要考查二次函数的图象的性质,要牢记解析式中的系数和图象性质的关系.根据二次项的系数确定开口方向,再根据对称轴确定增减性.【详解】解:由题意得,图象开口向上,对称轴为y 轴,∴当0x <时,y 随x 增大而减小,A 、C 选项说法错误,当0x >时,y 随x 增大而增大,B 选项说法正确,D 选项说法错误,故选:B .5. 【答案】C【分析】本题考查圆的性质,涉及周角为360︒,由将圆五等分得到的图中角α,列式即可得到答案,读懂题意,掌握周角为360︒是解决问题的关键. 【详解】解:由题意可得360725α︒==︒, 故答案为:C .6. 【答案】D【分析】本题考查一元二次方程的实际应用,涉及平均增长率问题的解法,读懂题意,找到等量关系列出方程是解决问题的关键.【详解】解:设降尘量的年平均下降率为x ,则 ()25.21 3.6x −=,故选:D .7. 【答案】D【分析】由直径所对的圆周角是直角,结合直角三角形两锐角互余得到50B ∠=︒,再由等腰三角形性质及三角形内角和定理即可得到65ECB CEB ∠=∠=︒,再由圆周角定理即可得到答案. 【详解】解:AB 为O90ACB ∴∠=︒,40CAB ∠=︒,904050B ∴∠=︒−︒=︒,BE BC =,18050652ECB CEB ︒−︒∴∠=∠==︒, BD BD =, 65BAD BCE ∴∠=∠=︒,故选:D .【点睛】本题考查圆中求角度,涉及圆周角定理、直径所对的圆周角是直角、直角三角形两锐角互余、等腰三角形性质、三角形内角和定理等知识,熟练掌握圆周角定理是解决问题的关键.8. 【答案】D【分析】本题主要考查二次函数的性质以及与一次函数的解集,根据图像开口可得①错误;根据对称轴可判断②正确;由2x =时,0y >,即可判断③正确;利用二次函数与一次函数1y cx c =+的图像位置关系可判断④正确.【详解】解:①∵抛物线开口向下,∴a<0,则①错误.②∵抛物线的对称轴在y 轴的右侧,且与x 轴的交点一个为1,−另外一个在2到3之间, ∴12b a−<, ∵a<0∴2b a <−,∴20a b +<,则②正确.③由图象可知,当2x =时,0y >,∴420a b c ++>,则③正确.④()20ax b c x +−>,可变式为2ax bx c cx c ++>+, 令1y cx c =+,∵一次函数1y cx c =+,过点()0,c 和()1,0−,则一次函数1y cx c =+与抛物线2y ax bx c =++图象如图,2ax bx c cx c ++>+的解集为10x −<<.则④正确.故选:D .第二部分 非选择题二、填空题(共16分,每题2分)9. 【答案】()2,3−【分析】本题考查了点的坐标,熟记关于原点对称的点的横坐标与纵坐标都互为相反数是解题的关键.根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.【详解】解:点()3−2,关于原点的对称点坐标为()2,3−, 故答案为:()2,3−.10. 【答案】125,5x x =−=【分析】先将常数项25移项到方程的右边,再利用直接开平方法解题即可.【详解】2250x −=2=25x ∴5x ∴=±故答案为:125,5x x =−=.【点睛】本题考查直接开平方法解一元二次方程,是重要考点,难度较易,掌握相关知识是解题关键. 11. 【答案】>【分析】根据点与圆的三种关系即可判断得到答案.【详解】解:O 的半径为6cm , 点P 在O 外,6cm OP ∴>.故答案为:>.【点睛】本题考查点与圆的关系,解题关键是熟知点与圆的三种关系.12. 【答案】9【分析】根据一元二次方程根的判别式,Δ0=,构建方程求解.【详解】解:∵260x x k −+=有两个相等的实数根,2(6)413640k k ∆=−−⨯⨯=−=,∴9k =.故答案为:9【点睛】本题考查一元二次方程根的判别式,掌握根的判别式定理是解题的关键.13. 【答案】22x x +(答案不唯一)【分析】由开口方向可确定a 的符号,由过原点可确定常数项,则可求得答案.【详解】解:设抛物线解析式为2y ax bx c =++(0)a ≠,∵抛物线开口向上,∴0a >,故可取1a =,∵抛物线过原点,∴0c ,∵对称轴没有限制,∴可取2b =,∴一个开口向上,并且经过原点的抛物线的解析式可为22y x x =+.故答案为:22x x +.【点睛】本题主要考查了二次函数的图像与性质,掌握二次函数的开口方向由a 的符号决定是解题的关键.14. 【答案】 ①. 70 ②. 圆内接四边形对角互补【分析】本题考查了圆内接四边形对角互补.熟练掌握圆内接四边形对角互补是解题的关键. 根据圆内接四边形对角互补求解作答即可. 【详解】解:∵四边形ABCD 内接于O ,∴18070C A ∠=︒−∠=︒, 依据是圆内接四边形对角互补,故答案为:70,圆内接四边形对角互补. 15. 【答案】π12l d −【分析】本题考查弧长公式,根据题意,作出图形,数形结合,利用弧长公式表示出l ,d ,找到两者之间的关系即可得到答案,熟记弧长公式是解决问题的关键. 【详解】解:根据题意,作出图形,如图所示:3601524BOC ︒∴∠==︒, 15π2π36012l OC OC ∴=⨯⨯=;()()15π2π36012x OC d OC d =⨯⨯−=−, ∴πππ121212x OC d l d =−=−, 故答案为:π12l d −. 16. 【答案】②③【分析】由勾股定理及含30︒直角三角形性质得到相应边及角度的大小,再利用弧长公式即可验证①错误;读懂题意,理解(),150B ︒的含义即可验证②错误;利用旋转性质及弧长公式可求出点A ,点B ,点C 在滚动全程中,运动的路径长,再由实数大小的比较即可确定③正确;从而得到答案. 【详解】解:如图所示:在三角尺ABC 中,90ACB ∠=︒,30ABC ∠=︒,1AC =,2,AB BC ∴===∴第一次滚动的过程中,点C 运动的路径长为1502ππ2π3606BC ⨯⨯=≠,①错误;根据三角尺的第一次滚动可看成将三角尺绕点B 顺时针旋转了150︒,记为(),150B ︒可知(),150B ︒的横坐标是旋转中心,纵坐标是旋转角度,∴三角尺的第二次滚动可看成将三角尺绕点C 顺时针旋转了120︒,记为(),120C ︒,如图所示:∴第二次滚动可记为(),120A ︒,②正确;∴在滚动全程中,点A 运动的路径长为15090132π2ππ3603606BA AC ⨯⨯+⨯⨯=;∴在滚动全程中,点B 运动的路径长为1209082π2ππ3603606AB BC ⨯⨯+⨯⨯=;∴在滚动全程中,点C 运动的路径长为15012042π2ππ3603606BC AC +⨯⨯+⨯⨯=;()13850−=−=<,13866+∴<; ()()4840−+==<,4866++∴<; 综上所述,点A ,点B ,点C 在滚动全程中,运动路径最长的是点B ,③正确; 故答案为:②③.【点睛】本题考查旋转,涉及圆的性质、旋转性质、勾股定理、含30︒直角三角形性质、弧长公式和实数比较大小等知识,掌握旋转性质及弧长公式是解决问题的关键.三、解答题(共68分,第17-18题,每题5分,第19题6分,第20-23题,每题5分,第24-26题,每题6分,第27-28题,每题7分)17.【答案】13x =,23x = 【分析】根据公式法解方程即可.【详解】解:∵()2641324∆=−−⨯⨯=,∴66322x ±±===±,∴13x =,23x =∴此方程的解为:13x =+,23x =【点睛】本题考查公式法解一元二次方程,解题的关键是掌握公式法解一元二次方程. 18.【答案】(1)()2213y x =−+(2)先向右平移1个单位长度、再向上平移3个单位长度或先向上平移3个单位长度、再向右平移1个单位长度(任选一个即可)【分析】本题考查二次函数图像与性质,涉及将一般式化为顶点式、函数图像平移等知识,熟练掌握二次函数图像与性质是解决问题的关键.(1)利用配方法即可将二次函数一般式化为顶点式;(2)根据函数图像平移法则:左加右减、上加下减,结合函数表达式,数形结合即可得到答案. 【小问1详解】 解:2245y x x =−+()2225x x =−+ ()222115x x =−+−+()222125x x ⎡⎤=−+−+⎣⎦()2213x =−+,∴将2245y x x =−+化成()2y a x h k =−+的形式为()2213y x =−+;【小问2详解】解:由(1)中抛物线2245y x x =−+可化为()2213y x =−+,∴抛物线22y x =经过平移得到()2213y x =−+可以是:①先向右平移1个单位长度、再向上平移3个单位长度;②先向上平移3个单位长度、再向右平移1个单位长度;(任选一个即可). 19. 【答案】(1)12(2)1936【分析】本题考查了简单的概率计算,列举法求概率.熟练掌握简单的概率计算,正确的列表格是解题的关键.(1)由题意知,掷一次正方体M 时共有6种等可能的结果,出现奇数有3种等可能的结果,然后求概率即可;(2)根据题意列表格,然后求概率即可. 【小问1详解】解:由题意知,掷一次正方体M 时共有6种等可能的结果,出现奇数有3种等可能的结果, ∵3162=, ∴掷一次正方体M 时,出现奇数的概率是12; 【小问2详解】 解:由题意列表如下:∴得到的两个数字能组成一月的一个日期的概率为1936. 20. 【答案】(1)3−(2)作图见解析 (3)45y −≤<【分析】(1)根据题意,将()1,0A −代入表达式解方程即可得到答案;(2)由(1)可知2=23y x x −−,利用描点法作出图形即可得到答案;(3)由(2)中图像,作出图形,利用图像即可得到当22x −<≤时,y 的取值范围. 【小问1详解】解:抛物线22y x x c =−+与x 轴的一个交点为()1,0A −,()()20121c ∴=−−⨯−+,解得3c =−,故答案为:3−; 【小问2详解】 解:由(1)知2=23y x x −−,列表:描点、连线,画函数2y x x c =−+图像,如图所示:;【小问3详解】解:题中给出22x −<≤,过()2,0−作2x =−,过()2,0作2x =,如图所示:2=23y x x −−的开口向上,对称轴为1x =,在图像上,当21x −≤≤时,图像是下降的,即y 随x 增大而减小,当1x =时,4y =−;当2x =−时,5y =;在图像上,当12x ≤≤时,图像是上升的,即y 随x 增大而增大,当1x =时,4y =−;当2x =时,=3y −;∴当22x −<≤时,结合函数图像,再由上述计算可知:当1x =时,min 4y =−;当2x =−时,max 5y =;∴当22x −<≤时,结合函数图像得到y 的取值范围是45y −≤<.【点睛】本题考查二次函数综合,涉及待定系数法确定函数关系式、描点法作二次函数图像和利用二次函数图形与性质求y 的取值范围,熟练掌握二次函数图像与性质是解决问题的关键. 21. 【答案】(1)见详解 (2)12−或1 【分析】(1)根据24b ac ∆=−即可证明;(2)根据公式法即可得()()122222m m x x ++==,再根据方程的一个实数根是另一个实数根的两倍即可求解; 【小问1详解】解:根据题意,()()22Δ42410b ac m m m ⎡⎤=−=−+−+=≥⎣⎦, ∴无论m 取何值,方程总有两个实数根. 【小问2详解】由题意,根据公式法得,()222m b x a +−==,∴()()122222m m xx +++==,∴()()22222m m +++−=⋅,解得:12112m m =−=,.【点睛】本题主要考查一元二次方程的应用,掌握相关知识是解题的关键.22. 【答案】【分析】连接OA OB 、,在优弧AB 上取一点E ,连接AE BE 、,如图所示,根据圆内接四边形性质及圆周角定理得到120AOB ∠=︒,再由垂径定理、含30︒的直角三角形性质及勾股定理得到O 的半径.【详解】解:连接OA OB 、,在优弧AB 上取一点E ,连接AE BE 、,如图所示:∴四边形AEBC 是圆的内接四边形,120ACB ∠=︒,60E ∴∠=︒,AB AB =,2120AOB E ∴∠=∠=︒,AB 是O 的弦,半径OC AB ⊥,垂足为D ,6AB =,∴由垂径定理可知3AD BD ==,1602∠=∠=︒AOD AOB ,90ADO ∠=︒, 在Rt AOD 中,30OAD ∠=︒,设OD x =,则2OA x =,由勾股定理可知3AD ===,解得x =∴O 的半径为【点睛】本题考查求圆的半径,涉及圆内接四边形性质、圆周角定理、垂径定理、含30︒的直角三角形性质和勾股定理,熟练掌握圆的性质及定理是解决问题的关键. 23. 【答案】(1)作图见解析 (2)()2,1C '− (3)90BGC '∠=︒【分析】本题考查旋转作图、由图形写坐标和求角度,涉及旋转性质、图形与坐标、三角形全等的判定与性质、对顶角相等和三角形内角和定理等知识,熟练掌握旋转性质及图形与坐标是解决问题的关键. (1)根据旋转的性质作出ABC 三个顶点绕点O 顺时针旋转90°的对应点,连线即可得到A B C '''; (2)由(1)中作出的A B C '''即可得到答案;(3)过C 作CD x ⊥轴于D 、过C '作C D y ''⊥轴于D ,如图所示,由三角形全等的判定与性质得到()HL BDC B D C '''≌,进而DBC D B C '''∠=∠,再由对顶角相等、等量代换及三角形内角和定理即可得到答案. 【小问1详解】 解:作图如下:∴A B C '''即为所求;【小问2详解】解:由(1)中图形,如图所示:()2,1C ∴'−;【小问3详解】解:在(1)的图形中,过C 作CD x ⊥轴于D 、过C '作C D y ''⊥轴于D ,如图所示:,,90BC B C CD C D BDC B D C '''''''==∠=∠=︒, ()HL BDC B D C ''∴'≌,DBC D B C '''∴∠=∠, BEO B EG '∠=∠,在Rt BEO △中,90BEO DBC ∠+∠=︒,则90B EG D B C ''''∠+∠=︒, 在B EG '中,由三角形内角和定理可知90EGB '∠=︒,90BGC '∴∠=︒.24. 【答案】(1)详见解析;(2 【分析】(1)根据等腰三角形性质及三角形的内角和定理可得1902BAC ABC ∠=︒−∠,再由已知及切线的判定定理可得结论;(2)由(1)知90OAF ∠=︒,由勾股定理得出圆的半径为6,利用等腰三角形的性质可得出D 为AC 的中点,利用中位线定理可得出OD BC ,可证出AOF ABC ∠=∠,得出AOF EBA ∽,利用相似比得出7.2,9.6BE AE ==,最后利用勾股定理即可得出答案. 【小问1详解】 ∵AB BC =, ∴1902BAC C ABC ∠=∠=︒−∠, ∵12FAD ABC ∠=∠, ∴11909022BAF BAC FAD ABC ABC ∠=∠+∠=∠+∠∠=︒, ∵AB 为O 直径,∴AF 是O 的切线;【小问2详解】 由(1)知,AF 是O 的切线,∴AF AB ⊥, ∴90OAF ∠=︒, ∴222AF OA OF += 设O 的半径为r ,∵8,4AF DF ==, ∴()22284r r +=+, ∴6r =,∴612,10OA OB OD AB BC OF ======,, 连接AE BD ,,∵AB 为O 的直径,∴,90BD AC AEB ⊥∠=︒, ∵AB BC =, ∴D 为AC 中点, ∴OD BC , ∴AOF ABC ∠=∠, ∵90AEB OAF ∠=∠=︒, ∴AOF EBA ∽, ∴AO AF OFBE AE AB ==, ∴681012BE AE ==, ∴7.2,9.6BE AE ==,∴127.2 4.8CE BC BE =−=−=,∴在Rt AEC 中,AC ===【点睛】本题属于主要考查了等腰三角形性质,圆切线的判定与性质,相似三角形的判定与性质,勾股定理,中位线定理等知识点,熟练掌握其性质的综合应用是解决此题的关键. 25. 【答案】(1)尺规作图见解析 (2)()()1778y x x =−−+,其他已知点都在抛物线上,验证过程见解析 【分析】本题考查圆与二次函数综合,涉及圆的性质、尺规作图-中垂线、待定系数法确定函数关系式、验证点是否在函数图像上等知识,熟练掌握中垂线的尺规作图及待定系数法确定函数关系式是解决问题的关键.(1)选取拱线M 上的任意三点,连线构成圆的弦,作两条弦的垂直平分线交于点O ,以O 为圆心,OC 为半径作圆即可得到答案;(2)以H 为坐标原点,以AB 所在的直线为x 轴,以HC 所在的直线为y 轴,如图所示,利用交点式,待定系数法确定函数关系式即可得到拱线N 所在的抛物线对应的函数解析式为()()1778y x x =−−+,再将D ,E ,F ,B 的横坐标代入表达式验证纵坐标是否与y 值相等即可得到答案.【小问1详解】解:如图所示:O ∴即为所求;【小问2详解】解:以H 为坐标原点,以AB 所在的直线为x 轴,以HC 所在的直线为y 轴,如图所示:拱线N 的跨径AB 长为14m ,高为6.125m ,()7,0A ∴−、()7,0B 、()0,6.125C ,设拱线N 的表达式为()()77y a x x =−+,∴将()0,6.125C 代入表达式得6.12549a =−,解得18a =−,∴拱线N 所在的抛物线对应的函数解析式为()()1778y x x =−−+,∴将4x =代入()()778y x x =−−+得()()4747 4.1258y =−⨯−⨯+=,故点D 在拱线N 所在的抛物线上;将5x =代入()()1778y x x =−−+得()()1575738y =−⨯−⨯+=,故点E 在拱线N 所在的抛物线上; 将6x =代入()()1778y x x =−−+得()()16767 1.6258y =−⨯−⨯+=,故点F 在拱线N 所在的抛物线上;将7x =代入()()1778y x x =−−+得()()1777708y =−⨯−⨯+=,故点B 在拱线N 所在的抛物线上. 26. 【答案】(1)1x =(2)112t −≤<− (3)04a <≤或163a >【分析】本题考查了二次函数图像上点的坐标特征:掌握二次函数的性质,掌握二次函数图像与系数的关系是解题的关键.(1)直接根据对称轴公式可得对称轴直线方程;(2)先根据已知条件判断出A ,B ,C 所在的位置,然后根据距离对称轴的大小得到取值求解即可;(3)有两种情况满足题意,①当抛物线与x 轴有一个交点或者没有交点时,函数图像与x 轴有交点,且两个交点的距离小于1时,w 分类讨论求解即可;【小问1详解】 解:对称轴为212a x a −=−=, 故答案为:1x =;【小问2详解】解:∵()1,A t y ,()21,B t y +,()33,C t y +三点都在抛物线224y ax ax =−+(0a >)上,且132y y y >≥,又∵13t t t <+<+,抛物线的对称轴为1x =,∴A ,B 两点位于对称轴左侧,点C 位于对称轴右侧,且点A 到对称轴的距离大于点C 到对称轴的距离,点C 到对称轴的距离大于等于点B 到对称轴的距离,即()3111131t t t t ⎧+−≥−+⎨−>+−⎩,解得112t −≤<−; 【小问3详解】解:无论t 取任何实数,点A ,B ,C 中都至少有两个点在x 轴的上方,有两种情况满足题意,①当抛物线与x 轴有一个交点或者没有交点时,满足题意,即Δ0≤,∴()22440a a −−⨯⨯≤,化简得()440a a −≤,∵0a >,∴40a −≤,解得4a ≤,∴此时04a <≤;②函数图像与x 轴有交点,且两个交点的距离小于1时满足题意,此时三点中,距离最近的A 和B 不能同时在x 轴下方,临界情况A 、B 两点分别是这两个交点,得0.5=t ,此时t =0.5.带入224y ax ax =−+,解得163a =, ∴此时163a >; 综上所述,04a <≤或163a > 27. 【答案】(1)45ADM ∠=︒(2)DF AM =,证明见解析;(3)2BK =【分析】(1)先补全图形,如图所示:取AC 的中点T ,连接DT ,MT ,证明A ,C ,D ,M 四点共圆,可得45ADM ACM ∠=∠=︒;(2)由(1)同理可得:A ,C ,D ,M 四点共圆,可得45CDM CAM ∠=∠=︒,证明CE DE =,再证明DEF CEM ≌,可得DF CM =,即可得到结论;(3)如图,取BC 的中点R ,连接RM ,RF ,RK ,取MR 的中点Q ,连接QK ,由(2)同理可得:ME FE =,而CE ME ⊥,可得45CEF CBA ∠=∠=︒,连接BF ,证明90CFB ∠=︒,可得K 在以Q 为圆心,半径为2的弧上运动,当B ,K ,Q 三点共线时,BK 最小,从而可得答案.【小问1详解】解:补全图形,如图所示:∵CM AB ⊥,CD AP ⊥,∴90CDP CMA ∠=∠=︒,取AC 的中点T ,连接DT ,MT , ∴12DT AC MT ==,∴A ,C ,D ,M 四点共圆,∴ADM ACM ∠=∠,∵AC BC =,90ACB ∠=︒,CM AB ⊥,∴45ACM ∠=︒,∴45ADM ∠=︒;【小问2详解】 DF AM =,理由如下:如图所示:∵AC BC =,90ACB ∠=︒,CM AB ⊥,∴45CAB CBA ∠=∠=︒,CM AM BM ==,由(1)同理可得:A ,C ,D ,M 四点共圆,∴45CDM CAM ∠=∠=︒,∵CE DM ⊥,∴45DCE CDE ∠=∠=︒,∴CE DE =,∵DF AB ,∴DF CM ⊥,∴90DGM CEM ∠=∠=︒,∵CME DMG ∠=∠,∴FDE MCE ∠=∠,而90CEM DEF ∠=∠=︒,∴DEF CEM ≌,∴DF CM =,∴DF AM =;【小问3详解】如图,取BC 的中点R ,连接RM ,RF ,RK ,取MR 的中点Q ,连接QK ,由(2)同理可得:ME FE =,而CE ME ⊥,∴45CFM CBA ∠=∠=︒,连接BF ,∵BGM CGF ∠=∠,∴BMF BCF ∠=∠,∴MGB CGF ∽, ∴MG BG CG FG=,而CGM FGB ∠=∠, ∴CGM FGB ∽,∴CMG CBF ∠=∠,∴90FCB CBF FMB CMF ∠+∠=∠+∠=︒,∴90CFB ∠=︒, ∴142RM RF BM BC ====,而K 为MF 中点,Q 为MR 中点, ∴122QK MR ==, ∴K 在以Q 为圆心,半径为2的弧上运动,∴当B ,K ,Q 三点共线时,BK 最小,在Rt BQR 中,4,2BR QR ==此时BQ ==∴2BK =.【点睛】本题考查的是等腰直角三角形的判定与性质,勾股定理的应用,全等三角形的判定与性质,相似三角形的判定与性质,圆周角定理的应用,圆的确定及基本性质,作出合适的辅助线是解本题的关键. 28. 【答案】(1)()3,2B −、()2,2C −(2)①2;②)1,0P (3)030α<≤︒或150180α︒≤≤︒【分析】(1)由一次“α对称旋转”定义,将()1,1A −,()3,2B −,()2,2C −,()0,2D −先绕点S 顺时针旋转90︒,再绕点T 逆时针旋转90︒,即可验证;(2)①作出图形,数形结合,分类讨论,由等边三角形的判定与性质、全等三角形的判定与性质即可得到答案;②作出图形,由含30︒的直角三角形的性质,求出三角形边长即可得到点P 的坐标;(3)设点M 经过一次“α对称旋转”后得到的点为点M ',则点M '先绕点T 顺时针旋转α,再绕点S 逆时针旋转α得到点M ,进行分类讨论:①当090α<≤︒时,令1l 和O 相交于G ,连接SG ,过点S 作2l 的垂线,垂足为点H ,易得2sin SG SH α==,根据点M 再O 上,则2l 与O 有公共点,得出01SH <≤,即02sin 1α<≤,即可求解;②当90180α︒<≤︒时,用相同的方法,即可解答.【小问1详解】解:由一次“α对称旋转”定义,将()1,1A −先绕点T 顺时针旋转90︒,再绕点S 逆时针旋转90︒,如图所示:()1,1A ∴−不是由点R 经过一次“90︒对称旋转”后得到的点;同理可得()3,2B −是由点()1,0R 经过一次“90︒对称旋转”后得到的点;()2,2C −是由点()0,0R 经过一次“90︒对称旋转”后得到的点;()0,2D −不是由点R 经过一次“90︒对称旋转”后得到的点; 故答案为:()3,2B −、()2,2C −;【小问2详解】解∶①令点P 绕点S 顺时针旋转α得到点P ',连接,,,,AP TP PP P Q PQ '''',∵P 经过一次“60︒对称旋转”得到Q 时,∴,60,,60SP SP PSP TP TQ P TQ ''''=∠=︒=∠=︒,∴,SPP P TQ ''是等边三角形,∴60SP P TP Q ''∠=∠=︒,,SP PP P T PQ '''==,∴SP P TP P TP Q TP P ''''∠−∠=∠−∠,即SP T PP Q ''∠=∠,∵,,SP PP SP T PP Q P T PQ '''''=∠=∠=,∴SP T PP Q ''≌,∴2ST PQ ==;。
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)1.下图中几何体的左视图是( )A .B .C .D .2.如图,在⊙O 中,半径OC 垂直弦AB 于D ,点E 在⊙O 上,22.52E AB ︒∠=,=,则半径OB 等于()A .1B 2C .2D .223.已知2x=5y (y ≠0),则下列比例式成立的是( )A .25xy= B .52xy= C .25xy = D .52xy =4.4的平方根是( )A .2B .–2C .±2D .±125.﹣3﹣(﹣2)的值是( )A .﹣1B .1C .5D .﹣56.方程x (x ﹣1)=0的根是( )A .x =0B .x =1C .x 1=0,x 2=1D .x 1=0,x 2=﹣17.一组数据3,1,4,2,-1,则这组数据的极差是( )A .5B .4C .3D .28.若关于x 的方程20ax bx c ++=的解为11x =-,23x =,则方程2(1)(1)0a x b x c -+-+=的解为( ) A .120,2x x == B .122,4x x =-= C .120,4x x == D .122,2x x =-=9.四边形ABCD 内接于⊙O ,点I 是ABC ∆的内心,124AIC ∠=,点E 在AD 的延长线上,则CDE ∠的度数为( )A .56°B .62°C .68°D .48°10.如图,矩形AOBC 的面积为4,反比例函数k y x =(0k ≠)的图象的一支经过矩形对角线的交点P ,则该反比例函数的解析式是( )A .4y x =B .2y x =C .2y x =-D .1y x=- 11.用配方法解一元二次方程x 2﹣2x =5的过程中,配方正确的是( )A .(x +1)2=6B .(x ﹣1)2=6C .(x +2)2=9D .(x ﹣2)2=912.某同学用一根长为(12+4π)cm 的铁丝,首尾相接围成如图的扇形(不考虑接缝),已知扇形半径OA =6cm ,则扇形的面积是( )A .12πcm 2B .18πcm 2C .24πcm 2D .36πcm 2二、填空题(每题4分,共24分)13.若关于x 的一元二次方程21x x m 20-+-=有实数根,则m 的取值范围是___________.14.如图,如果一只蚂蚁从圆锥底面上的点B出发,沿表面爬到母线AC的中点D处,则最短路线长为_____.15.如图,已知直线l:y=﹣x+4分别与x轴、y轴交于点A,B,双曲线kyx(k>0,x>0)与直线l不相交,E为双曲线上一动点,过点E作EG⊥x轴于点G,EF⊥y轴于点F,分别与直线l交于点C,D,且∠COD=45°,则k=_____.16.如图,已知△ABC,AB=6,AC=5,D是边AB的中点,E是边AC上一点,∠ADE=∠C,∠BAC的平分线分别交DE、BC于点F、G,那么AFAG的值为__________.17.如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点.如图,已知梯形ABCD是等距四边形,AB∥CD,点B是等距点.若BC=10,cosA=1010,则CD的长等于_____.18.计算:1(27)33-⨯= . 三、解答题(共78分)19.(8分)如图,在四边形ABCD 中,AB DC ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若5AB =,2BD =,求OE 的长.20.(8分)如图,在Rt ABC ∆中,90ACB ︒∠=,D 为边AB 上的中点,DE AB ⊥交AC 于点E ,2AD DE =.(1)求sin B 的值;(2)若5CD =,求CE 的值.21.(8分)如图,在平面直角坐标系中,正方形OABC 的顶点O 与坐标原点重合,其边长为2,点A ,点C 分别在轴,轴的正半轴上.函数2y x =的图象与CB 交于点D ,函数k y x=(k 为常数,0k ≠)的图象经过点D ,与AB 交于点E ,与函数2y x =的图象在第三象限内交于点F ,连接AF 、EF .(1)求函数k y x=的表达式,并直接写出E 、F 两点的坐标. (2)求△AEF 的面积.22.(10分)如图,点A B C ,,在O 上,//BE AC ,交O 于点E ,点D 为射线BC 上一动点, AC 平分BAD ∠,连接AC .(1)求证://AD CE ;(2)连接EA ,若3BC =,则当CD =_______时,四边形EBCA 是矩形.23.(10分)如图,将矩形ABCD 绕点C 旋转得到矩形EFGC ,点E 在AD 上.延长AD 交FG 于点H(1)求证:△EDC ≌△HFE ;(2)若∠BCE =60°,连接BE 、CH .证明:四边形BEHC 是菱形.24.(10分)某校九年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为每千克8元,下面是他们在活动结束后的对话.小丽;如果以每千克10元的价格销售,那么每天可售出300千克.小强:如果每千克的利润为3元,那么每天可售出250千克.小红:如果以每千克13元的价格销售,那么每天可获取利润750元.(1)已知该水果每天的销售量y (千克)与销售单价x (元)之间存在一次的函数关系,请根据他们的对话,判决该水果每天的销售量y (千克)与销售单价x (元)之间存在怎样的函数关系,并求出这个函数关系式;(2)设该超市销售这种水果每天获取的利润为W (元),求W (元)与x (元)之间的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?(3)当销售利润为600元并且尽量减少库存时,销售单价为每千克多少元?25.(12分)如图,一次函数6y x =-+的图象与反比例函数(0)k y k =≠在第一象限的图象交于()2,A a 和B 两点,与x轴交于点C.(1)求反比例函数的解析式;(2)若点M在x轴上,且AMC∆的面积为10,求点M的坐标.26.如图,已知反比例函数kyx=(x > 0,k是常数)的图象经过点A(1,4),点B(m , n),其中m>1,AM⊥x轴,垂足为M,BN⊥y轴,垂足为N,AM与BN的交点为C.(1)写出反比例函数解析式;(2)求证:∆ACB∽∆NOM;(3)若∆ACB与∆NOM的相似比为2,求出B点的坐标及AB所在直线的解析式.参考答案一、选择题(每题4分,共48分)1、D【分析】根据左视图是从左面看到的图形,即可.【详解】从左面看从左往右的正方形个数分别为1,2,【点睛】本题主要考查几何体的三视图,理解左视图是从左面看到的图形,是解题的关键.2、B【分析】直接利用垂径定理进而结合圆周角定理得出ODB ∆是等腰直角三角形,进而得出答案. 【详解】半径OC ⊥弦AB 于点D ,AC BC ∴=,22.5E ︒∴∠=,45BOC ︒∴∠=,ODB ∴∆是等腰直角三角形,2AB =,1DB OD ∴==,则半径OB ==故选:B .【点睛】此题主要考查了勾股定理,垂径定理和圆周角定理,正确得出ODB ∆是等腰直角三角形是解题关键.3、B【解析】试题解析:∵2x=5y , ∴ 52xy =. 故选B .4、C【分析】根据正数的平方根的求解方法求解即可求得答案.【详解】∵(±1)1=4, ∴4的平方根是±1. 故选:C .5、A【解析】利用有理数的减法的运算法则进行计算即可得出答案.【详解】﹣3﹣(﹣2)=﹣3+2=﹣1,故选A .【点睛】本题主要考查了有理数的减法运算,正确掌握运算法则是解题关键.6、C【分析】由题意推出x =0,或(x ﹣1)=0,解方程即可求出x 的值.【详解】解:∵x (x ﹣1)=0,∴x 1=0,x 2=1,故选C .【点睛】此题考查的是一元二次方程的解法,掌握用因式分解法解一元二次方程是解决此题的关键.7、A【分析】根据极差的定义进行计算即可.【详解】这组数据的极差为:4-(-1)=5.故选A.【点睛】本题考查极差,掌握极差的定义:一组数据中最大数据与最小数据的差,是解题的关键.8、C【分析】设方程2(1)(1)0a x b x c -+-+=中,1t x =-,根据已知方程的解,即可求出关于t 的方程的解,然后根据1t x =-即可求出结论. 【详解】解:设方程2(1)(1)0a x b x c -+-+=中,1t x =-则方程变为20at bt c ++=∵关于x 的方程20ax bx c ++=的解为11x =-,23x =,∴关于t 的方程20at bt c ++=的解为11t =-,23t =, ∴对于方程2(1)(1)0a x b x c -+-+=,11x -=-或3解得:10x =,24x =,故选C .【点睛】此题考查的是根据已知方程的解,求新方程的解,掌握换元法是解决此题的关键.9、C【分析】由点I 是ABC 的内心知2BAC IAC =∠∠ ,2ACB ICA =∠∠,从而求得()1802180B AIC =︒-⨯︒-∠∠ ,再利用圆内接四边形的外角等于内对角可得答案.【详解】∵点I 是ABC 的内心∴2BAC IAC =∠∠ ,2ACB ICA =∠∠∵124AIC =︒∠∴B ()180BAC ACB =︒-+∠∠()1802180AIC =︒-⨯︒-∠68=︒∵四边形ABCD 内接于⊙O∴68CDE B ==︒∠∠故答案为:C .【点睛】本题考查了三角形的内心,圆内接四边形的性质,掌握三角形内心的性质和圆内接四边形的外角等于内对角是解题的关键.10、D【分析】过P 点作PE ⊥x 轴于E ,PF ⊥y 轴于F ,根据矩形的性质得S 矩形OEPF =14S 矩形OACB =1,然后根据反比例函数的比例系数k 的几何意义求解.【详解】过P 点作PE ⊥x 轴于E ,PF ⊥y 轴于F ,如图所示:∵四边形OACB 为矩形,点P 为对角线的交点,∴S 矩形OEPF =14S 矩形OACB =14×4=1. ∴k=-1,所以反比例函数的解析式是:1y x=-. 故选:D考查了反比例函数的比例系数k 的几何意义:在反比例函数y=k x图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.11、B 【分析】在方程左右两边同时加上一次项系数一半的平方即可.【详解】解:方程两边同时加上一次项系数一半的平方,得到x 2﹣2x+1=5+1,即(x ﹣1)2=6,故选:B .【点睛】本题考查了配方法,解题的关键是注意:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.12、A【分析】首先根据铁丝长和扇形的半径求得扇形的弧长,然后根据弧长公式求得扇形的圆心角,然后代入扇形面积公式求解即可.【详解】解:∵铁丝长为(12+4π)cm ,半径OA =6cm ,∴弧长为4πcm , ∴扇形的圆心角为:18046ππ⨯=120°, ∴扇形的面积为:21206360π⨯=12πcm 2, 故选:A .【点睛】本题考查了扇形的面积的计算,解题的关键是了解扇形的面积公式及弧长公式,难度不大.二、填空题(每题4分,共24分)13、m 9≤ 【分析】根据根的判别式可得方程21x x m 204-+-=有实数根则Δ0≥,然后列出不等式计算即可. 【详解】根据题意得:()221Δb 4ac 141m 204⎛⎫∴=-=--⨯⨯-≥ ⎪⎝⎭ 解得:m 9≤故答案为:m 9≤本题考查的是一元二次方程的根的判别式,根据一元二次方程的根的情况确定24b ac - 与0的关系是关键.14、33.【分析】将圆锥侧面展开,根据“两点之间线段最短”和勾股定理,即可求得蚂蚁的最短路线长.【详解】如图将圆锥侧面展开,得到扇形ABB ′, 则线段BF 为所求的最短路线.设∠BAB ′=n °.∵64180n ππ⋅=, ∴n =120,即∠BAB ′=120°.∵E 为弧BB ′中点,∴∠AFB =90°,∠BAF =60°,Rt △AFB 中,∠ABF =30°,AB =6∴AF =3,BF 2263-3∴最短路线长为3.故答案为:3【点睛】本题考查“化曲面为平面”求最短路径问题,属中档题.15、1【解析】证明△ODA ∽△CDO ,则OD 2=CD•DA ,而则OD 2=(4﹣n )2+n 2=2n 2﹣1n+16,CD 2(m+n ﹣4),DA 2n ,即可求解.【详解】解:点A 、B 的坐标分别为(4,0)、(0,4),即:OA =OB ,∴∠OAB =45°=∠COD ,∠ODA =∠ODA ,∴△ODA ∽△CDO ,∴OD2=CD•DA,设点E(m,n),则点D(4﹣n,n),点C(m,4﹣m),则OD2=(4﹣n)2+n2=2n2﹣1n+16,CD(m+n﹣4),DA n,即2n2﹣1n+16(m+n﹣4)n,解得:mn=1=k,故答案为1.【点睛】本题考查的是反比例函数与一次函数的交点问题,涉及到三角形相似、一次函数等知识点,关键是通过设定点E的坐标,确定相关线段的长度,进而求解.16、3 5【分析】由题中所给条件证明△ADF~△ACG,可求出AFAG的值.【详解】解:在△ADF和△ACG中,AB=6,AC=5,D是边AB的中点AG是∠BAC的平分线,∴∠DAF=∠CAG∠ADE=∠C∴△ADF~△ACG∴35 AF ADAG AC==.故答案为35.【点睛】本题考查了相似三角形的判定和性质,难度适中,需熟练掌握.17、16【解析】如图作BM⊥AD于M,DE⊥AB于E,BF⊥CD于F.易知四边形BEDF是矩形,理由面积法求出DE,再利用等腰三角形的性质,求出DF即可解决问题.【详解】连接BD,过点B分别作BM⊥AD于点M,BN⊥DC于点N,∵梯形ABCD是等距四边形,点B是等距点,∴AB=BD=BC=10,∵10cos A=AMAB,∴10,∴22AB AM-10,∵BM⊥AD,∴10,∵AB//CD,∴S△ABD=11·22AB BN AD BM=⋅,∴BN=6,∵BN⊥DC,∴22BD BN-,∴CD=2DN=16,故答案为16.18、1.【解析】试题分析:原式127333﹣1=1,故答案为1.考点:二次根式的混合运算.三、解答题(共78分)19、(1)证明见解析;(2)2.【解析】分析:(1)根据一组对边相等的平行四边形是菱形进行判定即可.(2)根据菱形的性质和勾股定理求出222OA AB OB-=.根据直角三角形斜边的中线等于斜边的一半即可求解. 详解:(1)证明:∵AB∥CD,∴CAB ACD∠=∠∵AC平分BAD∠∴CAB CAD∠=∠,∴CAD ACD∠=∠∴AD CD =又∵AD AB =∴AB CD =又∵AB ∥CD ,∴四边形ABCD 是平行四边形又∵AB AD =∴ABCD 是菱形(2)解:∵四边形ABCD 是菱形,对角线AC 、BD 交于点O .∴AC BD ⊥.12OA OC AC ==,12OB OD BD ==, ∴112OB BD ==. 在Rt AOB 中,90AOB ∠=︒.∴2OA ==.∵CE AB ⊥,∴90AEC ∠=︒.在Rt AEC 中,90AEC ∠=︒.O 为AC 中点. ∴122OE AC OA ===. 点睛:本题考查了平行四边形的性质和判定,菱形的判定与性质,直角三角形的性质,勾股定理等,熟练掌握菱形的判定方法以及直角三角形斜边的中线等于斜边的一半是解题的关键.20、(1);5(2)32 【分析】(1)根据题意证出∠B=∠ADE ,进而设出DE 和AD 的值,再结合勾股定理求出AE 的值即可得出答案; (2)根据斜中定理求出AD 和AB 的值,结合∠B 和∠AED 的sin 值求出AC 和AE 的值,相减即可得出答案.【详解】(1)∵DE AB ⊥,∴90ACB ADE ︒∠=∠=.又∵A A ∠=∠,∴90B AED A ︒∠=∠=-∠.设DE x =,则22AD DE x ==.在Rt ADE ∆中,AE = ,则sin sinADB AEDAE=∠===(2)∵D为Rt ABC∆斜边AB上的中点,∴AD BD CD===∴AB=则sin45AB BAC=⋅==,5sin2ADAEAED===∠,∴53422CE AC AE=-=-=.【点睛】本题考查的是解直角三角形,难度适中,需要熟练掌握直角三角形中的相关性质与定理.21、(1)2yx=,E(2,1),F(-1,-2);(2)32.【分析】(1)先得到点D的坐标,再求出k的值即可确定反比例函数解析式;(2)过点F作FG⊥AB,与BA的延长线交于点G.由E、F两点的坐标,得到AE=1,FG=2-(-1)=3,从而得到△AEF 的面积.【详解】解:(1)∵正方形OABC的边长为2,∴点D的纵坐标为2,即y=2,将y=2代入y=2x,得到x=1,∴点D的坐标为(1,2).∵函数kyx=的图象经过点D,∴21k=,∴k=2,∴函数kyx=的表达式为2yx=.(2)过点F作FG⊥AB,与BA的延长线交于点G.根据反比例函数图象的对称性可知:点D与点F关于原点O对称∴点F的坐标分别为(-1,-2),把x=2代入2yx=得,y=1;∴点E的坐标(2,1);∴AE=1,FG=2-(-1)=3,∴△AEF的面积为:12AE•FG=131322⨯⨯=.22、(1)见详解;(2)1【分析】(1)先证E DAC ∠=∠,再证E ACE ∠=∠,可得ACE DAC ∠=∠,即可得出结论;(2)根据矩形的性质可得∠BCA=90°,再证△ABC ≌△ADC ,即可解决问题.【详解】(1)证明:∵AC 平分BAD ∠∴BAC DAC ∠=∠∵E BAC ∠=∠∴E DAC ∠=∠∵//BE AC∴E ACE ∠=∠∴ACE DAC ∠=∠∴//AD EC(2) 当CD =1时,四边形EBCA 是矩形.当四边形EBCA 是矩形,∴∠BCA=90°, 又∵AC 平分BAD ∠,∴∠BAC=∠DAC∴△ABC ≌△ADC ,∴BC=DC又∵3BC =∴DC=1故答案为1.【点睛】本题考查矩形判定和性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23、(1)见解析;(2)见解析.【解析】(1)依据题意可得到FE=AB=DC ,∠F=∠EDC=90°,FH ∥EC ,利用平行线的性质可证明∠FHE=∠CED ,然后依据AAS 证明△EDC ≌△HFE 即可;(2)首先证明四边形BEHC 为平行四边形,再证明邻边BE=BC 即可证明四边形BEHC 是菱形.【详解】(1)证明:∵矩形FECG 由矩形ABCD 旋转得到,∴FE =AB =DC ,∠F =∠EDC =90°,FH ∥EC ,∴∠FHE =∠CED .在△EDC 和△HFE 中,F EDC FHE CED EF DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EDC ≌△HFE (AAS );(2)∵△EDC ≌△HFE ,∴EH =EC .∵矩形FECG 由矩形ABCD 旋转得到,∴EH =EC =BC ,EH ∥BC ,∴四边形BEHC 为平行四边形.∵∠BCE =60°,EC =BC ,∴△BCE 是等边三角形,∴BE =BC ,∴四边形BEHC 是菱形.【点睛】本题主要考查的是旋转的性质、菱形的判定,熟练掌握相关图形的性质和判定定理是解题的关键.24、(1)y=﹣50x+800(x >0);(2)单价为12元时,每天可获得的利润最大,最大利润是800元;(3)每千克10元或14元.【解析】本题是通过构建函数模型解答销售利润的问题.依据题意首先确定学生对话中一次函数关系;然后根据销售利润=销售量×(售价-进价),列出平均每天的销售利润w (元)与销售价x 之间的函数关系,再依据函数的增减性求得最大利润.【详解】(1)当销售单价为13元/千克时,销售量为:750÷(13﹣8)=150千克, 设:y 与x 的函数关系式为:y=kx+b (k≠0)把(10,300),(13,150)分别代入得:k=﹣50,b=800∴y 与x 的函数关系式为:y=﹣50x+800(x >0).(2)∵利润=销售量×(销售单价﹣进价),由题意得∴W=(﹣50x+800)(x ﹣8)=﹣50(x ﹣12)2+800,∴当销售单价为12元时,每天可获得的利润最大,最大利润是800元.(3)将w=600代入二次函数W=(﹣50x+800)(x ﹣8)=600解得:x 1=10,x 2=14即:当销售利润为600元时,销售单价为每千克10元或14元.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利用函数的增减性来解答,我们首先要读懂题意,确定变量,建立函数模型,然后结合实际选择最优方案.25、(1)8y x=;(2)()1,0或()11,0 【分析】(1)先把点()2,A a 代入6y x =-+解得a 的值,再代入反比例函数(0)k y k x=≠中解得k 的值即可; (2)AMC ∆的面积可以理解为是以MC 为底,点A 的纵坐标为高,根据三角形的面积公式列式求解即可.【详解】解:(1)把点()2,A a 代入6y x =-+,得26a =-+,解得:4a =,()2,4A ∴把()2,4A 代入反比例函数k y x=, 248k ∴=⨯=; ∴反比例函数的表达式为8y x =; (2)一次函数6y x =-+的图象与x 轴交于点C ,()6,0C ∴,设(),0M x ,6MC x ∴=-,164102AMC S x ∆∴=-⨯=, 1x ∴=或11x =,M ∴的坐标为()1,0或()11,0.【点睛】本题主要考查一次函数和反比例函数的交点问题,注意MC 的值有两个.26、(1)4y x =;(2)证明见解析;(3)43,?3⎛⎫ ⎪⎝⎭,41633y x =-+. 【解析】试题分析:(1)把 A 点坐标代入y k x=可得k 的值,进而得到函数解析式; (2)根据A 、B 两点坐标可得AC=4-n ,BC=m-1,ON=n ,OM=1,则4AC n NO n-=,再根据反比例函数 解析式可得4m =n ,则1AC m ON =-,而11BC m MO -=,可得AC BC NO MO =,再由∠ACB=∠NOM=90°,可得 △ACB ∽△NOM ;(3)根据△ACB 与△NOM 的相似比为2可得m-1=2,进而得到m 的值,然后可得B 点坐标,再利用待定系数法求出AB 的解析式即可.试题解析:(1)∵y k x =(x >0,k 是常数)的图象经过点A (1,4), ∴k=4,∴反比例函数解析式为y=4x; (2)∵点 A (1,4),点 B (m ,n ),∴AC=4-n ,BC=m-1,ON=n ,OM=1, ∴441AC n NO n n-==-, ∵B (m ,n )在y=4x 上, ∴4m =n , ∴1AC m ON =-,而11BC m MO -=, ∴AC BC NO MO=, ∵∠ACB=∠NOM=90°,∴△ACB ∽△NOM ;(3)∵△ACB 与△NOM 的相似比为 2,∴m-1=2,m=3,∴B (3,43), 设AB 所在直线解析式为 y=kx+b , ∴43{34k b k b=+=+,解得,43 {163 kb=-=∴AB的解析式为y=-43x+163.考点:反比例函数综合题.。
北京市朝阳区2022 ~ 2023学年度第一学期期末检测九年级数学试卷(选用) 2022.12(考试时间120分钟 满分100分)一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有..一个. 1.剪纸艺术是最古老的中国民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录.以下剪纸中,为中心对称图形的是(A )(B ) (C )(D )2.下列事件中,为必然事件的是(A )任意画一个三角形,其内角和是180° (B )明天会下雪(C )掷一枚骰子,向上一面的点数是7 (D )足球运动员射门一次,未射进3.抛物线212y x -+=()的顶点坐标是 (A )(-1,2) (B )(1,-2) (C )(1,2) (D )(-1,-2) 4.若关于x 的方程x 2+6x +c =0有两个相等的实数根,则c 的值是 (A )36(B )9(C )-9(D )-365.如图,在⊙O 中,弦AB ,CD 相交于点P ,∠CAB =40°,∠ABD =30°, 则∠APD 的度数为(A )30° (B )35° (C )40° (D )70°6. 不透明袋子中装有无差别的两个小球,分别写有“问天”和“梦天”. 随机取出一个小球后,放回并摇匀,再随机取出一个小球,则两次都取到写有“问天”的小球的概率为 (A )34 (B )12 (C )13(D )14 7. 如图,正方形ABCD 的边长为4,分别以A ,B ,C ,D 为圆心,2为半径作圆,则图中阴影部分的面积为(A )164π- (B )162π- (C )4π (D )2π8. 在平面直角坐标系xOy 中,抛物线2(3)y m x k =-+与x 轴交于(0)a ,,(0)b ,两点,其中a b <.将此抛物线向上平移,与x 轴交于(0)c ,,(0)d ,两点,其中c d <,下面结论正确的是(A )当0m >时,a b c d +=+,b a d c --> (B )当0m >时,a b c d ++>,b a d c --= (C )当0m <时,a b c d ++=,b a d c --> (D )当0m <时,a b c d ++>,b a d c --< 二、填空题(共16分,每题2分)9.在平面直角坐标系中,点(5,1)关于原点对称的点的坐标是 . 10.方程x 2-4=0 的根是 .11.写出一个与抛物线2321y x x =-+开口方向相同的抛物线的表达式: .12.如图,矩形绿地的长和宽分别为30 m 和20 m ,若将该绿地的长、宽各增加x m ,扩充后的绿地的面积为y m 2,则y 与x 之间的函数关系是 .(填“正比例函数关系”、“一次函数关系”或“二次函数关系”)13. 如图,P A ,PB 是⊙O 的两条切线,切点分别为A ,B ,连接OA ,AB ,若∠OAB =35°,则∠ABP = °.14. 如图是一个可以自由转动的质地均匀的转盘,被分成12个相同的小扇形.若把某些小扇形涂上红色,使转动的转盘停止时,指针指向红色的概率是13,则涂上红色的小扇形有 个.15.某农科所在相同条件下做某种作物种子发芽率的试验,结果如下:根据试验数据,估计1 000 kg 该种作物种子能发芽的有 kg .种子个数 100 200 300 400 500 800 1100 1400 1700 2000 发芽种子个数 94187282337436 718 994 125415311797发芽种子频率0.940 0.935 0.940 0.843 0.8720.8980.9040.896 0.901 0.899第12题图第14题图第13题图16.某跨学科综合实践小组准备购买一些盒子存放实验材料.现有A ,B ,C 三种型号的盒子,盒子容量和单价如下表所示:其中A 型号盒子做促销活动:购买三个及三个以上可一次性返现金4元,现有28升材料需要存放且每个盒子要装满材料.(1)若购买A ,B ,C 三种型号的盒子的个数分别为2,4,3,则购买费用为 元; (2)若一次性购买所需盒子且使购买费用不超过58元,则购买A ,B ,C 三种型号的盒子的个数分别为 .(写出一种即可)三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,第27-28题,每题7分). 解答应写出文字说明、演算步骤或证明过程. 17.解方程:2430x x ++=.18. 已知二次函数几组x 与y 的对应值如下表:(1)求此二次函数的表达式; (2)直接写出当x 取何值时, y ≤0.19.已知1x =是关于x 的方程2223x ax a ++=的一个根,求代数式2(1)5a a a a -++的值.20.下面是小立设计的“过圆上一点作这个圆的切线”的尺规作图过程.已知:⊙O及圆上一点A.求作:直线AB,使得AB为⊙O的切线,A为切点.作法:如图,⑴连接OA并延长到点C;⑵分别以点A,C为圆心,大于12AC长为半径作弧,两弧交于点D(点D在直线OA上方);⑶以点D为圆心,DA长为半径作⊙D;⑷连接CD并延长,交⊙D于点B,作直线AB.直线AB就是所求作的直线.根据小立设计的尺规作图过程,完成下面的证明.(说明:括号里填推理的依据)证明:连接AD.∵②=AD,∴点C在⊙D上,∴CB是⊙D的直径.∴②=90°.(③)∴AB⊥④.∵OA是⊙O的半径,∴AB是⊙O的切线.(⑤)21.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,将△ABC绕点C逆时针旋转得到△DEC,使点A的对应点D落在BC边上,点B的对应点为E,求线段BD,DE的长.22. 圆管涵是公路路基排水中常用的涵洞结构类型,它不仅力学性能好,而且构造简单、施工方便. 某水平放置的圆管涵圆柱形排水管道的截面是直径为1 m的圆,如图所示,若水面宽AB=0.8 m,求水的最大深度.23.已知关于x的一元二次方程24210-+-=有两个不相等的实数根.x x m(1)求m的取值范围;(2)若m为正整数,且该方程的根都是整数,求m的值.24. 如图,⊙O的半径OC与弦AB互相垂直,垂足为D,连接AC,OB.(1)求证:2∠A+∠B=90°;(2)延长BO交⊙O于点E,过点E作⊙O的切线交BA的延长线于点F.若AC∥BE,EF=4,求∠B的度数及AC的长.25. 一位运动员在距篮圈中心(点C )水平距离5 m 处竖直跳起投篮(A 为出手点),球运行的路线是抛物线的一部分,当球运行的水平距离为3 m 时,达到最高点(点B ),此时高度为3.85 m ,然后准确落入篮圈. 已知篮圈中心(点C )到地面的距离为3.05 m ,该运动员身高1.75m ,在这次跳投中,球在头顶上方0.15 m 处出手,球出手时,他跳离地面的高度是多少?26. 在平面直角坐标系xOy 中,点(2)m ,,(4)n ,在抛物线22(0)y ax x a =->上. (1)当1a =时,求m ,n 的值;(2)点0()x t ,在此抛物线上,若存在001x ≤≤,使得m t n <<,求a 的取值范围.27. 如图,在△ABC中,∠A=α(0°<α≤90°),将BC边绕点C逆时针旋转(180°-α)得到线段CD.(1)判断∠B与∠ACD的数量关系并证明;(2)将AC边绕点C顺时针旋转α得到线段CE,连接DE与AC边交于点M(不与点A,C重合).①用等式表示线段DM,EM之间的数量关系,并证明.②若AB=a,AC=b,直接写出AM的长.(用含a,b的式子表示)28. 在平面直角坐标系xOy中,已知点P(x,y).对于点P的变换线段给出如下定义:点P关于原点O的对称点为M,将点M向上、向右各平移一个单位长度得到点N,称线段MN为点P的变换线段.已知线段MN是点P的变换线段.(1)若点P(2,1),则点M的坐标为, 点N的坐标为;(2)若点P到点(2,2)的距离为1.①PM-PN的最大值为;②当点O到直线MN的距离最大时,点P的坐标为.北京市朝阳区2022 ~ 2023学年度第一学期期末检测九年级数学参考答案及评分标准(选用) 2022.12一、选择题二、填空题 三、解答题17. 解:244 1.x x ++=()22 1.x += 2 1.x +=±11x =-,23x =-.18. 解:(1)根据题意,二次函数图象的顶点为(1,-4).设该二次函数的表达式为()21 4.y a x =-- 把(3,0)代入,得04 4.a =-∴ 1.a =∴二次函数的表达式为()21 4.y x =-- (2)1 3.x -≤≤19.解:2(1)5a a a a -++225a a a a =-++ 224.a a =+∵1x =是关于x 的方程2223x ax a ++=的一个根, ∴2123a a ++=. ∴22 2.a a +=∴原式22(2) 4.a a =+=20.解:①CD ,②∠CAB ,③直径所对的圆周角是直角,④ OA ,⑤经过半径的外端并且垂直于这条半径的直线是圆的切线.21.解:根据题意,得△ABC ≌△DEC .∴AB =DE ,AC =DC . ∵AC =3, ∴DC =3. ∵BC =4, ∴BD =1.在Rt △ABC 中,根据勾股定理,得22 5.AB AC BC =+= ∴DE =5.22.解:如图,作OC ⊥AB 于点C ,连接OA .∴∠ACO =90°,1.2AC AB = ∵AB =0.8,∴AC =0.4.在Rt △ACO 中,根据勾股定理,得220.3OC OA AC =-=. ∴0.3+0.5=0.8.∴水的最大深度为0.8 m.23. 解:(1)依题意得 ∆=16-4(2m -1)>0.∴ m <52. (2) ∵m 为正整数, ∴m =1或2.当m =1时,方程2410x x -+=的根23x =±不是整数;当m=2时,方程2430x x -+=的根1213x x ==,都是整数. 综上所述,m =2.24. (1)证明:∵OC ⊥AB ,∴∠ODB =90°. ∴∠O +∠B =90°. ∵∠O =2∠A , ∴2∠A +∠B =90°.(2)解:∵AC ∥BE ,∴∠CAB =∠B . ∵2∠CAB +∠B =90°, ∴3∠B =90°. ∴∠B =30°. ∴∠CAB =30°. ∵EF 是⊙O 的切线, ∴∠FEB =90°. ∵EF =4, ∴BF =8.在Rt △BEF 中,根据勾股定理,得224 3.BE BF EF =-= ∴2 3.OC OB == ∴ 3.OD CD == ∴2 3.AC =25.解:如图,建立平面直角坐标系xOy .则B (0,3.85),C (2,3.05). 设抛物线的表达式为y =ax 2+3.85. ∵该抛物线经过C (2,3.05), 代入得a =-0.2.∴抛物线的表达式为y =-0.2x 2+3.85. 当x =-3时,y =2.05. 2.05-1.75-0.15=0.15.∴球出手时,他跳离地面的高度是0.15 m.26. 解:(1)当1a =时,函数表达式为22.y x x =-当x =2时,0.m =当x =4时, 8.n =(2)由44168m a n a =-=-,,m n <得44168.a a --<∴1.3a > 根据题意,抛物线的对称轴为1x a=. ∵0a >, ∴10 3.a<< 当113a<<时, 当x =0时,y =0;当x =1时,y =a -2.∵001x ≤≤,y 随x 的增大而减小,∴20.a -<∵m t n <<,∴440168 2.a a a ---<且> ∴2 1.5a << 当101a<≤时,总有t m n ≤<,不符合题意. 综上,a 的取值范围是2 1.5a <<27. (1)∠B =∠ACD .证明:根据题意,∠BCD =180°-α.∴∠ACD +∠BCA =180°-α.∵∠A =α,∴∠B +∠BCA =180°-α.∴∠B =∠ACD .(2)①DM = EM .证明:延长CA至点N,使CN=BA.∵CB=CD,∠B=∠ACD,∴△ABC≌△NCD.∴AC=ND,∠N=∠BAC.∵AC=CE,∴CE=ND∵∠ACE=∠BAC=α,∴∠ACE=∠N.∵∠CME=∠NMD,∴△CME≌△NMD.∴DM=EM.②1.2 AM b a=-28. 解:(1)(-2,-1),(-1,0);(2)①2;②22 2222 +-(,),22 2222 -+(,).。