(新课标卷)河北省廊坊市2013年高考物理押题猜想 电场和磁场 2.
- 格式:doc
- 大小:1.04 MB
- 文档页数:32
2013年全国统一高考物理试卷(新课标Ⅱ)一、选择题:本题共8小题,每小题6分.在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分.1.(6分)一物块静止在粗糙的水平桌面上.从某时刻开始,物块受到一方向不变的水平拉力作用.假设物块与桌面间的最大静摩擦力等于滑动摩擦力.以a 表示物块的加速度大小,F表示水平拉力的大小.能正确描述F与a之间的关系的图象是()A. B. C. D.2.(6分)如图,在固定斜面上的一物块受到一外力F的作用,F平行于斜面向上.若要物块在斜面上保持静止,F的取值应有一定范围,已知其最大值和最小值分别为F1和F2.由此可求出()A.物块的质量B.斜面的倾角C.物块与斜面间的最大静摩擦力D.物块对斜面的正压力3.(6分)如图,在光滑水平桌面上有一边长为L、电阻为R的正方形导线框;在导线框右侧有一宽度为d(d>L)的条形匀强磁场区域,磁场的边界与导线框的一边平行,磁场方向竖直向下.导线框以某一初速度向右运动,t=0时导线框的右边恰与磁场的左边界重合,随后导线框进入并通过磁场区域.下列v﹣t图象中,可能正确描述上述过程的是()A.B.C.D.4.(6分)空间有一圆柱形匀强磁场区域,该区域的横截面的半径为R,磁场方向垂直横截面.一质量为m、电荷量为q(q>0)的粒子以速率v0沿横截面的某直径射入磁场,离开磁场时速度方向偏离入射方向60°.不计重力,该磁场的磁感应强度大小为()A.B.C.D.5.(6分)如图,在光滑绝缘水平面上,三个带电小球a、b和c分别位于边长为l的正三角形的三个顶点上;a、b带正电,电荷量均为q,c带负电.整个系统置于方向水平的匀强电场中.已知静电力常量为k.若三个小球均处于静止状态,则匀强电场场强的大小为()A.B.C. D.6.(6分)在物理学发展过程中,观测、实验、假说和逻辑推理等方法都起到了重要作用.下列叙述符合史实的是()A.奥斯特在实验中观察到电流的磁效应,该效应解释了电和磁之间存在联系B.安培根据通电螺线管的磁场和条形磁铁的磁场的相似性,提出了分子电流假说C.法拉第在实验中观察到,在通有恒定电流的静止导线附近的固定导线圈中,会出现感应电流D.楞次在分析了许多实验事实后提出,感应电流应具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化7.(6分)目前,在地球周围有许多人造地球卫星绕着它运转,其中一些卫星的轨道可近似为圆,且轨道半径逐渐变小.若卫星在轨道半径逐渐变小的过程中,只受到地球引力和稀薄气体阻力的作用,则下列判断正确的是()A.卫星的动能逐渐减小B.由于地球引力做正功,引力势能一定减小C.由于气体阻力做负功,地球引力做正功,机械能保持不变D.卫星克服气体阻力做的功小于引力势能的减小量8.(6分)公路急转弯处通常是交通事故多发地带.如图,某公路急转弯处是一圆弧,当汽车行驶的速率为v c时,汽车恰好没有向公路内外两侧滑动的趋势.则在该弯道处()A.路面外侧高内侧低B.车速只要低于v c,车辆便会向内侧滑动C.车速虽然高于v c,但只要不超出某一最高限度,车辆便不会向外侧滑动D.当路面结冰时,与未结冰时相比,v c的值变小二、解答题9.(8分)某同学利用下述装置对轻质弹簧的弹性势能进行探究:一轻质弹簧放置在光滑水平桌面上,弹簧左端固定,右端与一小球接触而不固连;弹簧处于原长时,小球恰好在桌面边缘,如图(a)所示.向左推小球,使弹簧压缩一段距离后由静止释放;小球离开桌面后落到水平地面.通过测量和计算,可求得弹簧被压缩后的弹性势能.回答下列问题:(1)本实验中可认为,弹簧被压缩后的弹性势能E p与小球抛出时的动能E k相等.已知重力加速度大小为g.为求得E k,至少需要测量下列物理量中的(填正确答案标号).A.小球的质量m B.小球抛出点到落地点的水平距离s C.桌面到地面的高度h D.弹簧的压缩量△xE.弹簧原长l0(2)用所选取的测量量和已知量表示E k,得E k=.(3)图(b)中的直线是实验测量得到的s﹣△x图线.从理论上可推出,如果h不变,m增加,s﹣△x图线的斜率会(填“增大”、“减小”或“不变”);如果m 不变,h增加,s﹣△x图线的斜率会(填“增大”、“减小”或“不变”).由图(b)中给出的直线关系和E k的表达式可知,E p与△x的次方成正比.10.(7分)某同学用量程为1mA、内阻为120Ω的表头按图(a)所示电路改装成量程分别为1V和1A的多用电表.图中R1和R2为定值电阻,S为开关.回答下列问题:(1)根据图(a)所示的电路,在图(b)所示的实物图上连线.(2)开关S闭合时,多用电表用于测量(填“电流”、“电压”或“电阻”);开关S断开时,多用电表用于测量(填“电流”、“电压”或“电阻”).(3)表笔A应为色(填“红”或“黑”).(4)定值电阻的阻值R1=Ω,R2=Ω.(结果取3位有效数字)11.(14分)如图,匀强电场中有一半径为r的光滑绝缘圆轨道,轨道平面与电场方向平行.a、b为轨道直径的两端,该直径与电场方向平行.一电荷量为q (q>0)的质点沿轨道内侧运动,经过a点和b点时对轨道压力的大小分别为N a和N b.不计重力,求电场强度的大小E、质点经过a点和b点时的动能.12.(18分)一长木板在水平地面上运动,在t=0时刻将一相对于地面静止的物块轻放到木板上,以后木板运动的速度﹣时间图象如图所示.己知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上.取重力加速度的大小g=10m/s2,求:(1)物块与木板间、木板与地面间的动摩擦因数;(2)从t=0时刻到物块与木板均停止运动时,物块相对于木板的位移的大小.三.[物理--选修3-3](15分)13.(5分)关于一定量的气体,下列说法正确的是()A.气体的体积指的是该气体的分子所能到达的空间的体积,而不是该气体所有分子体积之和B.只要能减弱气体分子热运动的剧烈程度,气体的温度就可以降低C.在完全失重的情况下,气体对容器壁的压强为零D.气体从外界吸收热量,其内能一定增加E.气体在等压膨胀过程中温度一定升高14.(10分)如图,一上端开口、下端封闭的细长玻璃管竖直放置.玻璃管的下部封有长l1=25.0cm的空气柱,中间有一段长l2=25.0cm的水银柱,上部空气柱的长度l3=40.0cm.已知大气压强为p0=75.0cmHg.现将一活塞(图中未画出)从玻璃管开口处缓慢往下推,使管下部空气柱长度变为l1′=20.0cm.假设活塞下推过程中没有漏气,求活塞下推的距离.四.[物理--选修3-4](15分)15.如图,一轻弹簧一端固定,另一端连接一物块构成弹簧振子,该物块是由a、b两个小物块粘在一起组成的.物块在光滑水平面上左右振动,振幅为A0,周期为T0.当物块向右通过平衡位置时,a、b之间的粘胶脱开;以后小物块a振动的振幅和周期分别为A和T,则A A0(填“>”、“<”或“=”),T T0(填“>”、“<”或“=”).16.如图,三棱镜的横截面为直角三角形ABC,∠A=30°,∠B=60°.一束平行于AC边的光线自AB边的P点射入三棱镜,在AC边发生反射后从BC边的M点射出,若光线在P点的入射角和在M点的折射角相等,(i)求三棱镜的折射率;(ii)在三棱镜的AC边是否有光线透出,写出分析过程.(不考虑多次反射)五.[物理-选修3-5](15分)17.关于原子核的结合能,下列说法正确的是()A.原子核的结合能等于使其完全分解成自由核子所需的最小能量B.一重原子核衰变成α粒子和另一原子核,衰变产物的结合能之和一定大于原来重核的结合能C.铯原子核(Cs)的结合能小于铅原子核(Pb)的结合能D.比结合能越大,原子核越不稳定E.自由核子组成原子核时,其质量亏损所对应的能量大于该原子核的结合能18.如图,光滑水平直轨道上有三个质量均为m的物块A、B、C.B的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A以速度v0朝B运动,压缩弹簧;当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设B和C碰撞过程时间极短.求从A开始压缩弹簧直至与弹簧分离的过程中.(1)整个系统损失的机械能;(2)弹簧被压缩到最短时的弹性势能.2013年全国统一高考物理试卷(新课标Ⅱ)参考答案与试题解析一、选择题:本题共8小题,每小题6分.在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分.1.(6分)(2013•新课标Ⅱ)一物块静止在粗糙的水平桌面上.从某时刻开始,物块受到一方向不变的水平拉力作用.假设物块与桌面间的最大静摩擦力等于滑动摩擦力.以a表示物块的加速度大小,F表示水平拉力的大小.能正确描述F 与a之间的关系的图象是()A. B. C. D.【分析】对物体受力分析,利用牛顿第二定律列式找出F﹣a的关系式,即可做出选择.【解答】解:物块受力分析如图所示:由牛顿第二定律得;F﹣μmg=ma解得:F=ma+μmgF与a成一次函数关系,故ABD错误,C正确,故选C.2.(6分)(2013•新课标Ⅱ)如图,在固定斜面上的一物块受到一外力F的作用,F平行于斜面向上.若要物块在斜面上保持静止,F的取值应有一定范围,已知其最大值和最小值分别为F1和F2.由此可求出()A.物块的质量B.斜面的倾角C.物块与斜面间的最大静摩擦力D.物块对斜面的正压力【分析】对滑块受力分析,受重力、拉力、支持力、静摩擦力,四力平衡;当静摩擦力平行斜面向下时,拉力最大;当静摩擦力平行斜面向上时,拉力最小;根据平衡条件列式求解即可.【解答】解:A、B、C、对滑块受力分析,受重力、拉力、支持力、静摩擦力,设滑块受到的最大静摩擦力为f,物体保持静止,受力平衡,合力为零;当静摩擦力平行斜面向下时,拉力最大,有:F1﹣mgsinθ﹣f=0 ①;当静摩擦力平行斜面向上时,拉力最小,有:F2+f﹣mgsinθ=0 ②;联立解得:f=,故C正确;mgsinθ=,由于质量和坡角均未知,故A错误,B错误;D、物块对斜面的正压力为:N=mgcosθ,未知,故D错误;故选C.3.(6分)(2013•新课标Ⅱ)如图,在光滑水平桌面上有一边长为L、电阻为R 的正方形导线框;在导线框右侧有一宽度为d(d>L)的条形匀强磁场区域,磁场的边界与导线框的一边平行,磁场方向竖直向下.导线框以某一初速度向右运动,t=0时导线框的右边恰与磁场的左边界重合,随后导线框进入并通过磁场区域.下列v﹣t图象中,可能正确描述上述过程的是()A.B.C.D.【分析】线圈以一定的初速度进入匀强磁场,由于切割磁感线,所以出现感应电流,从而产生安培阻力,导致线圈做加速度减小的减速运动.当完全进入后,没有磁通量变化,所以没有感应电流,不受到安培力,因此做匀速直线运动,当离开磁场时,磁通量又发生变化,速度与进入磁场相似.【解答】解:线圈以一定初速度进入磁场,则有感应电动势,E=BLv闭合电路欧姆定律,则感应电流,安培力由牛顿第二定律,F=ma则有,由于v 减小,所以a也减小,当完全进入磁场后,不受到安培力,所以做匀速直线运动,当出磁场时,速度与时间的关系与进入磁场相似.而速度与时间的斜率表示加速度的大小,因此D正确,ABC错误;故选:D4.(6分)(2013•新课标Ⅱ)空间有一圆柱形匀强磁场区域,该区域的横截面的半径为R,磁场方向垂直横截面.一质量为m、电荷量为q(q>0)的粒子以速率v0沿横截面的某直径射入磁场,离开磁场时速度方向偏离入射方向60°.不计重力,该磁场的磁感应强度大小为()A.B.C.D.【分析】带正电的粒子垂直磁场方向进入圆形匀强磁场区域,由洛伦兹力提供向心力,由几何知识求出轨迹半径r,根据牛顿第二定律求出磁场的磁感应强度.【解答】解:带正电的粒子垂直磁场方向进入圆形匀强磁场区域,由洛伦兹力提供向心力而做匀速圆周运动,画出轨迹如图,根据几何知识得知,轨迹的圆心角等于速度的偏向角60°,且轨迹的半径为r=Rcot30°=R根据牛顿第二定律得qv0B=m得,B==,故A正确,BCD错误;故选:A5.(6分)(2013•新课标Ⅱ)如图,在光滑绝缘水平面上,三个带电小球a、b 和c分别位于边长为l的正三角形的三个顶点上;a、b带正电,电荷量均为q,c带负电.整个系统置于方向水平的匀强电场中.已知静电力常量为k.若三个小球均处于静止状态,则匀强电场场强的大小为()A.B.C. D.【分析】三个小球均处于静止状态,以整个系统为研究对象根据平衡条件得出c 的电荷量,再以c电荷为研究对象受力分析求解.【解答】解:设c电荷带电量为Q,以c电荷为研究对象受力分析,根据平衡条件得a、b对c的合力与匀强电场对c的力等值反向,即:2××cos30°=E•Q所以匀强电场场强的大小为.故选B.6.(6分)(2013•新课标Ⅱ)在物理学发展过程中,观测、实验、假说和逻辑推理等方法都起到了重要作用.下列叙述符合史实的是()A.奥斯特在实验中观察到电流的磁效应,该效应解释了电和磁之间存在联系B.安培根据通电螺线管的磁场和条形磁铁的磁场的相似性,提出了分子电流假说C.法拉第在实验中观察到,在通有恒定电流的静止导线附近的固定导线圈中,会出现感应电流D.楞次在分析了许多实验事实后提出,感应电流应具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化【分析】对于物理中的重大发现、重要规律、原理,要明确其发现者和提出者,了解所涉及伟大科学家的重要成就.【解答】解:A、1820年,丹麦物理学家奥斯特在实验中观察到电流的磁效应,揭示了电和磁之间存在联系.故A正确.B、安培根据通电螺线管的磁场和条形磁铁的磁场的相似性,提出了分子电流假说,很好地解释了磁化现象.故B正确.C、法拉第在实验中观察到,在通有恒定电流的静止导线附近的固定导线圈中,不会出现感应电流.故C错误.D、楞次在分析了许多实验事实后提出楞次定律,即感应电流应具有这样的方向,感应电流的磁场总要阻碍引起感应电流的磁通量的变化.故D正确.故选ABD7.(6分)(2013•新课标Ⅱ)目前,在地球周围有许多人造地球卫星绕着它运转,其中一些卫星的轨道可近似为圆,且轨道半径逐渐变小.若卫星在轨道半径逐渐变小的过程中,只受到地球引力和稀薄气体阻力的作用,则下列判断正确的是()A.卫星的动能逐渐减小B.由于地球引力做正功,引力势能一定减小C.由于气体阻力做负功,地球引力做正功,机械能保持不变D.卫星克服气体阻力做的功小于引力势能的减小量【分析】本题关键是首先根据地球对卫星的万有引力等于卫星需要的向心力,得出卫星的动能随轨道半径的减小而增大,然后再根据动能定理和功能原理讨论即可.【解答】解:A、由=可知,v=,可见,卫星的速度大小随轨道半径的减小而增大,所以A错误;B、由于卫星高度逐渐降低,所以地球引力对卫星做正功,引力势能减小,所以B正确;C、由于气体阻力做负功,所以卫星与地球组成的系统机械能减少,故C错误;D、根据动能定理可知引力与空气阻力对卫星做的总功应为正值,而引力做的功等于引力势能的减少,即卫星克服气体阻力做的功小于引力势能的变化,所以D 正确.故选BD.8.(6分)(2013•新课标Ⅱ)公路急转弯处通常是交通事故多发地带.如图,某公路急转弯处是一圆弧,当汽车行驶的速率为v c时,汽车恰好没有向公路内外两侧滑动的趋势.则在该弯道处()A.路面外侧高内侧低B.车速只要低于v c,车辆便会向内侧滑动C.车速虽然高于v c,但只要不超出某一最高限度,车辆便不会向外侧滑动D.当路面结冰时,与未结冰时相比,v c的值变小【分析】汽车拐弯处将路面建成外高内低,汽车拐弯靠重力、支持力、摩擦力的合力提供向心力.速率为v c时,靠重力和支持力的合力提供向心力,摩擦力为零.根据牛顿第二定律进行分析.【解答】解:A、路面应建成外高内低,此时重力和支持力的合力指向内侧,可以提供圆周运动向心力.故A正确.B、车速低于v c,所需的向心力减小,此时摩擦力可以指向外侧,减小提供的力,车辆不会向内侧滑动.故B错误.C、当速度为v c时,静摩擦力为零,靠重力和支持力的合力提供向心力,速度高于v c时,摩擦力指向内侧,只有速度不超出最高限度,车辆不会侧滑.故C正确.D、当路面结冰时,与未结冰时相比,由于支持力和重力不变,则v c的值不变.故D错误.故选AC.二、解答题9.(8分)(2013•新课标Ⅱ)某同学利用下述装置对轻质弹簧的弹性势能进行探究:一轻质弹簧放置在光滑水平桌面上,弹簧左端固定,右端与一小球接触而不固连;弹簧处于原长时,小球恰好在桌面边缘,如图(a)所示.向左推小球,使弹簧压缩一段距离后由静止释放;小球离开桌面后落到水平地面.通过测量和计算,可求得弹簧被压缩后的弹性势能.回答下列问题:(1)本实验中可认为,弹簧被压缩后的弹性势能E p与小球抛出时的动能E k相等.已知重力加速度大小为g.为求得E k,至少需要测量下列物理量中的ABC (填正确答案标号).A.小球的质量m B.小球抛出点到落地点的水平距离s C.桌面到地面的高度h D.弹簧的压缩量△xE.弹簧原长l0(2)用所选取的测量量和已知量表示E k,得E k=.(3)图(b)中的直线是实验测量得到的s﹣△x图线.从理论上可推出,如果h 不变,m增加,s﹣△x图线的斜率会减小(填“增大”、“减小”或“不变”);如果m不变,h增加,s﹣△x图线的斜率会增大(填“增大”、“减小”或“不变”).由图(b)中给出的直线关系和E k的表达式可知,E p与△x的2次方成正比.【分析】本题的关键是通过测量小球的动能来间接测量弹簧的弹性势能,然后根据平抛规律以及动能表达式即可求出动能的表达式,从而得出结论.本题的难点在于需要知道弹簧弹性势能的表达式(取弹簧因此为零势面),然后再根据=即可得出结论.【解答】解(1)由平抛规律可知,由水平距离和下落高度即可求出平抛时的初速度,进而可求出物体动能,所以本实验至少需要测量小球的质量m、小球抛出点到落地点的水平距离s、桌面到地面的高度h,故选ABC.(2)由平抛规律应有h=,s=vt,又=,联立可得=(3)对于确定的弹簧压缩量△x而言,增大小球的质量会减小小球被弹簧加速时的加速度,从而减小小球平抛的初速度和水平位移,即h不变m增加,相同的△x要对应更小的s,s﹣△x图线的斜率会减小.对于确定的弹簧压缩量△x而言,小球的质量不变,小球平抛的初速度不变,h 增加时间变长,故水平位移变大,即m不变h增加,相同的△x要对应更大的s,s﹣△x图线的斜率会增大.由s的关系式和s=k△x可知,Ep与△x的二次方成正比.故答案为(1)ABC(2)(3)减小,增大,210.(7分)(2013•新课标Ⅱ)某同学用量程为1mA、内阻为120Ω的表头按图(a)所示电路改装成量程分别为1V和1A的多用电表.图中R1和R2为定值电阻,S为开关.回答下列问题:(1)根据图(a)所示的电路,在图(b)所示的实物图上连线.(2)开关S闭合时,多用电表用于测量电流(填“电流”、“电压”或“电阻”);开关S断开时,多用电表用于测量电压(填“电流”、“电压”或“电阻”).(3)表笔A应为黑色(填“红”或“黑”).(4)定值电阻的阻值R1= 1.00Ω,R2=880Ω.(结果取3位有效数字)【分析】(1)对照电路图连线即可,注意电流表的正负接线柱;(2)并联分流电阻电流量程扩大;串联分压电阻电压量程扩大;(3)红正黑负,即电流从红表笔流入,黑表笔流出;(4)根据电路串并联知识列式求解即可.【解答】解:(1)对照电路图连线,如图所示;(2)开关S断开时,串联分压电阻,电压量程扩大,是电压表;开关S闭合时,并联分流电阻,电流量程扩大,是电流表;(3)红正黑负,故表笔A连接负接线柱,为黑表笔;(4)开关S断开时,电压量程为1V,故:R v=;故R2=R V﹣R g=1000Ω﹣120Ω=880Ω;R1=;故答案为:(1)如图所示;(2)电流,电压;(3)黑;(4)1.00,880.11.(14分)(2013•新课标Ⅱ)如图,匀强电场中有一半径为r的光滑绝缘圆轨道,轨道平面与电场方向平行.a、b为轨道直径的两端,该直径与电场方向平行.一电荷量为q(q>0)的质点沿轨道内侧运动,经过a点和b点时对轨道压力的大小分别为N a和N b.不计重力,求电场强度的大小E、质点经过a点和b 点时的动能.【分析】根据牛顿第二定律,将电场力与支持力提供向心力列出方程,并由动能定理来联立求解.【解答】解:质点所受到电场力的大小为:f=qE,设质点质量为m,经过a点和b点时速度大小分别为v a和v b,由牛顿第二定律有,设质点经过a点和b点时动能分别为E ka和E kb,则有:,,根据动能定理有,E kb﹣E ka=2rf,联立解得:,E ka=,E kb=,答:电场强度的大小:、质点经过a点:,和b 点时的动能:.12.(18分)(2013•新课标Ⅱ)一长木板在水平地面上运动,在t=0时刻将一相对于地面静止的物块轻放到木板上,以后木板运动的速度﹣时间图象如图所示.己知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上.取重力加速度的大小g=10m/s2,求:(1)物块与木板间、木板与地面间的动摩擦因数;(2)从t=0时刻到物块与木板均停止运动时,物块相对于木板的位移的大小.【分析】(1)由v﹣t图象分析可知,0.5s时刻以前木板做匀减速运动,而物块做匀加速运动,t=0.5s时刻两者速度相等.根据v﹣t的斜率等于物体的加速度,由数学知识求出木板的加速度大小,由运动学公式和牛顿第二定律结合求解动摩擦因数;(2)根据牛顿第二定律判断速度相同后两个物体能否一起做匀减速运动,求出加速度,由运动学公式求出两个物体的总位移,两者之差即为相对位移.【解答】解:(1)设物块与木板间、木板与地面间的动摩擦因数分别为μ1和μ2,木板与物块的质量均为m.v﹣t的斜率等于物体的加速度,则得:在0﹣0.5s时间内,木板的加速度大小为=m/s2=8m/s2.对木板:地面给它的滑动摩擦力方向与速度相反,物块对它的滑动摩擦力也与速度相反,则由牛顿第二定律得μ1mg+μ2•2mg=ma1,①对物块:0﹣0.5s内,物块初速度为零的做匀加速直线运动,加速度大小为a2==μ1gt=0.5s时速度为v=1m/s,则v=a2t ②由①②解得μ1=0.20,μ2=0.30(2)0.5s后两个物体都做匀减速运动,假设两者相对静止,一起做匀减速运动,加速度大小为a=μ2g由于物块的最大静摩擦力μ1mg<μ2mg,所以物块与木板不能相对静止.根据牛顿第二定律可知,物块匀减速运动的加速度大小等于a2==μ1g=2m/s2.0.5s后物块对木板的滑动摩擦力方向与速度方向相同,则木板的加速度大小为a1′==4m/s2故整个过程中木板的位移大小为x1=+=1.625m物块的位移大小为x2==0.5m所以物块相对于木板的位移的大小为s=x1﹣x2=1.125m答:(1)物块与木板间、木板与地面间的动摩擦因数分别为0.20和0.30;(2)从t=0时刻到物块与木板均停止运动时,物块相对于木板的位移的大小是1.125m.三.[物理--选修3-3](15分)13.(5分)(2013•新课标Ⅱ)关于一定量的气体,下列说法正确的是()A.气体的体积指的是该气体的分子所能到达的空间的体积,而不是该气体所有分子体积之和B.只要能减弱气体分子热运动的剧烈程度,气体的温度就可以降低C.在完全失重的情况下,气体对容器壁的压强为零D.气体从外界吸收热量,其内能一定增加E.气体在等压膨胀过程中温度一定升高【分析】气体的体积指的是该气体的分子所能到达的空间的体积,温度高体分子。
2013年全国统一高考物理试卷(新课标Ⅰ)一、选择题:本题共8小题,每小题6分.在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6-8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分.1.(6分)如图是伽利略1604年做斜面实验时的一页手稿照片,照片左上角的三列数据如下表。
表中第二列是时间,第三列是物体沿斜面运动的距离,第一列是伽利略在分析实验数据时添加的。
根据表中的数据,伽利略可以得出的结论是()A.物体具有惯性B.斜面倾角一定时,加速度与质量无关C.物体运动的距离与时间的平方成正比D.物体运动的加速度与重力加速度成正比2.(6分)如图,一半径为R的圆盘上均匀分布着电荷量为Q的电荷,在垂直于圆盘且过圆心c的轴线上有a、b、d三个点,a和b、b和c、c和d间的距离均为R,在a点处有一电荷量为q(q>0)的固定点电荷.已知b点处的场强为零,则d点处场强的大小为(k为静电力常量)()A.B.C.D.3.(6分)一水平放置的平行板电容器的两极板间距为d,极板分别与电池两极相连,上极板中心有一小孔(小孔对电场的影响可忽略不计)。
小孔正上方处的P点有一带电粒子,该粒子从静止开始下落,经过小孔进入电容器,并在下极板处(未与极板接触)返回。
若将下极板向上平移,则从P点开始下落的相同粒子将()A.打到下极板上B.在下极板处返回C.在距上极板处返回 D.在距上极板处返回4.(6分)如图,在水平面(纸面)内有三根相同的均匀金属棒ab、ac和MN,其中ab、ac在a点接触,构成“V”字型导轨。
空间存在垂直于纸面的均匀磁场。
用力使MN向右匀速运动,从a位置开始计时,运动中MN始终与∠bac的平分线垂直且和导轨保持良好接触。
下列关于回路中电流i与时间t的关系图线,可能正确的是()A.B.C.D.5.(6分)如图,半径为R的圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B,方向垂直于纸面向外.一电荷量为q(q>0)、质量为m的粒子沿平行于直径ab的方向射入磁场区域,射入点与ab的距离为.已知粒子射出磁场与射入磁场时运动方向间的夹角为60°,则粒子的速率为(不计重力)()A. B. C.D.6.(6分)如图,直线a和曲线b分别是在平直公路上行驶的汽车a和b的位置﹣时间(x﹣t)图线.由图可知()A.在时刻t1,a车追上b车B.在时刻t2,a、b两车运动方向相反C.在t1到t2这段时间内,b车的速率先减少后增加D.在t1到t2这段时间内,b车的速率一直比a车的大7.(6分)2012年6月18日,神州九号飞船与天宫一号目标飞行器在离地面343km的近圆形轨道上成功进行了我国首次载人空间交会对接.对接轨道所处的空间存在极其稀薄的大气,下面说法正确的是()A.为实现对接,两者运行速度的大小都应介于第一宇宙速度和第二宇宙速度之间B.如不加干预,在运行一段时间后,天宫一号的动能可能会增加C.如不加干预,天宫一号的轨道高度将缓慢降低D.航天员在天宫一号中处于失重状态,说明航天员不受地球引力作用8.(6分)2012年11月,“歼15”舰载机在“辽宁号”航空母舰上着舰成功.图(a)为利用阻拦系统让舰载机在飞行甲板上快速停止的原理示意图.飞机着舰并成功钩住阻拦索后,飞机的动力系统立即关闭,阻拦系统通过阻拦索对飞机施加一作用力,使飞机在甲板上短距离滑行后停止,某次降落,以飞机着舰为计时零点,飞机在t=0.4s时恰好钩住阻拦索中间位置,其着舰到停止的速度﹣时间图线如图(b)所示.假如无阻拦索,飞机从着舰到停止需要的滑行距离约1000m.已知航母始终静止,重力加速度的大小为g.则()A.从着舰到停止,飞机在甲板上滑行的距离约为无阻拦索时的B.在0.4s~2.5s时间内,阻拦索的张力几乎不随时间变化C.在滑行过程中,飞行员所承受的加速度大小会超过2.5gD.在0.4s~2.5s时间内,阻拦系统对飞机做功的功率几乎不变二、解答题(共4小题,满分47分)9.(7分)图(a)为测量物块与水平桌面之间动摩擦因数的实验装置示意图.实验步骤如下:①用天平测量物块和遮光片的总质量M、重物的质量m;用游标卡尺测量遮光片的宽度d;用米尺测最两光电门之间的距离s;②调整轻滑轮,使细线水平;③让物块从光电门A的左侧由静止释放,用数字毫秒计分别测出遮光片经过光电门A和光电门B所用的时间△t A和△t B,求出加速度a;④多次重复步骤③,求a的平均值;⑤根据上述实验数据求出动摩擦因数μ.回答下列为题:(1)测量d时,某次游标卡尺(主尺的最小分度为1mm)的示数如图(b)所示,其读数为cm.(2)物块的加速度a可用d、s、△t A和△t B表示为a=.(3)动摩擦因数μ可用M、m、和重力加速度g表示为μ=(4)如果细线没有调整到水平,由此引起的误差属于(填“偶然误差”或“系统误差”).10.(8分)某学生实验小组利用图(a)所示电路,测量多用电表内电池的电动势和电阻“×1k”挡内部电路的总电阻。
专题九 磁 场1.(2013·高考新课标全国卷Ⅰ,18题)如图,半径为R 的圆是一圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B ,方向垂直于纸面向外.一电荷量为q (q >0)、质量为m 的粒子沿平行于直径ab 的方向射入磁场区域,射入点与ab 的距离为R2.已知粒子射出磁场与射入磁场时运动方向间的夹角为60°,则粒子的速率为(不计重力)( )A.qBR2m B.qBR m C.3qBR 2m D.2qBR m【解析】选 B.本题应从带电粒子在磁场中的圆周运动角度入手并结合数学知识解决问题.带电粒子从距离ab 为R2处射入磁场,且射出时与射入时速度方向的夹角为60°,粒子运动轨迹如图,ce 为射入速度所在直线,d 为射出点,射出速度反向延长交ce 于f 点,磁场区域圆心为O ,带电粒子所做圆周运动圆心为O ′,则O 、f 、O ′在一条直线上,由几何关系得带电粒子所做圆周运动的轨迹半径为R ,由F 洛=F 向得q v B =m v 2R ,解得v =qBRm,选项B 正确.2.(2013·高考广东卷,21题)如图,两个初速度大小相同的同种离子a 和b ,从O 点沿垂直磁场方向进入匀强磁场,最后打到屏P 上.不计重力.下列说法正确的有( )A .a 、b 均带正电B .a 在磁场中飞行的时间比b 的短C .a 在磁场中飞行的路程比b 的短D .a 在P 上的落点与O 点的距离比b 的近【解析】选AD.带电离子垂直进入匀强磁场,在洛伦兹力的作用下做匀速圆周运动.根据洛伦兹力提供向心力和周期公式T =2πm qB 、半径公式r =mυqB 及t θ=T2π解决问题.带电离子打到屏P 上,说明带电离子向下偏转,根据左手定则,a 、b 两离子均带正电,选项A 正确;a 、b 两离子垂直进入磁场的初速度大小相同,电荷量、质量相等,由r =mυqB知半径相同.b 在磁场中运动了半个圆周,a 的运动大于半个圆周,故a 在P 上的落点与O 的距离比b 的近,飞行的路程比b 长,选项C 错误,选项D 正确;根据t θ=T2π知,a 在磁场中飞行的时间比b 的长,选项B 错误.3.(2013·高考安徽卷,15题)图中a ,b ,c ,d 为四根与纸面垂直的长直导线,其横截面位于正方形的四个顶点上,导线中通有大小相同的电流,方向如图所示.一带正电的粒子从正方形中心O 点沿垂直于纸面的方向向外运动,它所受洛伦兹力的方向是( )A .向上B .向下C .向左D .向右【解析】选 B.综合应用磁场的叠加原理、左手定则和安培定则解题.由安培定则分别判断出四根通电导线在O 点产生的磁感应强度的方向,再由磁场的叠加原理得出O 点的合磁场方向向左,最后由左手定则可判断带电粒子所受的洛伦兹力方向向下,故选项B 正确.4.(2013·高考新课标全国卷Ⅱ,17题)空间有一圆柱形匀强磁场区域,该区域的横截面的半径为R ,磁场方向垂直于横截面.一质量为m 、电荷量为q (q >0)的粒子以速率v 0沿横截面的某直径射入磁场,离开磁场时速度方向偏离入射方向60°.不计重力,该磁场的磁感应强度大小为( )A.3m v 03qRB.m v 0qRC.3m v 0qRD.3m v 0qk【解析】选A.带电粒子在磁场中做匀速圆周运动,利用几何关系和洛伦兹力公式即可求解.如图所示,粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,即q v 0B =m v 20r,据几何关系,粒子在磁场中的轨道半径r =R tan 60°=3R ,解得B =3m v 03qR,选项A 正确.5.(2013·高考大纲全国卷,26题) 如图所示,虚线OL 与y 轴的夹角为θ=60°,在此角范围内有垂直于xOy 平面向外的匀强磁场,磁感应强度大小为 B.一质量为m 、电荷量为q (q >0)的粒子从左侧平行于x 轴射入磁场,入射点为M .粒子在磁场中运动的轨道半径为R .粒子离开磁场后的运动轨迹与x 轴交于P 点(图中未画出),且OP =R .不计重力.求M 点到O 点的距离和粒子在磁场中运动的时间.【解析】带电粒子在有界磁场中做圆周运动,作图并结合图象寻找解题的突破口.根据题意,带电粒子进入磁场后做圆周运动,运动轨迹交虚线OL 于A 点,圆心为y 轴上的C 点,AC 与y 轴的夹角为α;粒子从A 点射出后,运动轨迹交x 轴于P 点,与x 轴的夹角为β,如图所示.有q v B =m v 2R①周期为T =2πRv ②过A 点作x 、y 轴的垂线,垂足分别为B 、 D.由图中几何关系得 AD =R sin α OD =AD cot 60° BP =OD cot β OP =AD +BP α=β③ 由以上五式和题给条件得sin α+13cos α=1④ 解得α=30° ⑤ 或α=90°⑥设M 点到O 点的距离为h h =R -OC 根据几何关系OC =CD -OD =R cos α-33AD 利用以上两式和AD =R sin α得h =R -23R cos(α+30°) ⑦解得h =(1-33)R (α=30°) ⑧h =(1+33)R (α=90°) ⑨当α=30°时,粒子在磁场中运动的时间为 t =T 12=πm 6qB ⑩ 当α=90°时,粒子在磁场中运动的时间为 t =T 4=πm 2qB. 答案:(1-33)R (α=30°)或(1+33)R (α=90°) πm 6qB (α=30°)或πm2qB(α=90°)6.(2013·高考北京卷,22题)如图所示,两平行金属板间距为d ,电势差为U ,板间电场可视为匀强电场.金属板下方有一磁感应强度为B 的匀强磁场.带电量为+q 、质量为m 的粒子,由静止开始从正极板出发,经电场加速后射出,并进入磁场做匀速圆周运动.忽略重力的影响,求:(1)匀强电场场强E 的大小;(2)粒子从电场射出时速度v 的大小;(3)粒子在磁场中做匀速圆周运动的半径R .【解析】本题中带电粒子在电场中由静止开始做匀加速直线运动,可由动能定理或牛顿第二定律求解,选用动能定理进行解题更简捷.进入磁场后做匀速圆周运动,明确带电粒子的运动过程及相关公式是解题的关键.(1)电场强度E =Ud.(2)根据动能定理,有qU =12m v 2-0得v =2qUm.(3)粒子在磁场中做匀速圆周运动时,洛伦兹力提供向心力,有q v B =m v 2R得R =1B 2mU q .答案:(1)U d (2) 2qU m (3) 1B 2mUq7.(2013·高考天津卷,11题)一圆筒的横截面如图所示,其圆心为O .筒内有垂直于纸面向里的匀强磁场,磁感应强度为B.圆筒下面有相距为d 的平行金属板M 、N ,其中M 板带正电荷,N 板带等量负电荷.质量为m 、电荷量为q 的带正电粒子自M 板边缘的P 处由静止释放,经N 板的小孔S 以速度v 沿半径SO 方向射入磁场中.粒子与圆筒发生两次碰撞后仍从S 孔射出,设粒子与圆筒碰撞过程中没有动能损失,且电荷量保持不变,在不计重力的情况下,求:(1)M 、N 间电场强度E 的大小;(2)圆筒的半径R ;(3)保持M 、N 间电场强度E 不变,仅将M 板向上平移23d ,粒子仍从M 板边缘的P 处由静止释放,粒子自进入圆筒至从S 孔射出期间,与圆筒的碰撞次数n .【解析】(1)设两板间的电压为U ,由动能定理得qU =12m v 2 ①由匀强电场中电势差与电场强度的关系得 U =Ed ② 联立上式可得E =m v 22qd. ③(2)粒子进入磁场后做匀速圆周运动,运用几何关系作出圆心为O ′,圆半径为r .设第一次碰撞点为A ,由于粒子与圆筒发生两次碰撞又从S 孔射出,因此,SA 弧所对的圆心角∠AO ′S等于π3.由几何关系得r =R tan π3④粒子运动过程中洛伦兹力提供向心力,由牛顿第二定律,得q v B =m v 2r⑤联立④⑤式得R =3m v 3qB. ⑥(3)保持M 、N 间电场强度E 不变,M 板向上平移23d 后,设板间电压为U ′,则U ′=Ed 3=U 3⑦设粒子进入S 孔时的速度为v ′,由①式看出 U ′U =v ′2v2 综合⑦式可得v ′=33v ⑧设粒子做圆周运动的半径为r ′,则r ′=3m v3qB⑨设粒子从S 到第一次与圆筒碰撞期间的轨迹所对圆心角为θ,比较⑥⑨两式得到r ′=R ,可见θ=π2○10 粒子需经过四个这样的圆弧才能从S 孔射出,故 n =3. ⑪答案:(1)m v 22qd (2)3m v3qB(3)38.(2013·高考重庆卷,7题)小明在研究性学习中设计了一种可测量磁感应强度的实验,其装置如图所示.在该实验中,磁铁固定在水平放置的电子测力计上,此时电子测力计的读数为G 1,磁铁两极之间的磁场可视为水平匀强磁场,其余区域磁场不计.直铜条AB 的两端通过导线与一电阻连接成闭合回路,总阻值为R .若让铜条水平且垂直于磁场,以恒定的速率v 在磁场中竖直向下运动,这时电子测力计的读数为G 2,铜条在磁场中的长度L .(1)判断铜条所受安培力的方向,G 1和G 2哪个大?(2)求铜条匀速运动时所受安培力的大小和磁感应强度的大小.【解析】(1)铜条匀速向下运动,由楞次定律可知,其所受安培力竖直向上.根据牛顿第三定律,铜条对磁铁的作用力竖直向下,故G 2>G 1.(2)由题意知:G 1=G 2-F ,F =G 2-G 1,由安培力公式 F =BIL , I =E R, E =BL v ,联立以上各式,解得B =1L(G 2-G 1)R v . 答案:(1)安培力的方向竖直向上,G 2>G 1(2)安培力的大小F =G 2-G 1 磁感应强度的大小B =1L (G 2-G 1)R v 9.(2013·高考福建卷,22题)如图甲,空间存在一范围足够大的垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B.让质量为m ,电荷量为q (q >0)的粒子从坐标原点O 沿xOy 平面以不同的初速度大小和方向入射到该磁场中.不计重力和粒子间的影响.(1)若粒子以初速度v 1沿y 轴正向入射,恰好能经过x 轴上的A (a,0)点,求v 1的大小. (2)已知一粒子的初速度大小为v (v >v 1),为使该粒子能经过A (a,0)点,其入射角θ(粒子初速度与x 轴正向的夹角)有几个?并求出对应的sin θ值.(3)如图乙,若在此空间再加入沿y 轴正向、大小为E 的匀强电场,一粒子从O 点以初速度v 0沿y 轴正向发射。
2013年普通高等学校招生全国统一考试(新课标Ⅰ卷)理科综合能力测试第Ⅰ卷二、选择题:本题共8小题,每小题6分.在每小题给出的四个选项中,第14-18题只有一项符合题目要求,第19-21题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错的得0分。
14. 右图是伽利略1604年做斜面实验时的一页手稿照片,照片左上角的三列数据如下表。
表中第二列是时间,第三列是物体沿斜面运动的距离,第一列是伽利略在分析实验数据时添加的。
根据表中的数据.伽利略可以得出的结论是A.物体具有惯性B.斜面倾角一定时,加速度与质量无关C.物体运动的距离与时间的平方成正比D.物体运动的加速度与重力加速度成正比15.如图,一半径为R的圆盘上均匀分布着电荷量为Q的电荷,在垂直于圆盘且过圆心c的轴线上有a、b、d三个点,a和b、b和c、c和d间的距离均为R,在a点处有一电荷量为q (q>O)的固定点电荷.已知b点处的场强为零,则d点处场强的大小为(k为静电力常量)A.kB. kC. kD.k16.一水平放置的平行板电容器的两极板间距为d,极板分别与电池两极相连,上极板中心有一小孔(小孔对电场的影响可忽略不计)。
小孔正上方处的P点有一带电粒子,该粒子从静止开始下落,经过小孔进入电容器,并在下极板处(未写极板接触)返回。
若将下极板向上平移,则从P点开始下落的相同粒子将A.打到下极板上B.在下极板处返回C.在距上极板处返回D.在距上极板d处返回17.如图.在水平面(纸面)内有三报相同的均匀金属棒ab、ac和MN,其中ab、ac在a点接触,构成“V”字型导轨。
空间存在垂直于纸面的均匀磁场。
用力使MN向右匀速运动,从图示位置开始计时,运动中MN始终与∠bac的平分线垂直且和导轨保持良好接触。
下列关于回路中电流i与时间t的关系图线.可能正确的是18.如图,半径为R的圆死一圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B,方向垂直于纸面向外,一电荷量为q(q>0)。
2013年全国统一高考物理试卷(新课标Ⅰ)一、选择题:本题共8小题,每小题6分.在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6-8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分.1.(6分)如图是伽利略1604年做斜面实验时的一页手稿照片,照片左上角的三列数据如下表.表中第二列是时间,第三列是物体沿斜面运动的距离,第一列是伽利略在分析实验数据时添加的.根据表中的数据,伽利略可以得出的结论是()A.物体具有惯性B.斜面倾角一定时,加速度与质量无关C.物体运动的距离与时间的平方成正比D.物体运动的加速度与重力加速度成正比2.(6分)如图,一半径为R的圆盘上均匀分布着电荷量为Q的电荷,在垂直于圆盘且过圆心c的轴线上有a、b、d三个点,a和b、b和c、c和d间的距离均为R,在a点处有一电荷量为q(q>0)的固定点电荷.已知b点处的场强为零,则d点处场强的大小为(k为静电力常量)()A.B.C.D.3.(6分)一水平放置的平行板电容器的两极板间距为d,极板分别与电池两极相连,上极板中心有一小孔(小孔对电场的影响可忽略不计).小孔正上方处的P点有一带电粒子,该粒子从静止开始下落,经过小孔进入电容器,并在下极板处(未与极板接触)返回.若将下极板向上平移,则从P点开始下落的相同粒子将()A.打到下极板上B.在下极板处返回C.在距上极板处返回 D.在距上极板处返回4.(6分)如图,在水平面(纸面)内有三根相同的均匀金属棒ab、ac和MN,其中ab、ac在a点接触,构成“V”字型导轨.空间存在垂直于纸面的均匀磁场.用力使MN向右匀速运动,从a位置开始计时,运动中MN始终与∠bac的平分线垂直且和导轨保持良好接触.下列关于回路中电流i与时间t的关系图线,可能正确的是()A.B.C.D.5.(6分)如图,半径为R的圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B,方向垂直于纸面向外.一电荷量为q(q>0)、质量为m的粒子沿平行于直径ab的方向射入磁场区域,射入点与ab的距离为.已知粒子射出磁场与射入磁场时运动方向间的夹角为60°,则粒子的速率为(不计重力)()A. B. C.D.6.(6分)如图,直线a和曲线b分别是在平直公路上行驶的汽车a和b的位置﹣时间(x﹣t)图线.由图可知()A.在时刻t1,a车追上b车B.在时刻t2,a、b两车运动方向相反C.在t1到t2这段时间内,b车的速率先减少后增加D.在t1到t2这段时间内,b车的速率一直比a车的大7.(6分)2012年6月18日,神州九号飞船与天宫一号目标飞行器在离地面343km 的近圆形轨道上成功进行了我国首次载人空间交会对接.对接轨道所处的空间存在极其稀薄的大气,下面说法正确的是()A.为实现对接,两者运行速度的大小都应介于第一宇宙速度和第二宇宙速度之间B.如不加干预,在运行一段时间后,天宫一号的动能可能会增加C.如不加干预,天宫一号的轨道高度将缓慢降低D.航天员在天宫一号中处于失重状态,说明航天员不受地球引力作用8.(6分)2012年11月,“歼15”舰载机在“辽宁号”航空母舰上着舰成功.图(a)为利用阻拦系统让舰载机在飞行甲板上快速停止的原理示意图.飞机着舰并成功钩住阻拦索后,飞机的动力系统立即关闭,阻拦系统通过阻拦索对飞机施加一作用力,使飞机在甲板上短距离滑行后停止,某次降落,以飞机着舰为计时零点,飞机在t=0.4s时恰好钩住阻拦索中间位置,其着舰到停止的速度﹣时间图线如图(b)所示.假如无阻拦索,飞机从着舰到停止需要的滑行距离约1000m.已知航母始终静止,重力加速度的大小为g.则()A.从着舰到停止,飞机在甲板上滑行的距离约为无阻拦索时的B.在0.4s~2.5s时间内,阻拦索的张力几乎不随时间变化C.在滑行过程中,飞行员所承受的加速度大小会超过2.5gD.在0.4s~2.5s时间内,阻拦系统对飞机做功的功率几乎不变二、解答题(共4小题,满分47分)9.(7分)图(a)为测量物块与水平桌面之间动摩擦因数的实验装置示意图.实验步骤如下:①用天平测量物块和遮光片的总质量M、重物的质量m;用游标卡尺测量遮光片的宽度d;用米尺测最两光电门之间的距离s;②调整轻滑轮,使细线水平;③让物块从光电门A的左侧由静止释放,用数字毫秒计分别测出遮光片经过光电门A和光电门B所用的时间△t A和△t B,求出加速度a;④多次重复步骤③,求a的平均值;⑤根据上述实验数据求出动摩擦因数μ.回答下列为题:(1)测量d时,某次游标卡尺(主尺的最小分度为1mm)的示数如图(b)所示,其读数为cm.(2)物块的加速度a可用d、s、△t A和△t B表示为a=.(3)动摩擦因数μ可用M、m、和重力加速度g表示为μ=(4)如果细线没有调整到水平,由此引起的误差属于(填“偶然误差”或“系统误差”).10.(8分)某学生实验小组利用图(a)所示电路,测量多用电表内电池的电动势和电阻“×1k”挡内部电路的总电阻.使用的器材有:多用电表;电压表:量程5V,内阻十几千欧;滑动变阻器:最大阻值5kΩ导线若干.回答下列问题:(1)将多用电表挡位调到电阻“×1k”挡,再将红表笔和黑表笔,调零点.(2)将图(a)中多用电表的红表笔和(填“1”或“2”)端相连,黑表笔连接另一端.(3)将滑动变阻器的滑片调到适当位置,使多用电表的示数如图(b)所示,这时电压表的示数如图(c)所示.多用电表和电压表的读数分别为kΩ和V.(4)调节滑动变阻器的滑片,使其接入电路的阻值为零.此时多用电表和电压表的读数分别为12.0kΩ和4.00V.从测量数据可知,电压表的内阻为kΩ.(5)多用电表电阻挡内部电路可等效为由一个无内阻的电池、一个理想电流表和一个电阻串联而成的电路,如图(d)所示.根据前面的实验数据计算可得,此多用电表内电池的电动势为V,电阻“×1k”挡内部电路的总电阻为kΩ.11.(13分)水平桌面上有两个玩具车A和B,两者用一轻质细橡皮筋相连,在橡皮筋上有一红色标记R.在初始时橡皮筋处于拉直状态,A、B和R分别位于直角坐标系中的(0,2l)、(0,﹣l)和(0,0)点.已知A从静止开始沿y轴正向做加速度大小为a的匀加速运动;B平行于x轴朝x轴正向匀速运动.在两车此后运动的过程中,标记R在某时刻通过点(l,l).假定橡皮筋的伸长是均匀的,求B运动速度的大小.12.(19分)如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L.导轨上端接有一平行板电容器,电容为C.导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面.在导轨上放置一质量为m的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触.已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g.忽略所有电阻.让金属棒从导轨上端由静止开始下滑,求:(1)电容器极板上积累的电荷量与金属棒速度大小的关系;(2)金属棒的速度大小随时间变化的关系.三.[物理--选修3-3](15分)13.(6分)两个相距较远的分子仅在分子力作用下由静止开始运动,直至不再靠近.在此过程中,下列说法正确的是()A.分子力先增大,后一直减小B.分子力先做正功,后做负功C.分子动能先增大,后减小D.分子势能先增大,后减小E.分子势能和动能之和不变14.(9分)如图,两个侧壁绝热、顶部和底部都导热的相同气缸直立放置,气缸底部和顶部均有细管连通,顶部的细管带有阀门K.两气缸的容积均为V0,气缸中各有一个绝热活塞(质量不同,厚度可忽略).开始时K关闭,两活塞下方和右活塞上方充有气体(可视为理想气体),压强分别为p0和;左活塞在气缸正中间,其上方为真空;右活塞上方气体体积为.现使气缸底与一恒温热源接触,平衡后左活塞升至气缸顶部,且与顶部刚好没有接触;然后打开K,经过一段时间,重新达到平衡.已知外界温度为T0,不计活塞与气缸壁间的摩擦.求:(i)恒温热源的温度T;(ii)重新达到平衡后左气缸中活塞上方气体的体积V x.四.[物理--选修3-4](15分)15.如图,a、b、c、d是均匀媒质中x轴上的四个质点,相邻两点的间距依次为2m、4m和6m.一列简谐横波以2m/s的波速沿x轴正向传播,在t=0时刻到达质点a处,质点a由平衡位置开始竖直向下运动,t=3s时a第一次到达最高点.下列说法正确的是()A.在t=6s时刻波恰好传到质点d处B.在t=5s时刻质点c恰好到达最高点C.质点b开始振动后,其振动周期为4sD.在4s<t<6s的时间间隔内质点c向上运动E.当质点d向下运动时,质点b一定向上运动16.图示为一光导纤维(可简化为一长玻璃丝)的示意图,玻璃丝长为L,折射率为n,AB代表端面.已知光在真空中的传播速度为c.(i)为使光线能从玻璃丝的AB端面传播到另一端面,求光线在端面AB上的入射角应满足的条件;(ii)求光线从玻璃丝的AB端面传播到另一端面所需的最长时间.五.[物理--选修3-5](15分)17.一质子束入射到能止靶核AI上,产生如下核反应:P+AI→X+n式中p 代表质子,n代表中子,X代表核反应产生的新核.由反应式可知,新核X的质子数为,中子数为.18.在粗糙的水平桌面上有两个静止的木块A和B,两者相距为d.现给A一初速度,使A与B发生弹性正碰,碰撞时间极短.当两木块都停止运动后,相距仍然为d.已知两木块与桌面之间的动摩擦因数均为μ,B的质量为A的2倍,重力加速度大小为g.求A的初速度的大小.2013年全国统一高考物理试卷(新课标Ⅰ)参考答案与试题解析一、选择题:本题共8小题,每小题6分.在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6-8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分.1.(6分)(2013•新课标Ⅰ)如图是伽利略1604年做斜面实验时的一页手稿照片,照片左上角的三列数据如下表.表中第二列是时间,第三列是物体沿斜面运动的距离,第一列是伽利略在分析实验数据时添加的.根据表中的数据,伽利略可以得出的结论是()A.物体具有惯性B.斜面倾角一定时,加速度与质量无关C.物体运动的距离与时间的平方成正比D.物体运动的加速度与重力加速度成正比【分析】通过表格中的数据,通过时间的平方与运动距离的关系,得出位移和时间的规律.【解答】解:从表格中的数据可知,时间变为原来的2倍,下滑的位移大约变为原来的4倍,时间变为原来的3倍,位移变为原来的9倍,可知物体运动的距离与时间的平方成正比.故C正确,A、B、D错误.故选C.2.(6分)(2013•新课标Ⅰ)如图,一半径为R的圆盘上均匀分布着电荷量为Q 的电荷,在垂直于圆盘且过圆心c的轴线上有a、b、d三个点,a和b、b和c、c和d间的距离均为R,在a点处有一电荷量为q(q>0)的固定点电荷.已知b 点处的场强为零,则d点处场强的大小为(k为静电力常量)()A.B.C.D.【分析】由题意可知,半径为R均匀分布着电荷量为Q的圆盘上电荷,与在a 点处有一电荷量为q(q>0)的固定点电荷,在b点处的场强为零,说明各自电场强度大小相等,方向相反.那么在d点处场强的大小即为两者之和.因此根据点电荷的电场强度为即可求解.【解答】解:电荷量为q的点电荷在b处产生电场强度为,而半径为R均匀分布着电荷量为Q的圆盘上电荷,与在a点处有一电荷量为q (q>0)的固定点电荷,在b点处的场强为零,则圆盘在此处产生电场强度也为.那么圆盘在此d产生电场强度则仍为.而电荷量为q的点电荷在d处产生电场强度为,由于都在d 处产生电场强度方向相同,即为两者大小相加.所以两者这d处产生电场强度为,故B正确,ACD错误.故选:B.3.(6分)(2013•新课标Ⅰ)一水平放置的平行板电容器的两极板间距为d,极板分别与电池两极相连,上极板中心有一小孔(小孔对电场的影响可忽略不计).小孔正上方处的P点有一带电粒子,该粒子从静止开始下落,经过小孔进入电容器,并在下极板处(未与极板接触)返回.若将下极板向上平移,则从P点开始下落的相同粒子将()A.打到下极板上B.在下极板处返回C.在距上极板处返回 D.在距上极板处返回【分析】下极板未移动时,带电粒子到达下极板处返回,知道重力做功与电场力做功之和为零,向上移动下极板,若运动到下极板,重力做功小于克服电场力做功,可知不可能运动到下极板返回,根据动能定理,结合电势差大小与d的关系,求出粒子返回时的位置.【解答】解:对下极板未移动前,从静止释放到速度为零的过程运用动能定理得,.将下极板向上平移,设运动到距离上级板x处返回.根据动能定理得,联立两式解得x=.故D正确,A、B、C错误.故选D.4.(6分)(2013•新课标Ⅰ)如图,在水平面(纸面)内有三根相同的均匀金属棒ab、ac和MN,其中ab、ac在a点接触,构成“V”字型导轨.空间存在垂直于纸面的均匀磁场.用力使MN向右匀速运动,从a位置开始计时,运动中MN始终与∠bac的平分线垂直且和导轨保持良好接触.下列关于回路中电流i与时间t的关系图线,可能正确的是()A.B.C.D.【分析】MN切割磁感线运动产生感应电动势E=BLv,L越来越大,回路总电阻也增大,根据电阻定律可求,然后利用闭合电路欧姆定律即可求解.【解答】解:设∠bac=2θ,单位长度电阻为R0则MN切割产生电动势E=BLv=Bv•2vt×tanθ=2Bv2ttanθ回路总电阻为由闭合电路欧姆定律得:I===i与时间无关,是一定值,故A正确,BCD错误,故选:A.5.(6分)(2013•新课标Ⅰ)如图,半径为R的圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B,方向垂直于纸面向外.一电荷量为q(q>0)、质量为m的粒子沿平行于直径ab的方向射入磁场区域,射入点与ab的距离为.已知粒子射出磁场与射入磁场时运动方向间的夹角为60°,则粒子的速率为(不计重力)()A. B. C.D.【分析】由题意利用几何关系可得出粒子的转动半径,由洛仑兹力充当向心力可得出粒子速度的大小;【解答】解:由题,射入点与ab的距离为.则射入点与圆心的连线和竖直方向之间的夹角是30°,粒子的偏转角是60°,即它的轨迹圆弧对应的圆心角是60°,所以入射点、出射点和圆心构成等边三角形,所以,它的轨迹的半径与圆形磁场的半径相等,即r=R.轨迹如图:洛伦兹力提供向心力:,变形得:.故正确的答案是B.故选:B.6.(6分)(2013•新课标Ⅰ)如图,直线a和曲线b分别是在平直公路上行驶的汽车a和b的位置﹣时间(x﹣t)图线.由图可知()A.在时刻t1,a车追上b车B.在时刻t2,a、b两车运动方向相反C.在t1到t2这段时间内,b车的速率先减少后增加D.在t1到t2这段时间内,b车的速率一直比a车的大【分析】位移时间关系图线反映位移随时间的变化规律,图线的斜率表示速度的大小.【解答】解:A、在时刻t1,a、b两车的位置坐标相同,开始a的位移大于b的位移,知b追上a.故A错误.B、在时刻t2,a的位移增大,b的位移减小,知两车运动方向相反.故B正确.C、图线切线的斜率表示速度,在t1到t2这段时间内,b车图线斜率先减小后增大,则b车的速率先减小后增加.故C正确.D、在t1到t2这段时间内,b图线的斜率不是一直大于a图线的斜率,所以b车的速率不是一直比a车大.故D错误.故选BC.7.(6分)(2013•新课标Ⅰ)2012年6月18日,神州九号飞船与天宫一号目标飞行器在离地面343km的近圆形轨道上成功进行了我国首次载人空间交会对接.对接轨道所处的空间存在极其稀薄的大气,下面说法正确的是()A.为实现对接,两者运行速度的大小都应介于第一宇宙速度和第二宇宙速度之间B.如不加干预,在运行一段时间后,天宫一号的动能可能会增加C.如不加干预,天宫一号的轨道高度将缓慢降低D.航天员在天宫一号中处于失重状态,说明航天员不受地球引力作用【分析】万有引力提供圆周运动的向心力,所以第一宇宙速度是围绕地球圆周运动的最大速度,卫星由于摩擦阻力作用,轨道高度将降低,运行速度增大,失重不是失去重力而是对悬绳的拉力或支持物的压力减小的现象.根据相应知识点展开分析即可.【解答】解:A、又第一宇宙速度为最大环绕速度,天宫一号的线速度一定小于第一宇宙速度.故A错误;B、根据万有引力提供向心力有:⇒v=得轨道高度降低,卫星的线速度增大,故动能将增大,所以B正确;C、卫星本来满足万有引力提供向心力即,由于摩擦阻力作用卫星的线速度减小,提供的引力大于卫星所需要的向心力故卫星将做近心运动,即轨道半径将减小,故C正确;D、失重状态说明航天员对悬绳或支持物体的压力为0,而地球对他的万有引力提供他随天宫一号围绕地球做圆周运动的向心力,所以D错误故选BC.8.(6分)(2013•新课标Ⅰ)2012年11月,“歼15”舰载机在“辽宁号”航空母舰上着舰成功.图(a)为利用阻拦系统让舰载机在飞行甲板上快速停止的原理示意图.飞机着舰并成功钩住阻拦索后,飞机的动力系统立即关闭,阻拦系统通过阻拦索对飞机施加一作用力,使飞机在甲板上短距离滑行后停止,某次降落,以飞机着舰为计时零点,飞机在t=0.4s时恰好钩住阻拦索中间位置,其着舰到停止的速度﹣时间图线如图(b)所示.假如无阻拦索,飞机从着舰到停止需要的滑行距离约1000m.已知航母始终静止,重力加速度的大小为g.则()A.从着舰到停止,飞机在甲板上滑行的距离约为无阻拦索时的B.在0.4s~2.5s时间内,阻拦索的张力几乎不随时间变化C.在滑行过程中,飞行员所承受的加速度大小会超过2.5gD.在0.4s~2.5s时间内,阻拦系统对飞机做功的功率几乎不变【分析】通过速度与时间的图象,由图象的斜率表示加速度大小,再由牛顿第二定律确定阻拦索的拉力,同时由图象与时间所构成的面积为位移的大小.由功率P=FV可确定大小如何变化.【解答】解:A、由图象可知,从着舰到停止,飞机在甲板上滑行的距离即为图象与时间所构成的面积,即约为,而无阻拦索的位移为1000m,因此飞机在甲板上滑行的距离约为无阻拦索时的,故A正确;B、在0.4s~2.5s时间内,速度与时间的图象的斜率不变,则加速度也不变,所以合力也不变,因此阻拦索的张力的合力几乎不随时间变化,但阻拦索的张力是变化的,故B错误;C、在滑行过程中,飞行员所承受的加速度大小为>2.5g,故C正确;D、在0.4s~2.5s时间内,阻拦系统对飞机做功的功率P=FV,虽然F不变,但V 是渐渐变小,所以其变化的,故D错误;故选:AC二、解答题(共4小题,满分47分)9.(7分)(2013•新课标Ⅰ)图(a)为测量物块与水平桌面之间动摩擦因数的实验装置示意图.实验步骤如下:①用天平测量物块和遮光片的总质量M、重物的质量m;用游标卡尺测量遮光片的宽度d;用米尺测最两光电门之间的距离s;②调整轻滑轮,使细线水平;③让物块从光电门A的左侧由静止释放,用数字毫秒计分别测出遮光片经过光电门A和光电门B所用的时间△t A和△t B,求出加速度a;④多次重复步骤③,求a的平均值;⑤根据上述实验数据求出动摩擦因数μ.回答下列为题:(1)测量d时,某次游标卡尺(主尺的最小分度为1mm)的示数如图(b)所示,其读数为0.960cm.(2)物块的加速度a可用d、s、△t A和△t B表示为a=.(3)动摩擦因数μ可用M、m、和重力加速度g表示为μ=(4)如果细线没有调整到水平,由此引起的误差属于系统误差(填“偶然误差”或“系统误差”).【分析】(1)游标卡尺主尺与游标尺的示数之和是游标卡尺的示数,(2)由速度公式求出物块经过A、B两点时的速度,然后由匀变速运动的速度位移公式求出物块的加速度;(3)由牛顿第二定律求出动摩擦因数.(4)由于实验设计造成的误差是系统误差,由于实验操作、读数等造成的误差属于偶然误差.【解答】解:(1)由图(b)所示游标卡尺可知,主尺示数为0.9cm,游标尺示数为12×0.05mm=0.60mm=0.060cm,则游标卡尺示数为0.9cm+0.060cm=0.960cm.(2)物块经过A点时的速度v A=,物块经过B点时的速度v B=,物块做匀变速直线运动,由速度位移公式得:v B2﹣v A2=2as,加速度a=;(3)以M、m组成的系统为研究对象,由牛顿第二定律得:mg﹣μMg=(M+m),解得μ=;(4)如果细线没有调整到水平,由此引起的误差属于系统误差.故答案为:(1)0.960;(2);(3);(4)系统误差.10.(8分)(2013•新课标Ⅰ)某学生实验小组利用图(a)所示电路,测量多用电表内电池的电动势和电阻“×1k”挡内部电路的总电阻.使用的器材有:多用电表;电压表:量程5V,内阻十几千欧;滑动变阻器:最大阻值5kΩ导线若干.回答下列问题:(1)将多用电表挡位调到电阻“×1k”挡,再将红表笔和黑表笔短接,调零点.(2)将图(a)中多用电表的红表笔和1(填“1”或“2”)端相连,黑表笔连接另一端.(3)将滑动变阻器的滑片调到适当位置,使多用电表的示数如图(b)所示,这时电压表的示数如图(c)所示.多用电表和电压表的读数分别为15.0kΩ和3.60V.(4)调节滑动变阻器的滑片,使其接入电路的阻值为零.此时多用电表和电压表的读数分别为12.0kΩ和4.00V.从测量数据可知,电压表的内阻为12.0kΩ.(5)多用电表电阻挡内部电路可等效为由一个无内阻的电池、一个理想电流表和一个电阻串联而成的电路,如图(d)所示.根据前面的实验数据计算可得,此多用电表内电池的电动势为9.0V,电阻“×1k”挡内部电路的总电阻为15.0kΩ.【分析】(1)欧姆表使用前一定要欧姆调零;(2)红正黑负,电流从红表笔流入电表,从黑表笔流出电表;(3)欧姆表读数等于倍率乘以表盘读数,伏特表读数要估读;(4)欧姆表测量的是外电路的总电阻,由于滑动变阻器被短路,故欧姆表读数即为电压表阻值;(5)由于半偏电流是满偏电流的一半,故欧姆表的中值电阻等于内电阻;根据闭合电路欧姆定律求解电动势.【解答】解:(1)欧姆表使用前一定要欧姆调零,即红黑表笔短接后,调节调零旋钮,使电流表满偏;(2)多用电表的红表笔对应欧姆表内电源的负极,所以红表笔应接电压表的负接连柱,故红表笔接触1;(3)欧姆表读数=倍率×表盘读数=1k×15.0Ω=15.0kΩ;电压表读数为3.60V;(4)由于滑动变阻器被短路,故欧姆表读数即为电压表阻值,为12.0kΩ;(5)调节滑动变阻器的滑片,使其接入电路的阻值为零,此时多用电表和电压表的读数分别为12.0kΩ和4.00V;多用电表的中值电阻等于内电阻,故R=15.0kΩ;由闭合电路欧姆定律I=和欧姆定律U=IR V可知,E=,代入数据有:E=(12kΩ+15kΩ)=9.0V,联立解得E=9.00V故答案为:(1)短接;(2)1;(3)15.0,3.60;(4)12.0;(5)9.0,15.0.11.(13分)(2013•新课标Ⅰ)水平桌面上有两个玩具车A和B,两者用一轻质细橡皮筋相连,在橡皮筋上有一红色标记R.在初始时橡皮筋处于拉直状态,A、B和R分别位于直角坐标系中的(0,2l)、(0,﹣l)和(0,0)点.已知A从静止开始沿y轴正向做加速度大小为a的匀加速运动;B平行于x轴朝x轴正向匀速运动.在两车此后运动的过程中,标记R在某时刻通过点(l,l).假定橡皮筋的伸长是均匀的,求B运动速度的大小.【分析】根据运动学公式求出t时刻A的纵坐标,B的横坐标,抓住橡皮筋的伸长是均匀的,在以后任一时刻R到A和B的距离之比都为2:1,根据相似三角形,结合运动学公式求出B的运动速度.【解答】解:设B车的速度大小为v.如图,标记R的时刻t通过点K(l,l),此时A、B的位置分别为H、G.由运动学公式,H的纵坐标y A,G的横坐标x B分别为。
2013年高考预测系列试题【物理】高考预测试题(1)·选择题不定项选择题,每题6分。
1.(生活中的圆周运动)2013年元旦前夕,备受全球注目的京广高铁全线贯通,全程2298公里,列车时速达到350公里以上.为解决火车高速转弯时不使外轨受损这一难题,你认为以下措施可行的是( )A .减小内外轨的高度差B .增加内外轨的高度差C .减小弯道半径D .增大弯道半径2.(万有引力与航天)假设地球的半径为R ,万有引力常量为G ,地球同步卫星距离地面的高度为5.6R ,则运行周期为地球自转周期81的未知卫星距离地面的高度约为( ) A .2.3R B .1.65RC .0.65RD .3.3R3.(受力分析,共点力平衡)如图所示,一轻杆A 端用光滑铰链固定在竖直墙上,可绕A 无摩擦地自由转动,B 端用一水平轻绳栓在墙C 处,并吊一重球P ,现用一水平向右的力F 缓缓拉起重球P 的过程中,轻杆AB 所受压力F N 及水平轻绳CB 所受拉力T 的变化情况是( )A .F N 变大,T 变大B .F N 变大,T 变小C .F N 不变,T 不变D .F N 不变,T 变大4.(考查受力分析、牛顿定律、功能关系)如图所示为一与水平方向成夹角α的传送带.现将一质量为m 的工件放在传送带上,此工件恰好随皮带以相同加速度a (a >gsinα)向下匀加速运动,则在工件运动过程中下列说法正确的是( )A .工件受到皮带的摩擦力沿斜面向上B .摩擦力对工件一定做正功C .皮带与工件的动摩擦因数一定大于tan αD .工件所受摩擦力的大小可能等于mg sin α5.(磁场,磁感应强度叠加)假设同一直导线在周围空间的某点产生的磁场与通过的电流成正比.某物理兴趣小组在研究电流的磁效应时,做了如下的操作:在静止的小磁针上方平行于小磁针放置一水平直导线,当导线中通有电流时小磁针发生偏转,当通过的电流为I 时,小磁针偏转了30°,增大导线中的电流,当小磁针偏转60°时通过直导线的电流为( )A .2IB .3I C.3I D .无法确定6.(原创,交流电、变压器,电磁感应)如图所示,一理想变压器原线圈匝数为n 1=1000匝,副线圈匝数为n 2=200匝,将原线圈接在u =2002sin120πt (V )的交流电压上,电阻R =100Ω,电流表A 为理想电流表.下列推断正确的是( )A .该交变电流的频率为60HzB .穿过铁芯的磁通量的最大变化率为0.2Wb/sC .电流表A 的示数为0.42AD .变压器的输入功率是16W7.(原创,电场,电容器)如图所示,一个质量为m 的带正电荷量为q 的小球,以竖直向上的初速度v 0在平行板电容器P 、Q 两板正中间的A 点进入场强为E 的匀强电场中,恰好垂直于Q 板打在B 点,且AC =2BC ,则下列说法正确的是( )A .小球打在B 点时速度大小为v 0B .小球打在B 点时速度大小为2v 0C .P 板比Q 板的电势高q mv 204D .若将P 板向右平移稍许,其他条件不变,粒子将打在B 点上方8.(原创,电磁感应)如图所示,一底边长为 2L 的三角形框架,以一定的速度匀速经过两磁感应强度大小相等方向相反的有界磁场,磁场区域宽度均为 L ,则以下关于整个三角形框架通过磁场的过程中的感应电流的变化图象正确的是(取逆时针方向为正),则下图中正确的是( )高考预测试题(1)参考答案P Q AC v 0 B1.答案:BD 解析:把火车转弯近似看成是做匀速圆周运动,增加内外轨的高度差,尽可能使轨道平面对火车的支持力与火车重力的合力提供向心力,可有效减小火车对外轨的侧向挤压,选项B 正确;同时,尽可能增大弯道半径,减小火车转弯时的向心力也能起到保护外轨的作用,选项D 正确.2.答案:C解析:同步卫星的周期等于地球的自转周期,假设为T ,则未知卫星的周期为T 81,距离地面的高度为h .则由万有引力定律,对同步卫星:2224(6.6)(6.6)Mm G m R R Tπ=,对未知卫星)()8(4)(222h R T m h R Mm G +=+π.解上式可得R h 65.0=,则本题正确答案为C . 3.答案:D解析:轻杆的弹力方向始终沿轻杆方向,B 点受力如图,由平衡条件得mg F F N ==βαcos sin 1,T F F N =+βαsin cos 1.显然,在角α不变,角β从0逐渐变大过程中,F N 不变,T 变大.故D 项正确.4.答案:BD解析:由加速度a >g sin α,说明工件所受摩擦力沿传送带向下,A 项错;工件运动方向向下,故摩擦力对工件一定做正功,B 项正确;工件受到的摩擦力是静摩擦,动摩擦因数不能确定,C 项错;由mg sin α+f =ma ,若a=2g sin α,则f=mg sin α,D 项正确.5.答案:B解析:设地磁场磁感应强度为B 0,电流产生的分磁场与地磁场方向垂直(如图所示),由题意知电流磁场B =kI ,则kI =B 0tan30°,kI'=B 0tan60°,解得I'=3I ,B 项正确.6.答案:AD解析:角速度ω=120π=2πf ,频率f =60Hz ,A 项正确;u =n 1t∆∆φ,故穿过铁芯的磁通量的最大变化率22.01==∆∆n U t m φWb/s ,B 项错;原线圈电压有效值U 1=200V ,由变压比可得副线圈电压U 2=40V ,电流表示数为I 2=0.4A ,C 项错;副线圈消耗功率P 2=U 2I 2=16W ,故变压器输入功率为16W ,D 项正确.7.答案:B C解析:由小球恰好垂直于Q 板打在B 点可知,小球在B 点的竖直分速度为零,由运动规律可得,BC =t v 20,AC =t v B 2,解得,v B =2v 0,A 项错误,B 项正确;小球由A 运动到B 的过程,由动能定理20)2(212v m qU ,得U=q mv 204,小球带正电,故P 板电势高,C 项正确.P 板向右平移,板间场强不变,粒子仍打在B 点,D 项错.8.答案:B解析:整个过程分为 4 个小过程,且由导线有效切割长度可知,电流为线性变化,CD 两项错误.由 1 到 2 位置,为逆时针方向的电流且逐渐减小,设开始时电流大小为 2I 0,由2I 0 减小到 I 0;由 2 到 3 位置,为顺时针方向的电流;开始时电流大小为 3I 0,且逐渐减小,一直减小到 2I 0;由 3 到 4 位置,为逆时针方向的电流且由零逐渐增大到 I 0;由4 位置到最后全部出磁场,为逆时针方向的电流且由I 0逐渐减小到零.A 项错误,B 项正确.。
2013年全国统一高考物理试卷(新课标Ⅰ)一、选择题:本题共8小题,每小题6分.在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6-8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分.1.(6分)如图是伽利略1604年做斜面实验时的一页手稿照片,照片左上角的三列数据如下表.表中第二列是时间,第三列是物体沿斜面运动的距离,第一列是伽利略在分析实验数据时添加的.根据表中的数据,伽利略可以得出的结论是()1 1 324 2 1309 3 29816 4 52625 5 82436 6 119249 7 16064 8 2104A.物体具有惯性B.斜面倾角一定时,加速度与质量无关C.物体运动的距离与时间的平方成正比D.物体运动的加速度与重力加速度成正比2.(6分)如图,一半径为R的圆盘上均匀分布着电荷量为Q的电荷,在垂直于圆盘且过圆心c的轴线上有a、b、d三个点,a和b、b和c、c和d间的距离均为R,在a点处有一电荷量为q(q>0)的固定点电荷.已知b点处的场强为零,则d点处场强的大小为(k为静电力常量)()A .B.C.D.3.(6分)一水平放置的平行板电容器的两极板间距为d,极板分别与电池两极相连,上极板中心有一小孔(小孔对电场的影响可忽略不计).小孔正上方处的P点有一带电粒子,该粒子从静止开始下落,经过小孔进入电容器,并在下极板处(未与极板接触)返回.若将下极板向上平移,则从P点开始下落的相同粒子将()A . 打到下极板上B . 在下极板处返回C .在距上极板处返回D .在距上极板处返回4.(6分)如图,在水平面(纸面)内有三根相同的均匀金属棒ab 、ac 和MN ,其中ab 、ac 在a 点接触,构成“V ”字型导轨.空间存在垂直于纸面的均匀磁场.用力使MN 向右匀速运动,从图示位置开始计时,运动中MN 始终与∠bac 的平分线垂直且和导轨保持良好接触.下列关于回路中电流i 与时间t 的关系图线,可能正确的是( )A .B.C.D.5.(6分)如图,半径为R 的圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B ,方向垂直于纸面向外.一电荷量为q (q >0)、质量为m 的粒子沿平行于直径ab 的方向射入磁场区域,射入点与ab 的距离为.已知粒子射出磁场与射入磁场时运动方向间的夹角为60°,则粒子的速率为(不计重力)( )A .B .C . D.6.(6分)如图,直线a 和曲线b 分别是在平直公路上行驶的汽车a 和b 的位置﹣时间(x ﹣t )图线.由图可知( )A .在时刻t 1,a 车追上b 车 B .在时刻t 2,a 、b 两车运动方向相反 C .在t 1到t 2这段时间内,b 车的速率先减少后增加D .在t 1到t 2这段时间内,b 车的速率一直比a 车的大7.(6分)2012年6月18日,神州九号飞船与天宫一号目标飞行器在离地面343km 的近圆形轨道上成功进行了我国首次载人空间交会对接.对接轨道所处的空间存在极其稀薄的大气,下面说法正确的是( ) A .为实现对接,两者运行速度的大小都应介于第一宇宙速度和第二宇宙速度之间B .如不加干预,在运行一段时间后,天宫一号的动能可能会增加C 如不加干预,天宫一号的轨道高度将缓慢降低.D航天员在天宫一号中处于失重状态,说明航天员不受地球引力作用.8.(6分)2012年11月,“歼15”舰载机在“辽宁号”航空母舰上着舰成功.图(a)为利用阻拦系统让舰载机在飞行甲板上快速停止的原理示意图.飞机着舰并成功钩住阻拦索后,飞机的动力系统立即关闭,阻拦系统通过阻拦索对飞机施加一作用力,使飞机在甲板上短距离滑行后停止,某次降落,以飞机着舰为计时零点,飞机在t=0.4s时恰好钩住阻拦索中间位置,其着舰到停止的速度﹣时间图线如图(b)所示.假如无阻拦索,飞机从着舰到停止需要的滑行距离约1000m.已知航母始终静止,重力加速度的大小为g.则()A从着舰到停止,飞机在甲板上滑行的距离约为无阻拦索时的.B在0.4s~2.5s时间内,阻拦索的张力几乎不随时间变化.C在滑行过程中,飞行员所承受的加速度大小会超过2.5g.D在0.4s~2.5s时间内,阻拦系统对飞机做功的功率几乎不变.二、解答题(共4小题,满分47分)9.(7分)图(a)为测量物块与水平桌面之间动摩擦因数的实验装置示意图.实验步骤如下:①用天平测量物块和遮光片的总质量M、重物的质量m;用游标卡尺测量遮光片的宽度d;用米尺测最两光电门之间的距离s;②调整轻滑轮,使细线水平;③让物块从光电门A的左侧由静止释放,用数字毫秒计分别测出遮光片经过光电门A和光电门B所用的时间△t A 和△t B,求出加速度a;④多次重复步骤③,求a的平均值;⑤根据上述实验数据求出动擦因数μ.回答下列为题:(1)测量d时,某次游标卡尺(主尺的最小分度为1mm)的示数如图(b)所示,其读数为_________cm.(2)物块的加速度a可用d、s、△t A和△t B表示为a=_________.(3)动摩擦因数μ可用M、m、和重力加速度g表示为μ=_________(4)如果细线没有调整到水平,由此引起的误差属于_________(填“偶然误差”或“系统误差”).10.(8分)某学生实验小组利用图(a)所示电路,测量多用电表内电池的电动势和电阻“×lk”挡内部电路的总电阻.使用的器材有:多用电表;电压表:量程5V,内阻十几千欧;滑动变阻器:最大阻值5kΩ导线若干.回答下列问题:(1)将多用电表挡位调到电阻“×lk”挡,再将红表笔和黑表笔_________,调零点.(2)将图(a)中多用电表的红表笔和_________(填“1”或“2”)端相连,黑表笔连接另一端.(3)将滑动变阻器的滑片调到适当位置,使多角电表的示数如图(b)所示,这时电压表的示数如图(c)所示.多用电表和电压表的读数分别为_________kΩ和_________V.(4)调节滑动变阻器的滑片,使其接入电路的阻值为零.此时多用电表和电压表的读数分别为12.0kΩ和4.00V.从测量数据可知,电压表的内阻为_________kΩ.(5)多用电表电阻挡内部电路可等效为由一个无内阻的电池、一个理想电流表和一个电阻串联而成的电路,如图(d)所示.根据前面的实验数据计算可得,此多用电表内电池的电动势为_________V,电阻“×lk”挡内部电路的总电阻为_________kΩ.11.(13分)水平桌面上有两个玩具车A和B,两者用一轻质细橡皮筋相连,在橡皮筋上有一红色标记R.在初始时橡皮筋处于拉直状态,A、B和R分别位于直角坐标系中的(0,2l)、(0,﹣l)和(0,0)点.已知A从静止开始沿y轴正向做加速度大小为a的匀加速运动;B平行于x轴朝x轴正向匀速运动.在两车此后运动的过程中,标记R在某时刻通过点(l,l).假定橡皮筋的伸长是均匀的,求B运动速度的大小.12.(19分)如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L.导轨上端接有一平行板电容器,电容为C.导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面.在导轨上放置一质量为m的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触.已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g.忽略所有电阻.让金属棒从导轨上端由静止开始下滑,求:(1)电容器极板上积累的电荷量与金属棒速度大小的关系;(2)金属棒的速度大小随时间变化的关系.三.[物理--选修3-3](15分)13.(6分)两个相距较远的分子仅在分子力作用下由静止开始运动,直至不再靠近.在此过程中,下列说法正确的是()A.分子力先增大,后一直减小B.分子力先做正功,后做负功C.分子动能先增大,后减小D.分子势能先增大,后减小E.分子势能和动能之和不变14.(9分)如图,两个侧壁绝热、顶部和底部都导热的相同气缸直立放置,气缸底部和顶部均有细管连通,顶部的细管带有阀门K.两气缸的容积均为V0,气缸中各有一个绝热活塞(质量不同,厚度可忽略).开始时K关闭,两活塞下方和右活塞上方充有气体(可视为理想气体),压强分别为p0和;左活塞在气缸正中间,其上方为真空;右活塞上方气体体积为.现使气缸底与一恒温热源接触,平衡后左活塞升至气缸顶部,且与顶部刚好没有接触;然后打开K,经过一段时间,重新达到平衡.已知外界温度为T0,不计活塞与气缸壁间的摩擦.求:(i)恒温热源的温度T;(ii)重新达到平衡后左气缸中活塞上方气体的体积V x.四.[物理--选修3-4](15分)15.如图,a、b、c、d是均匀媒质中x轴上的四个质点,相邻两点的间距依次为2m、4m和6m.一列简谐横波以2m/s的波速沿x轴正向传播,在t=0时刻到达质点a处,质点a由平衡位置开始竖直向下运动,t=3s时a第一次到达最高点.下列说法正确的是()A在t=6s时刻波恰好传到质点d处.B在t=5s时刻质点c恰好到达最高点.C质点b开始振动后,其振动周期为4s.D在4s<t<6s的时间间隔内质点c向上运动.E当质点d向下运动时,质点b一定向上运动.16.图示为一光导纤维(可简化为一长玻璃丝)的示意图,玻璃丝长为L,折射率为n,AB代表端面.已知光在真空中的传播速度为c.(i)为使光线能从玻璃丝的AB端面传播到另一端面,求光线在端面AB上的入射角应满足的条件;(ii)求光线从玻璃丝的AB端面传播到另一端面所藉的最长时间.五.[物理--选修3-5](15分)17.一质子束入射到能止靶核上,产生如下核反应:,式中p代表质子,n代表中子,X代表核反应产生的新核.由反应式可知,新核X的质子数为_________,中子数为_________.18.在粗糙的水平桌面上有两个静止的木块A和B,两者相距为d.现给A一初速度,使A与B发生弹性正碰,碰撞时间极短.当两木块都停止运动后,相距仍然为d.已知两木块与桌面之间的动摩擦因数均为μ,B的质量为A 的2倍,重力加速度大小为g.求A的初速度的大小.2013年全国统一高考物理试卷(Ⅰ)参考答案与试题解析一、选择题:本题共8小题,每小题6分.在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6-8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分.1.(6分)考点:匀变速直线运动的位移与时间的关系.专题:直线运动规律专题.分析:通过表格中的数据,通过时间的平方与运动距离的关系,得出位移和时间的规律.解答:解:从表格中的数据可知,时间变为原来的2倍,下滑的位移大约变为原来的4倍,时间变为原来的3倍,位移变为原来的9倍,可知物体运动的距离与时间的平方成正比.故C正确,A、B、D错误.故选C.点评:本题考查学生的数据处理能力,能够通过数据得出物体位移与时间的关系.需加强训练.2.(6分)考点:电场的叠加;电场强度.专题:电场力与电势的性质专题.分析:由题意可知,半径为R均匀分布着电荷量为Q的圆盘上电荷,与在a点处有一电荷量为q(q>0)的固定点电荷,在b点处的场强为零,说明各自电场强度大小相等,方向相反.那么在d点处场强的大小即为两者之和.因此根据点电荷的电场强度为即可求解.解答:解:电荷量为q的点电荷在b处产生电场强度为,而半径为R均匀分布着电荷量为Q的圆盘上电荷,与在a点处有一电荷量为q(q>0)的固定点电荷,在b点处的场强为零,则圆盘在此处产生电场强度也为.那么圆盘在此d产生电场强度则仍为.而电荷量为q的点电荷在d处产生电场强度为,由于都在d处产生电场强度方向相同,即为两者大小相加.所以两者这d处产生电场强度为,故B正确,ACD错误;故选:B点评:考查点电荷与圆盘电荷在某处的电场强度叠加,紧扣电场强度的大小与方向关系,从而为解题奠定基础.3.(6分)考点:电容器的动态分析.专题:电容器专题.分析:下极板未移动时,带电粒子到达下极板处返回,知道重力做功与电场力做功之和为零,向上移动下极板,若运动到下极板,重力做功小于克服电场力做功,可知不可能运动到下极板返回,根据动能定理,结合电势差大小与d的关系,求出粒子返回时的位置.解答:解:对下极板未移动前,从静止释放到速度为零的过程运用动能定理得,.将下极板向上平移,设运动到距离上级板x处返回.根据动能定理得,联立两式解得x=.故D正确,A、B、C错误.故选D.点评:该题考到了带电粒子在电场中的运动、电容器、功能关系等知识点,是一道比较综合的电学题,难度较大.这类题应该以运动和力为基础,结合动能定理求解.4.(6分)考点:导体切割磁感线时的感应电动势;闭合电路的欧姆定律.专题:电磁感应与图像结合.分析:MN切割磁感线运动产生感应电动势E=BLv,L越来越大,回路总电阻也增大,根据电阻定律可求,然后利用闭合电路欧姆定律即可求解.解答:解:设∠bac=2θ,单位长度电阻为R0则MN切割产生电动势E=BLv=Bv•2vt×tanθ=2Bv2ttnaθ回路总电阻为由闭合电路欧姆定律得:I===i与时间无关,是一定值,故A正确,BCD错误,故选:A.5.(6分)考点:带电粒子在匀强磁场中的运动;牛顿第二定律;向心力.专题:带电粒子在磁场中的运动专题.分析:由题意利用几何关系可得出粒子的转动半径,由洛仑兹力充当向心力可得出粒子速度的大小;解答:解:粒子的偏转角是60°,即它的轨迹圆弧对应的圆心角是60,所以入射点、出射点和圆心构成等边三角形,所以,它的轨迹的半径与圆形磁场的半径相等,即r=R.洛伦兹力提供向心力:,变形得:.故正确的答案是B.故选:B点在磁场中做圆周运动,确定圆心和半径为解题的关键.评:6.(6分)考点:匀变速直线运动的位移与时间的关系.专题:直线运动规律专题.分析:位移时间关系图线反映位移随时间的变化规律,图线的斜率表示速度的大小.解答:解:A、在时刻t1,a、b两车的位置坐标相同,开始a的位移大于b的位移,知b追上a.故A错误.B、在时刻t2,a的位移增大,b的位移减小,知两车运动方向相反.故B正确.C、图线切线的斜率表示速度,在t1到t2这段时间内,b车图线斜率先减小后增大,则b车的速率先减小后增加.故C正确.D、在t1到t2这段时间内,b图线的斜率不是一直大于a图线的斜率,所以b车的速率不是一直比a车大.故D错误.故选BC.点评:解决本题的关键知道位移时间图线的物理意义,知道图线的斜率表示速度的大小,能够通过图线得出运动的方向.7.(6分)考点:人造卫星的加速度、周期和轨道的关系;万有引力定律及其应用.专题:压轴题;人造卫星问题.分析:万有引力提供圆周运动的向心力,所以第一宇宙速度是围绕地球圆周运动的最大速度,卫星由于摩擦阻力作用,轨道高度将降低,运行速度增大,失重不是失去重力而是对悬绳的拉力或支持物的压力减小的现象.根据相应知识点展开分析即可.解答:解:A、又第一宇宙速度为最大环绕速度,天宫一号的线速度一定小于第一宇宙速度.故A错误;B、根据万有引力提供向心力有:⇒v=得轨道高度降低,卫星的线速度增大,故动能将增大,所以B正确;C、卫星本来满足万有引力提供向心力即,由于摩擦阻力作用卫星的线速度减小,提供的引力大于卫星所需要的向心力故卫星将做近心运动,即轨道半径将减小,故C正确;D、失重状态说明航天员对悬绳或支持物体的压力为0,而地球对他的万有引力提供他随天宫一号围绕地球做圆周运动的向心力,所以D错误故选BC.点评:解决卫星运行规律问题的核心原理是万有引力提供向心力,通过选择不同的向心力公式,来研究不同的物理量与轨道半径的关系.8.(6分)考点:功率、平均功率和瞬时功率;匀变速直线运动的图像.专题:压轴题;功率的计算专题.分析:通过速度与时间的图象,由图象的斜率表示加速度大小,再由牛顿第二定律确定阻拦索的拉力,同时由图象与时间所构成的面积为位移的大小.由功率P=FV可确定大小如何变化.解解:A、由图象可知,从着舰到停止,飞机在甲板上滑行的距离即为图象与时间所构成的面积,即约为答:,而无阻拦索的位移为1000m,因此飞机在甲板上滑行的距离约为无阻拦索时的,故A 正确;B、在0.4s~2.5s时间内,速度与时间的图象的斜率不变,则加速度也不变,所以合力也不变,因此阻拦索的张力的合力几乎不随时间变化,但阻拦索的张力是变化的,故B错误;C、在滑行过程中,飞行员所承受的加速度大小为>2.5g,故C正确;D、在0.4s~2.5s时间内,阻拦系统对飞机做功的功率P=FV,虽然F不变,但V是渐渐变小,所以其变化的,故D错误;故选:AC点评:考查由速度与时间的图象,来读取正确的信息:斜率表示加速度的大小,图象与时间所夹的面积表示位移的大小.注意阻拦索的张力与张力的合力是不同的.二、解答题(共4小题,满分47分)9.(7分)考点:探究影响摩擦力的大小的因素.专题:实验题;直线运动规律专题.分析:(1)游标卡尺主尺与游标尺的示数之和是游标卡尺的示数,(2)由速度公式求出物块经过A、B两点时的速度,然后由匀变速运动的速度位移公式求出物块的加速度;(3)由牛顿第二定律求出动摩擦因数.(4)由于实验设计造成的误差是系统误差,由于实验操作、读数等造成的误差属于偶然误差.解答:解:(1)由图(b)所示游标卡尺可知,主尺示数为0.9cm,游标尺示数为12×0.05mm=0.60mm=0.060cm,则游标卡尺示数为0.9cm+0.060cm=0.960cm.(2)物块经过A点时的速度v A=,物块经过B点时的速度v B=,物块做匀变速直线运动,由速度位移公式得:v B2﹣v A2=2as,加速度a=;(3)以M、m组成的系统为研究对象,由牛顿第二定律得:mg﹣μMg=(M+m),解得μ=;(4)如果细线没有调整到水平,由此引起的误差属于系统误差.故答案为:(1)0.960;(2);(3);(4)系统误差.点评:对游标卡尺进行读数时,要先确定游标尺的精度,主尺与游标尺的示数之和是游标卡尺示数,读数时视线要与刻度线垂直.10.(8分)考点:测定电源的电动势和内阻.专题:实验题;恒定电流专题.分析:(1)欧姆表使用前一定要欧姆调零;(2)红正黑负,电流从红表笔流入电表,从黑表笔流出电表;(3)欧姆表读数等于倍率乘以表盘读数,伏特表读数要估读;(4)欧姆表测量的是外电路的总电阻,由于滑动变阻器被短路,故欧姆表读数即为电压表阻值;(5)由于半偏电流是满偏电流的一半,故欧姆表的中值电阻等于内电阻;根据闭合电路欧姆定律求解电动势.解解:(1)欧姆表使用前一定要欧姆调零,即红黑表笔短接后,调节调零旋钮,是电流表满偏;答:(2)红正黑负,电流从红表笔流入电表,从黑表笔流出电表;电流从电压表正接线柱流入,故红表笔接触1;(3)欧姆表读数=倍率×表盘读数=1K×15.0Ω=15.0kΩ;电压表读数为3.60V;(4)由于滑动变阻器被短路,故欧姆表读数即为电压表阻值,为12.0KΩ;(5)欧姆表的中值电阻等于内电阻,故欧姆表1K档位的内电阻为15.0KΩ;根据闭合电路欧姆定律,电动势为:E=U+=;故答案为:(1)短接;(2)1;(3)15.0,3.50;(4)12.0;(5)9.0,15.0.点评:本题关键是明确实验原理,会使用欧姆表和电压表测量电阻和电压,同时能结合闭合电路欧姆定律灵活地列式分析.11.(13分)考点:牛顿第二定律.专题:压轴题;牛顿运动定律综合专题.分析:根据运动学公式求出t时刻A的纵坐标,B的横坐标,抓住橡皮筋的伸长是均匀的,在以后任一时刻R到A和B的距离之比都为2:1,根据相似三角形,结合运动学公式求出B的运动速度.解答:解:设B车的速度大小为v.如图,标记R的时刻t通过点K(l,l),此时A、B的位置分别为H、G.由运动学公式,H的纵坐标y A,G的横坐标x B分别为①x B=vt ②在开始运动时,R到A和B的距离之比为2:1,即OE:OF=2:1由于橡皮筋的伸长是均匀的,在以后任一时刻R到A和B的距离之比都为2:1.因此,在时刻t有HK:KG=2:1 ③由于△FGH∽△IGK,有HG:KG=x B:(x B﹣l)④HG:KG=(y A+l):(2l)⑤联立各式解得答:B运动速度的大小为.点评:解决本题的关键抓住橡皮筋的伸长是均匀的,在以后任一时刻R到A和B的距离之比都为2:1,结合运动学公式和数学几何进行求解.12.(19分)考点:导体切割磁感线时的感应电动势;力的合成与分解的运用;牛顿第二定律;电容.专题:压轴题;电磁感应中的力学问题.分析:(1)由法拉第电磁感应定律,求出感应电动势;再与相结合求出电荷量与速度的关系式.(2)由左手定则来确定安培力的方向,并求出安培力的大小;借助于、及牛顿第二定律来求出速度与时间的关系.解答:解:(1)设金属棒下滑的速度大小为v,则感应电动势为E=BLv,平行板电容器两极板之间的电势差为U=E,设此时电容器极板上积累的电荷量为Q,按定义有,联立可得,Q=CBLv(2)设金属棒的速度大小为v时,经历的时间为t,通过金属棒的电流为i,金属棒受到的磁场力方向沿导轨向上,大小为f1=BLi设在时间间隔(t,t+△t )内流经金属棒的电荷量为△Q,按定义有:△Q也是平行板电容器极板在时间间隔(t,t+△t )内增加的电荷量,由上式可得,△v为金属棒的速度变化量,按定义有:金属棒所受到的摩擦力方向沿导轨斜面向上,大小为:f2=μN,式中,N是金属棒对于导轨的正压力的大小,有N=mgcosθ金属棒在时刻t的加速度方向沿斜面向下,设其大小为a,根据牛顿第二定律有:mgsinθ﹣f1﹣f2=ma,联立上此式可得:由题意可知,金属棒做初速度为零的匀加速运动,t时刻金属棒的速度大小为答:(1)电容器极板上积累的电荷量与金属棒速度大小的关系为Q=CBLv;(2)金属棒的速度大小随时间变化的关系.点评:本题让学生理解左手定则、安培力的大小、法拉第电磁感应定律、牛顿第二定律、及运动学公式,并相互综合来求解.三.[物理--选修3-3](15分)13.(6分)考点:分子势能;物体的内能.专题:压轴题;内能及其变化专题.分析:分子力同时存在引力和斥力,分子间引力和斥力随分子间的距离的增大而减小,随分子间的距离的减小而增大,且斥力减小或增大比引力变化要快些;分子力做功等于分子势能的减小量.解答:解:A、两个相距较远的分子仅在分子力作用下由静止开始运动,直至不再靠近的过程中,当分子间距大于平衡间距时,分子力表现为引力;当分子间距小于平衡间距时,分子力表现为斥力;故A错误;B、两个相距较远的分子仅在分子力作用下由静止开始运动,直至不再靠近的过程中,分子力先是引力后是斥力,故先做正功后做负功,故B正确;C、只有分子力做功,先做正功后做负功,根据动能定理,动能先增加后减小,故C正确;D、分子力先做正功后做负功;分子力做功等于分子势能的减小量;故分子势能先减小后增加,故D错误;E、分子力做功等于分子势能的减小量,总功等于动能增加量,只有分子力做功,故分子势能和分子动能总量保持不变,故E正确;故选BCE.点评:本题考查了分子力、分子势能、分子力做功与分子势能变化关系,基础题.14.(9分)考点:理想气体的状态方程;封闭气体压强.专题:压轴题;理想气体状态方程专题.分析:(1)两活塞下方封闭的气体等压变化,利用盖吕萨克定律列式求解;(2)分别以两部分封闭气体,利用玻意耳定律列式求解.解答:解:(i)与恒温热源接触后,在K未打开时,右活塞不动,两活塞下方的气体经历等压过程,由盖吕•萨克定律得:①解得②(ii)由初始状态的力学平衡条件可知,左活塞的质量比右活塞的大.打开K后,左活塞必须升至气缸顶才能满足力学平衡条件.气缸顶部与外界接触,底部与恒温热源接触,两部分气体各自经历等温过程,设在活塞上方气体压强为p,由玻意耳定律得③对下方气体由玻意耳定律得:④联立③④式得解得不合题意,舍去.答:(i)恒温热源的温度(ii)重新达到平衡后左气缸中活塞上方气体的体积点评:本题涉及两部分气体状态变化问题,除了隔离研究两部分之外,关键是把握它们之间的联系,比如体积关系、温度关系及压强关系.四.[物理--选修3-4](15分)15.考点:波长、频率和波速的关系;横波的图象.专压轴题.。
2013年全国统一高考物理试卷(大纲版)一、选择题:(本大题共8小题,在每小题给出的四个选项中,有的只有一项是符合题目要求,有的有多选项符合题目要求.全部选对得6分,选对但不全得3分,有选错或不答的得0分)1.(6分)下列现象中,属于光的衍射现象的是()A.雨后天空出现彩虹B.通过一个狭缝观察日光灯可看到彩色条纹C.海市蜃楼现象D.日光照射在肥皂泡上出现彩色条纹2.(6分)根据热力学第一定律,下列说法正确的是()A.电冰箱的工作过程表明,热量可以从低温物体向高温物体传递B.空调机在制冷过程中,从室内吸收的热量少于向室外放出的热量C.科技的进步可以使内燃机成为单一热源的热机D.对能源的过度消耗将使自然界得能量不断减少,形成能源危机3.(6分)放射性元素氡()经α衰变成为钋,半衰期为3.8天;但勘测表明,经过漫长的地质年代后,目前地壳中仍存在天然的含有放射性元素的矿石,其原因是()A.目前地壳中的主要来自于其它放射元素的衰变B.在地球形成的初期,地壳中元素的含量足够高C.当衰变产物积累到一定量以后,的增加会减慢的衰变进程D.主要存在于地球深处的矿石中,温度和压力改变了它的半衰期4.(6分)纸面内两个半径均为R的圆相切于O点,两圆形区域内分别存在垂直纸面的匀强磁场,磁感应强度大小相等、方向相反,且不随时间变化.一长为2R的导体杆OA绕过O点且垂直于纸面的轴顺时针匀速旋转,角速度为ω,t=0时,OA恰好位于两圆的公切线上,如图所示.若选取从O指向A的电动势为正,下列描述导体杆中感应电动势随时间变化的图象可能正确的是()A.B.C.D.5.(6分)“嫦娥一号”是我国首次发射的探月卫星,它在距月球表面高度为200km 的圆形轨道上运行,运行周期为127分钟.已知引力常量G=6.67×10﹣11 N•m2/kg2,月球的半径为 1.74×103km.利用以上数据估算月球的质量约为()A.8.1×1010 kg B.7.4×1013 kg C.5.4×1019 kg D.7.4×1022 kg 6.(6分)将甲乙两小球先后以同样的速度在距地面不同高度处竖直向上抛出,抛出时间间隔2s,它们运动的图象分别如直线甲乙所示。
新课标2013年高考物理最新押题信息卷七1.如下说法符合物理学史实的是A.开普勒发现了万有引力定律 B.伽利略首创了理想实验的研究方法C.卡文迪许测出了静电力常量 D.奥斯特发现了电磁感应定律2.用电梯将货物从六楼送到一楼的过程中,货物的v-t图象如下列图.如下说法正确的答案是A.前2s内货物处于超重状态B.最后1s内货物只受重力作用C.货物在 10s内的平均速度是1.7m/sD.货物在2s~9s内机械能守恒3.质量为1kg的物体静止于光滑水平面上.t=0时刻起,物体受到向右的水平拉力F作用,第ls内F=2N,第2s内F=1N.如下判断正确的答案是A.2s末物体的速度是3m/s B.2s内物体的位移为3mC.第1s末拉力的瞬时功率最大 D.第2s末拉力的瞬时功率最大4.如下列图,AC、BD为圆的两条互相垂直的直径,圆心为O,半径为R.电荷量均为Q的正、负点电荷放在圆周上,它们的位置关于AC对称,+Q与O点的连线和OC间夹角为60°.如下说法正确的答案是A.O、C两点场强一样B.O、C两点电势一样C.在A点由静止释放一个正电荷,电荷将沿圆周向D运动D.沿直径由B向D移动一个正电荷,电荷的电势能先增大后减小5.2013年2月16日凌晨,2012DA14小行星与地球“擦肩而过〞,距离地球最近约2.77万公里.据观测,它绕太阳公转的周期约为366天,比地球的公转周期多1天.假设小行星和地球绕太阳运行的轨道均为圆轨道,对应的轨道半径分别为R1、R2,线速度大小分别为v1、v2,以下关系式正确的答案是A.12366 365R R = B.321322366365RR= C.12365366vv= D.132365366vv=6.图甲中的变压器为理想变压器,原、副线圈的匝数之比为10∶1.测得R=10Ω的电阻两端电压随时间变化的规律如图乙所示.如此原线圈中A.电压的有效值为311OVB.电压的有效值为2200VC.电流变化的频率为25HzD.电流的有效值为22A7.如下列图,重为G的光滑球在倾角为θ的斜面和竖直墙壁之间处于静止状态.假设将斜面换成材料和质量一样,但倾角θ稍小一些的斜面,以下判断正确的答案是A.球对斜面的压力变小B.球对斜面的压力变大C.斜面可能向左滑动D.斜面仍将保持静止8.如下列图,间距l=0.4m的光滑平行金属导轨与水平面夹角θ=30°,正方形区域abcd内匀强磁场的磁感应强度B=0.2T,方向垂直于斜面.甲乙两金属杆电阻R一样、质量均为m=0.02kg,垂直于导轨放置.起初,甲金属杆处在磁场的上边界ab上,乙在甲上方距甲也为l处.现将两金属杆同时由静止释放,并同时在甲金属杆上施加一个沿着导轨的拉力F,使甲金属杆始终以a=5m /s2的加速度沿导轨匀加速运动,乙金属杆刚进入磁场时做匀速运动,取g=10m/s2,如此 A.每根金属杆的电阻 R=0.016ΩB.甲金属杆在磁场中运动的时间是0.4sC.甲金属杆在磁场中运动过程中F的功率逐渐增大D.乙金属杆在磁场中运动过程中安培力的功率是0.1W二、此题共3小题,9.用欧姆表测电阻时,将选择开关置于适宜的挡位后,必须先将两表笔短接,调整▲旋钮,使指针指在欧姆刻度的“0〞处.假设选择旋钮在“×100Ω〞位置,指针在刻度盘上停留的位置如下列图,所测量电阻的值为▲Ω.10.利用图示装置可以做力学中的许多实验.〔1〕以下说法正确的答案是▲.A.利用此装置“研究匀变速直线运动〞时,必须设法消除小车和木板间的摩擦阻力的影响B.利用此装置探究“小车的加速度与质量的关系〞并用图象法处理数据时,如果画出的a-M关系图象不是直线,就可确定加速度与质量成反比C.利用此装置探究“功与速度变化的关系〞实验时,应将木板带打点计时器的一端适当垫高,这样做的目的是利用小车重力沿斜面分力补偿小车运动中所受阻力的影响〔2〕小华在利用此装置“探究加速度a与力F的关系〞时,因为不断增加所挂钩码的个数,导致钧码的质量远远大于小车的质量,如此小车加速度a的值随钧码个数的增加将趋近于▲的值. 11.某同学用图甲所示的电路探究电学元件的U-I关系,得到的数据描在图乙所示的坐标纸上.〔1〕观察图乙所描数据点的分布情况,画出电学元件的U-I曲线;〔2〕当电压表示数U=2.OV时,元件的电功率值为▲W〔保存2位有效数字〕,此值与元件的实际功率值相比▲〔填“偏大〞、“偏小〞或“相等〞〕;〔3〕如果把这个电学元件直接接在一个电动势为1.5V、内阻为2.OΩ的电池两端,如此电学元件两端的电压是▲V.12.质量M=9kg、长L=1m的木板在动摩擦因数1μ=0.1的水平地面上向右滑行,当速度02m/sv=时,在木板的右端轻放一质量m=1kg的小物块如下列图.当小物块刚好滑到木板左端时,物块和木板达到共同速度.取g=10m/s2,求:〔1〕从木块放到木板上到它们达到一样速度所用的时间t;〔2〕小物块与木板间的动摩擦因数2μ.13.如下列图,在xOy坐标系中,x轴上N点到O点的距离是12cm,虚线NP与x轴负向的夹角是30°.第Ⅰ象限内NP的上方有匀强磁场,磁感应强度B=1T,第IV象限有匀强电场,方向沿y轴正向.一质量m=8×10-10kg.电荷量q=1×10-4C带正电粒子,从电场中M〔12,-8〕点由静止释放,经电场加速后从N点进入磁场,又从y轴上P点穿出磁场.不计粒子重力,取π=3,求:〔1〕粒子在磁场中运动的速度v;〔2〕粒子在磁场中运动的时间t;〔3〕匀强电场的电场强度E.14.如下列图,半径为R 的光滑半圆轨道ABC 与倾角为θ=37°的粗糙斜面轨道DC 相切于C ,圆轨道的直径AC 与斜面垂直.质量为m 的小球从A 点左上方距A 高为h 的斜面上方P 点以某一速度水平抛出,刚好与半圆轨道的A 点相切进入半圆轨道内侧,之后经半圆轨道沿斜面刚好滑到与抛出点等高的D 处.当地的重力加速度为g ,取509R h =,sin370.6︒=,cos370.8︒=,不计空气阻力,求:〔1〕小球被抛出时的速度v 0;〔2〕小球到达半圆轨道最低点B 时,对轨道的压力大小;〔3〕小球从C 到D 过程中摩擦力做的功W.15.[选修3-3]〔1〕如下说法中正确的答案是▲A .温度越高,每个分子的速率一定越大B .雨水没有透过布雨伞是因为液体外表存在张力C .布朗运动是指在显微镜下观察到的液体分子的无规如此运动D .单晶体的某些物理性质是各向异性的,多晶体的物理性质是各向同性的〔2〕如下列图,导热材料制成的截面积相等,长度均为45cm 的气缸A 、B 通过带有阀门的管道连接.初始时阀门关闭,厚度不计的光滑活塞C 位于B 内左侧,在A 内充满压强52.810Pa A P =⨯的理想气体,B 内充满压强51.410Pa B P =⨯的理想气体,忽略连接气缸的管道体积,室温不变.现打开阀门,求:①平衡后活塞向右移动的距离和B 中气体的压强;②自打开阀门到平衡,B 内气体是吸热还是放热〔简要说明理由〕.16.[选修3-4]〔1〕一列简谐波在t=0.8s 时的图象如图甲所示,其x=0处质点的振动图象如图乙所示,由图象可知:简谐波沿x 轴▲方向传播〔填“正〞或“负〞〕,波速为▲m /s ,t=10.0s 时刻,x=4m 处质点的位移是▲m .(2〕水面下一单色光源发出的一条光线射到水面的入射角为30°,从水面上射出时的折射角是45°,求:①水的折射率;②光在水面上发生全反射的临界角. 17.[选修3-5]〔1〕核动力航母利用可控核裂变释放核能获得动力.核反响2351141929205636U n Ba Kr+X y +→+是假设干核反响的一种,其中X 为待求粒子, y 为X 的个数,如此X 是▲〔选填“质子〞、“中子〞、“电子〞〕, y =▲.假设反响过程中释放的核能为E ,光在真空中的传播速度为c ,如此核反响的质量亏损表达式为▲.〔2〕在如下列图的光滑水平面上,小明站在静止的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.木箱的质量为m ,人与车的质量为2m ,木箱运动一段时间后与竖直墙壁发生弹性碰撞,反弹回来后被小明接住.求:①推出木箱后小明和小车一起运动的速度v 1的大小;②小明接住木箱后三者一起运动的速度v 2的大小.1.B2.C3.AC4.AB5.BD6.BC7.AD8.BC9.欧姆调零〔2分〕 3200〔2分〕10.〔1〕C 〔3分〕 〔2〕重力加速度〔2分〕11.〔1〕如右图所示 〔2分〕〔2〕1.0〔2分〕 偏大〔2分〕〔3〕0.8〔3分〕12.解:〔1〕设木板在时间t 内的位移为x 1;木块的加速度大小为a 2,时间t 内的位移为x 2如此有x 1= v 0t-2112a t ① x 2=2212a t ② x 1=2L x +③又012v a t a t -=④ 你入数据得t=1s ⑤(2)根据牛顿第二定律,有121()M m g mg Ma μμ++=⑥22mg ma μ=⑦解得20.08μ=⑧评分标准:此题共10分,③⑥每式2分,其余每式1分.13.解:〔1〕粒子在磁场中的轨迹如图,由几何关系,得粒子做圆周运动的轨道半径212cm 0.08m 3R =⨯=①由2v qvB m R =得 410m/s v =②〔2〕粒子在磁场中运动轨迹所对圆心角为120°,如此有51202π 1.610s 360m t qB-︒=⨯=⨯︒③ 〔3〕由212qEd mv =得 23510V/m 2mv E qd==⨯ 评分标准:此题共10分,每式2分,正确作出轨迹、圆心各1分.14.解:〔1〕小球到达A 点时,速度与水平方向的夹角为θ,如下列图.如此有212v gh =①由几何关系得01cot v v θ=②得0423v gh =③ 〔2〕A 、B 间竖直高度(1cos )H R θ=+④设小球到达B 点时的速度为v ,如此从抛出点到B 过程中有22011()22mv mg H h mv ++=⑤ 在B 点,有2N v F mg m R-=⑥ 解得 5.6N F mg =⑦由牛顿第三定律知,小球在B 点对轨道的压力大小是5.6mg ⑧(3)小球沿斜面上滑过程中摩擦力做的功等于小球做平抛运动的初动能,有2011629W mv mgh ==⑨ 评分标准:此题共12分,其中,⑤式2分,⑨式3分,其余每式1分.15.〔1〕BD 〔4分,选不全得2分,错选得0分〕〔2〕解:①A 气体,有()(1)A P LS p L x S =+分B 气体,有()(1)B P LS p L x S =-分得x=15cm 〔1分〕52.110Pa(1)p =⨯分②活塞C 向右移动,对B 中气体做功,而气体做等温变化,内能不变,故B 气体放热.〔2分〕16.〔1〕负 〔1分〕 5〔2分〕 -0.05〔2分〕〔2〕解:①由折射定律12sin sin i n i =得sin 452sin 30n ︒==︒〔2分〕 ②刚好全反射,有12sin n C==〔2分〕 得C=45°〔1分〕17.(1)中子〔1分〕 3〔1分〕 E/c 2(1分);〔2〕解:①取向左为正方向,由动量守恒定律有 0=2mv 1- mv 〔2分〕得12v v =〔1分〕 ②小明接木箱的过程中动量守恒,有122(2)mv mv m m v +=+〔2分〕 解得223v v =〔1分〕。
2013年全国高考物理卷——磁场题集1. (2013新课标卷Ⅰ)如图,半径为R的圆死一圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B,方向垂直于纸面向外,一电荷量为q(q>0)。
质量为m的例子沿平行于之境ab的方向摄入磁场区域,摄入点与ab的距离为,已知例子射出去的磁场与摄入磁场时运动方向间的夹角为60°,则例子的速率为(不计重力)A.B.C.D.2.(2013新课标卷Ⅱ)空间有一圆柱形匀强磁场区域,该区域的横截面的半径为R,磁场方向垂直横截面。
一质量为m、电荷量为q(q>0)的粒子以速率v0沿横截面的某直径射入磁场,离开磁场时速度方向偏离入射方向60°。
不计重力,该磁场的磁感应强度大小为A. B. C. D.3.(2013新课标卷Ⅱ)在物理学发展过程中,观测、实验、假说和逻辑推理等方法都起到了重要作用。
下列叙述符合史实的是A. 奥斯特在实验中观察到电流的磁效应,该效应解释了电和磁之间存在联系B.安培根据通电螺线管的磁场和条形磁铁的磁场的相似性,提出了分子电流假说C.法拉第在实验中观察到,在通有恒定电流的静止导线附近的固定导线圈中,或出现感应电流D.楞次在分析了许多实验事实后提出,感应电流应具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化4.(2013上海卷)如图,通电导线MN与单匝矩形线圈abcd共面,位置靠近ab且相互绝缘。
当MN中电流突然减小时,线圈所受安培力的合力方向(A)向左(B)向右(C)垂直纸面向外(D)垂直纸面向里5.(2013广东卷)如图9,两个初速度大小相同的同种离子a和b,从O点沿垂直磁场方向进人匀强磁场,最后打到屏P上。
不计重力。
下列说法正确的有A.a、b均带正电B.a在磁场中飞行的时间比b的短C.a在磁场中飞行的路程比b的短D.a在P上的落点与O点的距离比b的近6.24.(14分)(2013新课标卷Ⅱ)如图,匀强电场中有一半径为r的光滑绝缘圆轨道,轨道平面与电场方向平行。
廊坊 2013年高考押题猜想电场和磁场一、大纲解读二、重点剖析“场”的本质源自电荷,电荷的周围存在电场,运动电荷产生磁场,因此知识链条的顶端是电荷.. ;同时电场或磁场又反过来对电荷或运动电荷施加力的作用,体现了知识体系的完整, 因果轮回.知识结构如图 7-1.分“场”的产生、场对物质(电荷或导体的作用和能量关系三个版块.- 1 -图 7-1三、考点透视考点 1、“场”的性质从力和能两个角度去描述场的性质. 电场强度 E 和磁感应强度 B 分别描述电场和磁场对放入其中的物质(电荷、通电导体力的作用;电势就是从电场能的角度引入的物理量,虽然中学物理没有直接对磁场的能给出量度,但安培力做功则反映了放入磁场中的通电导体与磁场共同具有能量.- 2 -- 3 -点拨 :匀强电场的电场线与等势面是平行等间距排列,且电场线与等势面处处垂直,沿着电场线方向电势均匀降落,在公式 U=Ed中,计算时 d 虽然是一定要用沿场强方向的距离,但在同一个匀强电场 E 中,电势差 U 与距离 d 的关系却可以演变为“任意一族平行线上等距离的两点的电势差相等”,体现知识运用的“活”字,平时练习时要注意.考点 2、“场”对物质的作用电场对放入其中的电荷有力的作用, 由此产生大量的有关电荷在电场中运动的试题; 电场对放入其中的导体的作用,产生静电感应现象.磁场只对运动电荷和电流可能 .. 有磁场力作用,当带电粒子的速度和导体与磁感线平行时不受磁场力.洛伦兹力一般与带电粒子的平衡和匀速圆周运动问题相关.点拨 :该题综合考查了麦克斯韦电磁理论、电磁感应原理以及楞次定律,“突然减弱”的磁场不仅使带电粒子所受洛伦兹力单纯减小,由变化的磁场产生的电场会对带电粒子做功而改变其动能,使用楞次定律判断电场的方向是难点.同学们一般都只将问题放在带电粒子在匀强磁场中做匀速圆周运动中去分析判断, 认为洛伦兹力不做功, 带电粒子的动能不变而错选 A .图图7-3- 4 -解析 :静电平衡时,整个导体是等势体,导体表面是等势面, a 、 b 电势相等,导体内场强处处为零, AD 错; d 点场强方向即正点电荷产生的场强方向,即由 d 指向 b ,沿电场线方向电势降低,故 b 端的电势比 d 点的低, B 对 C 错;答案 :B点拨 :这部分只要求掌握静电平衡时导体的特性即可.一是不要以带电正、负来判断电势高低,二是要区分静电平衡时导体内部的三种场强:场源电荷的场强、感应电荷的场强和实际场强.四、热点分析:例 4:在如图所示的空间中,存在场强为 E 的匀强电场,同时存在沿 x 轴负方向,磁感应强度为 B 的匀强磁场。
一质子 (电荷量为 e 在该空间恰沿 y 轴正方向以速度 v 匀速运动。
据此可以判断出A .质子所受电场力大小等于 eE ,运动中电势能减小,沿着 z 轴方向电势升高B .质子所受电场力大小等于 eE ,运动中电势能增大,沿着 z 轴方向电势降低- 5 -C .质子所受电场力大小等于 evB ,运动中电势能不变,沿着 z 轴方向电势升高D .质子所受电场力大小等于 evB ,运动中电势能不变,沿着 z 轴方向电势降低例 5:如图 7-6所示, 一根长 L =1.5 m 的光滑绝缘细直杆 MN , 竖直固定在场强为 E =1.0×105N/C、与水平方向成θ=30°角的倾斜向上的匀强电场中.杆的下端 M 固定一个带电小球 A ,电荷量 Q =+4.5×10-6C ;另一带电小球 B 穿在杆上可自由滑动,电荷量 q =+1.0×10-6 C ,质量 m =1.0×10-2kg .现将小球 B 从杆的上端 N 静止释放,小球 B 开始运动.(静电力常量 k =9.0×109N·m2/C 2,取 g =l0 m/s2⑴小球 B 开始运动时的加速度为多大?⑵小球 B 的速度最大时,距 M 端的高度 h 1为多大?⑶小球 B 从 N 端运动到距 M 端的高度 h 2=0.6l m 时,速度为 v =1.0 m/s,求此过程中小球 B 的电势能改变了多少?解得:1h =图 7-6代人数据解得:h 1=0.9 m反思:由于点电荷 A 在空间各点产生的场强并不相等,使小球 B 的运动加速度也不恒定,因此不能从运动规律求高度 h 1,必须对小球 B 在运动中受力情况的变化作出分析和判断,得到“小球 B 速度最大时合力为零”的结论,然后通过求合力来计算高度 h 1;第⑶问是本题的难点,抛开考生熟悉的点电荷在单一电场中电势能变化与电场力做功的关系模式,考生必须从能量转化与做功的关系的角度出发,确定小球 B 电势能的改变与两个力做功有关:匀强电场的电场力和小球 A 对小球 B 的库仑力,且电场力做的功等于电荷电势能的减少量,才能确定(23p E W W ∆=-+.C .粒子穿过电场的过程中,电场力做功2201cos 2m θv D .粒子穿过电场的过程中,电势能减小2201cos 2m θv反思:带电粒子飞出电场时速度恰好沿 y 轴的正方向,反过来看,从粒子飞出点到原点 O ,该曲线就是一条类平抛运动的抛物线,即粒子的运动为类平抛运动,因此 y 方向速度不变, x 方向做匀减速运动,飞出时速度恰好减小到零.例 7:如图 7-8所示,带正电的小球穿在绝缘粗糙倾角为θ的直杆上, 整个空间存在着竖直向上的匀强电场和垂直于杆斜向上的匀强磁场,小球沿杆向下滑动,在 a 点时动能为 100J ,到 C 点时动能为零,则 b 点恰为 a 、 c 的中点,则在此运动过程中( A .小球经 b 点时动能为 50JB .小球电势能增加量可能大于其重力势能减少量C .小球在 ab 段克服摩擦力所做的功与在 bc 段克服摩擦力所做的功相等D .小球到 c 点后可能沿杆向上运动解析:电场力方向竖直向上,因此电场力与重力的合力 P 恒定且一定在竖直方向上;小球到 C 点时动能为零,说明小球有减速运动.若小球先做加速运动,则随速度的增大洛伦兹力(垂直于杆增大,小球受到杆的弹力增大,因此滑动摩擦力增大,加速度减小,当加速度减小到零时速度最大,然后做匀速运动,不合题意,故小球一开始就做减速运动,由于速度减小而洛伦兹力减小,则滑动摩擦力随之减小,因此从 a 到 b 的平均摩擦力大于从 b 到 c , 两段合力做功不行, A 、 C 错;若合力 P 若向下, mg >qE ,则运动过程中电势能的增加量小于重力势能的减小量,若 P =0,则二者相等,若 P 向上,则 B 正确; P 向上,当小球速度为零时若有sin F >N θμ,则小球可沿杆向上运动, D 对.图 7-8解析 :带电粒子射出电场时速度的偏转角为θ,如图 7-10所示,有: cos =θv ,又 m R=Bq v ,而022cos 2cos m m d=R ==Bq Bqθθv v, A 正确. 答案 :A反思:由于粒子的偏转角与 U 有关,不少考生由此计算粒子射出电场时的速度 v 与 d 、 U 的关系, 无端多出几个未知量使判断受阻.第一直觉是 d 与粒子在电场的偏转角有关没错,但偏转角和粒子在磁场中的轨道半径又都与粒子射出电场时的速度相关,因此直接围绕偏转角列方程求解即可.例 9、如图所示为研究电子枪中电子在电场中运动的简化模型示意图。
在Oxy 平面的 ABCD 区域内,存在两个场强大小均为 E 的匀强电场 I 和 II ,两电场的边界均是边长为 L 的正方图 7-10(b(a2212eEx mv =2221122eE L y y at m v ⎛⎫'-== ⎪⎝⎭2y eEL v at mv ==, 2y Ly v nv '= 解得 21124xy L n ⎛⎫=+⎪⎝⎭,即在电场 I 区域内满足方程的点即为所求位置。
答案:2m d> Be v解析 :⑴由平衡条件有:tan qE = mg23tan 4.0010100.75C 3.0010C 100--mg q===E θ⨯⨯⨯⨯[带负电荷⑵电场反向后, 电场力和重力的合力 F 大小仍为0.5N cos mg=θ不变,方向与竖直方向夹角为θ=37°指向右下方,小球的平衡位置O ’, O O’ 与 OC 的夹角为2θ=74°,故小球从 C 点开始向O ’ 做加速运动,到达O ’ 时速度最大,根据对称性,小球会继续运动到与OO ’ 成2θ=74°的C ’ 点,即在CC ’ 之间振动.由图 7-15可知, C 点与同 O 等高的 D 点间电势差最大,由 U =Ed 得(m 1sin 320V U =ER+=θ即 21.24N N F =F+qB+m=Rv v由牛顿第三定律可知,小球对轨道的压力 1.24N N N F '=F= 答案:⑴负电荷, q=3.00×10-3C ;⑵ U m =320V,F N =1.24N反思 :带电粒子在复合场中的运动问题,解答采用了等效场、对称性等解题常用方法.此类试题的“平衡位置”的确定是要点,正确的受力分析和运动状态分析是前提.4. 三个确定:当带电粒子在匀强磁场中做匀速圆周运动时, 相关问题的解答关键在三个确定, 如图 7-16所示:图 7-15⑴圆心 O :总是位于粒子在不同位置的两点 A 、 B 处所受洛仑兹力F 作用线的交点上或弦 AB 的中垂线OO′ 与任一个洛仑兹力 F 作用线的交点上;⑵半径 R :①物理方法——m υR qB=; ②几何方法——一般由三角计算来确定 .⑶圆心角α与时间 t :粒子的速度偏向角φ等于回旋角α,并等于弦 AB 与切线的夹角 (弦切角θ的 2倍,且有22, (St t T R S R t πϕαθωαα=======或几何方法 , 或B . 空气阻力做负功,使其动能减小C . 向南北两极磁感应强度不断增强图 7-16D . 太阳对粒子的引力做负功5. 如图 4所示,匀强电场E方向水平向左,带有正电荷的物体沿绝缘水平面向右运动,经过A点时动能是 100J,经过B点时,动能是A点的1 5 ,减少的动能有35转化成电势能,那么,当它再次经过B点时动能为(A .16JB .8JC .4JD .20J8. 如图 7所示, 在重力加速度为g的空间中, 有一个带电量为+Q的场源电荷置于O点,B、C为以为圆心,半径为R的竖直圆周上的两点,A、B、O在同一竖直线上,AB=R,O、C在同一水平线上,现在有一质量为m,电荷量为 q 的有孔小球,沿光滑绝缘细杆AC从A点由静止开始下滑,滑下列说法正确的是( A . 从A到C小球做匀加速运动 B . 从A到C小球的机械能守恒 C . B、A两点间的电势差为2mgRqD .D . 小球重力在B点的瞬时功率为 2 sinmgv10. 如图 9所示,绝缘光滑半圆环轨道放在竖直向下的匀强电场中,场强为 E ,在与环心等高处放有一质量为 m 、带电 q 的小球,由静止开始沿轨道运动,下述说法正确的是 (A 、小球在运动过程中机械能守恒B 、小球经过环的最低点时速度最大C 、小球经过环的最低点时对轨道压力为 3(mg+qED 、小球经过环的最低点时对轨道压力为(mg+qE二、填空题(本题 2小题,共 18分,把答案填在题中的横线上或按要求答题c当两探针Ⅰ和Ⅱ分别与环上,环内导电纸接触时,电流表指针将。