复数概念[上学期]--北师大版
- 格式:pdf
- 大小:1.39 MB
- 文档页数:9
1.2 复数的有关概念(二)学习目标 1.理解可以用复平面内的点或以原点为起点的向量来表示复数及它们之间的一一对应关系.2.掌握实轴、虚轴、模等概念.3.掌握用向量的模来表示复数的模的方法.知识点一复平面思考实数可用数轴上的点来表示,类比一下,复数怎样来表示呢?答案任何一个复数z=a+bi,都和一个有序实数对(a,b)一一对应,因此,复数集与平面直角坐标系中的点集之间可以一一对应.梳理当用直角坐标平面内的点来表示复数时,我们称这个直角坐标平面为复平面,x轴称为实轴,y轴称为虚轴.实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数.知识点二复数的几何意义知识点三复数的模或绝对值设复数z=a+bi在复平面内对应的点是Z(a,b),点Z到原点的距离|OZ|叫作复数z的模或绝对值,记作|z|,显然,|z|=a2+b2.两个复数不全是实数不能比较大小,但可以比较它们模的大小.1.在复平面内,对应于实数的点都在实轴上.( √)2.在复平面内,虚轴上的点所对应的复数都是纯虚数.( ×)3.若|z1|=|z2|,则z1=z2.( ×)类型一复数的几何意义例1 实数x分别取什么值时,复数z=(x2+x-6)+(x2-2x-15)i对应的点Z在:(1)第三象限;(2)直线x-y-3=0上.考点 复数的几何意义 题点 复数与点的对应关系解 因为x 是实数,所以x 2+x -6,x 2-2x -15也是实数.(1)当实数x 满足⎩⎪⎨⎪⎧x 2+x -6<0,x 2-2x -15<0,即当-3<x<2时,点Z 在第三象限.(2)z =x 2+x -6+(x 2-2x -15)i 对应点Z(x 2+x -6,x 2-2x -15), 当实数x 满足(x 2+x -6)-(x 2-2x -15)-3=0, 即当x =-2时,点Z 在直线x -y -3=0上. 引申探究若本例中的条件不变,其对应的点在: (1)虚轴上;(2)第四象限. 解 (1)当实数x 满足x 2+x -6=0, 即当x =-3或2时,点Z 在虚轴上.(2)当实数x 满足⎩⎪⎨⎪⎧x 2+x -6>0,x 2-2x -15<0,即当2<x<5时,点Z 在第四象限.反思与感悟 按照复数和复平面内所有点所成的集合之间的一一对应关系,每一个复数都对应着一个有序实数对,只要在复平面内找出这个有序实数对所表示的点,就可根据点的位置判断复数实部、虚部的取值. 跟踪训练1 在复平面内,若复数z =(m 2-m -2)+(m 2-3m +2)i(m ∈R)的对应点在虚轴上和实轴负半轴上,分别求复数z. 考点 复数的几何意义 题点 复数与点的对应关系解 若复数z 的对应点在虚轴上,则m 2-m -2=0, 所以m =-1或m =2,所以z =6i 或z =0. 若复数z 的对应点在实轴负半轴上,则⎩⎪⎨⎪⎧m 2-m -2<0,m 2-3m +2=0,所以m =1,所以z =-2.类型二 复数的模例2 已知复数z 1=3-i ,z 2=cosθ+isi nθ. (1)求|z 1|及|z 2|,并比较它们的大小;(2)设z ∈C ,点Z 为z 在复平面内所对应的点,则满足条件|z 2|≤|z|≤|z 1|的点Z 构成了什么图形? 考点 复数的模的定义与应用 题点 利用定义求复数的模解 (1)|z 1|=(3)2+(-1)2=2, |z 2|=cos 2θ+sin 2θ=1. 因为2>1,所以|z 1|>|z 2|.(2)由|z 2|≤|z|≤|z 1|,得1≤|z|≤2.因为|z|≥1表示以O 为圆心,1为半径的圆的外部及其边界上所有点,|z|≤2表示以O 为圆心,2为半径的圆的内部及其边界上所有点,故符合题设条件的点构成了以O 为圆心,分别以1和2为半径的两个圆所夹的圆环(包括边界).反思与感悟 利用模的定义将复数模的条件转化为其实部、虚部满足的条件,是一种复数问题实数化思想. 跟踪训练2 已知0<a<3,复数z =a +i(i 是虚数单位),则|z|的取值范围是( ) A .(1,10) B .(1,3) C .(1,3)D .(1,10)考点 复数的模的定义与应用 题点 利用定义求复数的模 答案 A解析 0<a<3,复数z =a +i(i 是虚数单位), 则|z|=a 2+1∈(1,10).1.当23<m<1时,复数z =(3m -2)+(m -1)i(i 为虚数单位)在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限考点 复数的几何意义 题点 复数与点的对应关系 答案 D解析 ∵23<m<1,∴0<3m -2<1,m -1<0,∴复数z =(3m -2)+(m -1)i 在复平面内对应的点位于第四象限. 2.满足|z|2-2|z|-3=0的复数z 的对应点的轨迹是( ) A .一个圆 B .线段 C .两个点D .两个圆考点 复数的几何意义的综合应用 题点 利用几何意义解决轨迹、图形 答案 A解析 由条件|z|2-2|z|-3=0,得|z|=3(|z|=-1舍去),|z|=3表示一个圆.3.设复数z 1=a +2i ,z 2=-2+i(i 为虚数单位),且|z 1|<|z 2|,则实数a 的取值范围是( ) A .a<-1或a>1 B .-1<a<1 C .a>1D .a>0考点 复数的模的定义与应用 题点 利用模的定义求参数 答案 B解析 因为|z 1|=a 2+4,|z 2|=4+1=5, 所以a 2+4<5,即a 2+4<5, 所以a 2<1,即-1<a<1.4.若复数z =(m -2)+(m +1)i 为纯虚数(i 为虚数单位),其中m ∈R ,则|z|=________. 考点 复数的模的定义与应用 题点 利用定义求复数的模 答案 3解析 复数z =(m -2)+(m +1)i 为纯虚数(i 为虚数单位),所以m -2=0且m +1≠0,解得m =2,所以z =3i ,所以|z|=3.5.当实数m 为何值时,复数(m 2-8m +15)+(m 2+3m -28)i(i 为虚数单位)在复平面中的对应点 (1)位于第四象限; (2)位于x 轴的负半轴上. 考点 复数的几何意义 题点 复数与点的对应关系解 (1)由⎩⎪⎨⎪⎧m 2-8m +15>0,m 2+3m -28<0,得⎩⎪⎨⎪⎧m>5或m<3,-7<m<4,所以-7<m<3.(2)由⎩⎪⎨⎪⎧m 2-8m +15<0,m 2+3m -28=0,得⎩⎪⎨⎪⎧3<m<5,m =-7或m =4,所以m =4.1.复数的几何意义这种对应关系架起了复数与解析几何之间的桥梁,使得复数问题可以用几何方法解决,而几何问题也可以用复数方法解决(即数形结合法),增加了解决复数问题的途径. (1)复数z =a +bi(a ,b ∈R)的对应点的坐标为(a ,b)而不是(a ,bi);(2)复数z =a +bi(a ,b ∈R)的对应向量OZ →是以原点O 为起点的,否则就谈不上一一对应,因为复平面上与OZ →相等的向量有无数个. 2.复数的模(1)复数z =a +bi(a ,b ∈R)的模|z|=a 2+b 2;(2)从几何意义上理解,表示点Z 和原点间的距离,类比向量的模可进一步引申:|z 1-z 2|表示点Z 1和点Z 2之间的距离.一、选择题1.在复平面内,复数z =cos3+isin3的对应点所在象限为( ) A .第一象限 B .第二象限 C .第三象限D .第四象限考点 复数的几何意义 题点 复数与点的对应关系 答案 B解析 ∵π2<3<π,∴sin3>0,cos3<0,故复数z =cos3+isin3的对应点位于第二象限.2.已知复数z =(m +3)+(m -1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( ) A .(-3,1) B .(-1,3) C .(1,+∞) D .(-∞,-3) 考点 复数的几何意义 题点 复数与点的对应关系 答案 A解析 由题意得⎩⎪⎨⎪⎧m +3>0,m -1<0,解得-3<m<1.3.已知a 为实数,若复数z =(a 2-3a -4)+(a -4)i 为纯虚数,则复数a -ai 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限考点 复数的几何意义 题点 复数与点的对应关系 答案 B解析 若复数z =(a 2-3a -4)+(a -4)i 是纯虚数,则⎩⎪⎨⎪⎧a 2-3a -4=0,a -4≠0,得⎩⎪⎨⎪⎧a =4或a =-1,a ≠4,得a =-1,则复数a -ai =-1+i 对应的坐标为(-1,1),位于第二象限,故选B. 4.已知0<a<1,复数z 的实数为a ,虚部为-2,则|z|的取值范围是( ) A .(2,5) B .(2,3) C .(2,5)D .(2,3)考点 复数的模的定义与应用 题点 利用定义求复数的模 答案 C解析 由题知z =a -2i ,所以|z|=a 2+4, 又a ∈(0,1),所以|z|∈(2,5).5.复数z =(a 2-2a)+(a 2-a -2)i 对应的点在虚轴上,则( ) A .a ≠2或a ≠1 B .a ≠2且a ≠1 C .a =0或a =2 D .a =0考点 复数的几何意义 题点 复数与点的对应关系 答案 C解析 ∵z 在复平面内对应的点在虚轴上, ∴a 2-2a =0,解得a =0或a =2.6.已知复数z =a +3i 在复平面内对应的点位于第二象限,且|z|=2,则复数z 等于( ) A .-1+3iB .1+3iC .-1+3i 或1+3iD .-2+3i考点 复数的模的定义与应用题点 利用模的定义求复数 答案 A解析 因为z 在复平面内对应的点位于第二象限, 所以a<0,由|z|=2知,a 2+(3)2=2, 解得a =-1(舍正),所以z =-1+3i.7.在复平面内,复数z 1,z 2的对应点分别为A ,B.已知A(1,2),|AB|=25,|z 2|=41,则z 2等于( ) A .4+5i B .5+4iC .3+4iD .5+4i 或15+325i考点 复数的模的定义与应用 题点 利用模的定义求复数 答案 D解析 设z 2=x +yi(x ,y ∈R),由条件得⎩⎪⎨⎪⎧(x -1)2+(y -2)2=20,x 2+y 2=41.∴⎩⎪⎨⎪⎧x =5,y =4或⎩⎪⎨⎪⎧x =15,y =325.二、填空题8.若复数3-5i,1-i 和-2+ai 在复平面上对应的点在同一条直线上,则实数a 的值为________. 考点 复数的几何意义 题点 复数与点的对应关系 答案 5解析 由点(3,-5),(1,-1),(-2,a)共线可知a =5.9.已知复数z =x -2+yi 的模是22,则点(x ,y)的轨迹方程是________________. 考点 复数的几何意义的综合应用 题点 利用几何意义解决轨迹、图形 答案 (x -2)2+y 2=8解析 由模的计算公式得(x -2)2+y 2=22, ∴(x -2)2+y 2=8.10.设(1+i)x =1+yi ,其中x ,y 是实数,则|x +yi|=________. 考点 复数的模的定义与应用 题点 利用定义求复数的模答案 2解析 由(1+i)x =1+yi ,得x +xi =1+yi ,即⎩⎪⎨⎪⎧x =1,x =y ,故⎩⎪⎨⎪⎧x =1,y =1.所以|x +yi|=x 2+y 2= 2.11.若复数z =(a -2)+(a +1)i ,a ∈R 对应的点位于第二象限,则|z|的取值范围是________. 考点 复数的模的定义与应用 题点 利用定义求复数的模 答案 ⎣⎢⎡⎭⎪⎫322,3 解析 复数z =(a -2)+(a +1)i 对应的点的坐标为(a -2,a +1), 因为该点位于第二象限,所以⎩⎪⎨⎪⎧a -2<0,a +1>0,解得-1<a<2.由条件得|z|=(a -2)2+(a +1)2=2a 2-2a +5 =2⎝⎛⎭⎪⎫a 2-a +14+92=2⎝ ⎛⎭⎪⎫a -122+92. 因为-1<a<2,所以|z|∈⎣⎢⎡⎭⎪⎫322,3. 三、解答题12.求实数m 的值,使复数z =m(m -1)+(m -1)i 对应的点位于(1)实轴上;(2)第一象限;(3)第四象限. 考点 复数的几何意义 题点 复数与点的对应关系解 (1)由复数z 对应的点位于实轴上,可得m -1=0, 解得m =1,即当m =1时,复数z 对应的点位于实轴上.(2)由复数z 对应的点位于第一象限,可得⎩⎪⎨⎪⎧ m (m -1)>0,m -1>0,解得m>1,即当m>1时,复数z 对应的点位于第一象限.(3)由复数z 对应的点位于第四象限,可得⎩⎪⎨⎪⎧m (m -1)>0,m -1<0,解得m<0,即当m<0时,复数z 对应的点位于第四象限.13.在复平面内,分别用点和向量表示复数1,-12+12i ,-12-32i ,并求出它们的模.考点 复数的模的定义与应用题点利用定义求复数的模解如图所示,点A,B,C分别表示复数1,-12+12i,-12-32i,与之对应的向量可用OA→,OB→,OC→来表示.|1|=1,⎪⎪⎪⎪⎪⎪-12+12i=⎝⎛⎭⎪⎫-122+⎝⎛⎭⎪⎫122=22,⎪⎪⎪⎪⎪⎪-12-32i=⎝⎛⎭⎪⎫-122+⎝⎛⎭⎪⎫-322=1.四、探究与拓展14.关于实数x的不等式mx2-nx+p>0(m,n,p∈R)的解集为(-1,2),则复数m+pi所对应的点位于复平面内的第________象限.考点复数的几何意义题点复数与点的对应关系答案二解析因为不等式mx2-nx+p>0(m,n,p∈R)的解集为(-1,2),所以⎩⎪⎨⎪⎧m<0,(-1)+2=nm,(-1)×2=pm,所以⎩⎪⎨⎪⎧m<0,p>0.故复数m+pi所对应的点位于复平面内的第二象限.15.复数z满足|z+3-3i|=3,求|z|的最大值和最小值.考点复数的几何意义的综合应用题点利用几何意义解决距离、角、面积解方法一|z+3-3i|≥||z|-|3-3i||,又∵|z+3-3i|=3,|3-3i|=12=23,∴||z|-23|≤3,即3≤|z|≤33,∴|z|的最大值为33,最小值为 3.方法二|z+3-3i|=3表示以-3+3i对应的点P为圆心,以3为半径的圆,如图所示,则|OP|=|-3+3i|=12=23,显然|z|max=|OA|=|OP|+3=33,|z|min=|OB|=|OP|-3= 3.。
第五章 复数§1 复数的概念及其几何意义1.1 复数的概念1.2 复数的几何意义必备知识基础练知识点一 复数的概念与分类1.1-i 的虚部为( )A .iB .-iC .1D .-12.当实数m 取什么值时,复数(m 2-3m +2)+(m 2-4)i :①是实数?②是虚数?③是纯虚数?④在复平面内对应点位于第四象限?知识点二 复数相等3.若复数4-3a -a 2i 与复数a 2+4a i 相等,则实数a =( )A .1B .1或-4C .-4D .0或-44.如果(x +y )i =x -1,则实数x ,y 的值分别为( )A .x =1,y =-1B .x =0,y =-1C .x =1,y =0D .x =0,y =0知识点三 复数的模与几何意义的应用5.已知复数z =1+i ,其中i 为虚数单位,则|z |=( )A .12B .22C .2D .2 6.(多选题)已知复数z =(cos α+sin α)+(cos α-sin α)i ,则下列说法正确的是( )A .当α∈(0,π4)时,复数z 在复平面内对应的点在第一象限内 B .当α∈(π4 ,π2)时,复数z 在复平面内对应的点在第一象限内 C .复数z 的模的最大值为2D .复数z 的模长为定值7.在复平面内,复数6+5i ,-2+3i 对应的点分别为A ,B .若C 为线段AB 的中点,则点C 对应的复数是( )A .4+8iB .8+2iC .2+4iD .4+i关键能力综合练一、选择题1.当m <1时,复数1+(m -1)i 在复平面内对应的点位于( )A .第四象限B .第三象限C .第二象限D .第一象限2.已知i 为虚数单位,m ∈R ,复数z =(-m 2+2m +8)+(m 2-8m )i ,若z 为负实数,则m 的取值集合为( )A .{0}B .{8}C .{x |-2<x <4}D .{x |-4<x <2}3.若复数(m 2-m )+3i 是纯虚数,则实数m =( )A .1B .0或1C .1或2D .1或34.设a ,b 为实数,若复数1+2i =(a -b )+(a +b )i ,则( )A .a =32 ,b =12B .a =3,b =1C .a =12 ,b =32D .a =1,b =3 5.(易错题)设复数z =(2t 2-5t +3)+(t 2-2t +3)i ,t ∈R ,则以下结论中正确的是( )A .复数z 对应的点在第二象限B .复数z 一定不是纯虚数C .复数z 对应的点在实轴上方D .复数z 一定是实数二、填空题6.若复数z 在复平面内对应的点位于第二象限,且|z |=2,则z =________.(写出一个即可)7.若z 1=-3-4i ,z 2=(n 2-3m -1)+(n 2-m -6)i ,且z 1=z 2,则实数m =________,n =________.8.若复数z 1=m 2+1+(m 3+3m 2+2m )i ,z 2=4m -2+(m 2-5m )i ,m 为实数,且z 1>z 2,则实数m 的取值集合为________.三、解答题9.(探究题)(1)若复数z =2a -1a +2+(a 2-a -6)i(a ∈R )是实数,求z 1=(a -1)+(1-2a )i 的模;(2)已知复数z =3+a i(a ∈R ),且|z |<4,求实数a 的取值范围.学科素养升级练1.关于复数,下列说法错误的是( )A .若|z |=1,则z =±1或±iB .复数6+5i 与-3+4i 分别对应向量OA → 与OB → ,则向量AB → 对应的复数为9+iC .若z 是复数,则z 2+1>0D .若复数z 满足1≤|z |<2 ,则复数z 对应的点所构成的图形面积为π2.(学科素养——数学抽象)已知复数z 在复平面内对应的点位于第四象限.(1)若z 的实部与虚部之和为7,且|z |=13,求z ;(2)若|z |=6 ,且z 2+z 的实部不为0,讨论z 2+z 在复平面内对应的点位于第几象限.§1 复数的概念及其几何意义1.1 复数的概念1.2 复数的几何意义必备知识基础练1.答案:D解析:由复数虚部定义可知,1-i 的虚部为-1.故选D.2.解析:设z =(m 2-3m +2)+(m 2-4)i.①要使z 为实数,必须有m 2-4=0,得m =-2或m =2,即m =-2或m =2时,z 为实数.②要使z 为虚数,必有m 2-4≠0,即m ≠-2且m ≠2.故m ≠-2且m ≠2时,z 为虚数.③要使z 为纯虚数,必有⎩⎪⎨⎪⎧m 2-4≠0,m 2-3m +2=0, 所以⎩⎪⎨⎪⎧m ≠-2且m ≠2,m =1或m =2. 所以m =1,故m =1时,z 为纯虚数.④由已知得⎩⎪⎨⎪⎧m 2-3m +2>0,m 2-4<0, 解得-2<m <1. 3.答案:C解析:由复数相等的充要条件得⎩⎪⎨⎪⎧4-3a =a 2,-a 2=4a ,∴a =-4.故选C. 4.答案:A解析:∵(x +y )i =x -1,∴⎩⎪⎨⎪⎧x +y =0,x -1=0, ∴x =1,y =-1.故选A. 5.答案:C解析:因为复数z =1+i ,所以根据复数模的运算公式可得,|z |=12+12 =2 .故选C.6.答案:AD解析:因为cos α+sin α=2 sin (α+π4),cos α-sin α=2 cos (α+π4 ), 所以z =2 [sin (α+π4 )+icos (α+π4)]. 当α∈(0,π4 )时,α+π4 ∈(π4 ,π2), 所以sin (α+π4 )>0,cos (α+π4)>0,所以z 在复平面内对应的点在第一象限,故A 正确;当α∈(π4 ,π2 )时,α+π4 ∈(π2 ,3π4), 所以sin (α+π4 )>0,cos (α+π4)<0,所以z 在复平面内对应的点在第四象限,故B 错误;复数z 的模为2 × sin 2(α+π4)+cos 2(α+π4) =2 ,故C 错误,D 正确.故选AD.7.答案:C解析:由题意知A (6,5),B (-2,3),则AB 中点C (2,4)对应的复数为2+4i.关键能力综合练1.答案:A解析:∵m <1,∴m -1<0,∴复数1+(m -1)i 在复平面内对应的点位于第四象限.故选A.2.答案:B 解析:由题意得-m 2+2m +8<0,m 2-8m =0,解得m =8.即m 的取值集合为{8}.故选B.3.答案:B解析:因为复数(m 2-m )+3i 是纯虚数,所以m 2-m =0,解得:m =0或m =1.故选B.4.答案:A解析:由1+2i =(a -b )+(a +b )i ,得⎩⎪⎨⎪⎧a -b =1,a +b =2, 解得⎩⎪⎨⎪⎧a =32,b =12. 故选A. 5.答案:C解析:∵z 的虚部t 2-2t +3=(t -1)2+2恒为正,∴z 对应的点在实轴上方,且z 一定是虚数,排除D.又z 的实部2t 2-5t +3=(t -1)(2t -3)可为正、为零、为负,∴选项A 、B 不正确.故答案为C.6.答案:-1+3 i(答案不唯一)解析:设z =a +b i ,a ,b ∈R ,因为复数z 在复平面内对应的点在第二象限,所以a <0,b >0,又因为|z |=2,所以a 2+b 2=4,显然当a =-1,b =3 时,符合题意,故答案为-1+3 i(答案不唯一).7.答案:2 ±2解析:两个复数相等,则实部和虚部分别相等,所以⎩⎪⎨⎪⎧n 2-3m -1=-3,n 2-m -6=-4, 解得m =2,n =±2.8.答案:{0}解析:∵z 1>z 2,∴⎩⎪⎨⎪⎧m 3+3m 2+2m =0,m 2-5m =0,m 2+1>4m -2,解得m =0,∴实数m 的取值集合为{0}.9.解析:(1)∵z 为实数,∴a 2-a -6=0,∴a =-2或3.∵a =-2时,z 无意义,∴a =3,∴z 1=2-5i ,∴|z 1|=29 .(2)方法一 ∵z =3+a i(a ∈R ),∴|z |=32+a 2 ,由已知得32+a 2<42,∴a 2<7,∴a ∈(-7 ,7 ).方法二 利用复数的几何意义,由|z |<4知,z 在复平面内对应的点在以原点为圆心,以4为半径的圆内(不包括边界),由z =3+a i 知z 对应的点在直线x =3上,所以线段AB (除去端点)为动点Z 的集合.由图可知:-7 <a <7 .学科素养升级练1.答案:ABC解析:取z =12 +32 i ,则|z |=1,故A 错误;AB → =OB → -OA → =-3+4i -(6+5i)=-9-i ,故B 错误;取z =i ,但i 2=-1,z 2+1=0,知C 错误;设复数z =x +y i(x ,y ∈R ),则由1≤|z |<2 可知1≤x 2+y 2<2,故复数z 对应的点所构成的图形面积为π×2-π×1=π,故D 正确.故选ABC.2.解析:(1)依题意可设z =a +b i(a ,b ∈R ,a >0,b <0),因为z 的实部与虚部之和为7,且|z |=13,所以⎩⎨⎧a >0,b <0,a +b =7,a 2+b 2=13, 解得a =12,b =-5,故z =12-5i.(2)依题意可设z =a +b i(a ,b ∈R ),因为z 2+z =a 2-b 2+a +(2ab +b )i(a >0,b <0),所以a 2-b 2+a ≠0,且2ab +b =b (2a +1)<0.因为|z |=6 ,所以a 2+b 2=6,所以a 2-b 2+a =a 2-(6-a 2)+a =2a 2+a -6.当0<a <32时,2a 2+a -6<0,z 2+z 在复平面内对应的点位于第三象限; 当a >32时,2a 2+a -6>0,z 2+z 在复平面内对应的点位于第四象限.。