第四章机器人静力分析与动力学
- 格式:ppt
- 大小:478.00 KB
- 文档页数:24
注:1)2008年春季讲课用;2)带下划线的黑体字为板书内容;3)公式及带波浪线的部分为必讲内容第3章工业机器人静力学及动力学分析3.1 引言在第2章中,我们只讨论了工业机器人的位移关系,还未涉及到力、速度、加速度。
由理论力学的知识我们知道,动力学研究的是物体的运动和受力之间的关系。
要对工业机器人进行合理的设计与性能分析,在使用中实现动态性能良好的实时控制,就需要对工业机器人的动力学进行分析。
在本章中,我们将介绍工业机器人在实际作业中遇到的静力学和动力学问题,为以后“工业机器人控制”等章的学习打下一个基础。
在后面的叙述中,我们所说的力或力矩都是“广义的”,包括力和力矩。
工业机器人作业时,在工业机器人与环境之间存在着相互作用力。
外界对手部(或末端操作器)的作用力将导致各关节产生相应的作用力。
假定工业机器人各关节“锁住”,关节的“锁定用”力与外界环境施加给手部的作用力取得静力学平衡。
工业机器人静力学就是分析手部上的作用力与各关节“锁定用”力之间的平衡关系,从而根据外界环境在手部上的作用力求出各关节的“锁定用”力,或者根据已知的关节驱动力求解出手部的输出力。
关节的驱动力与手部施加的力之间的关系是工业机器人操作臂力控制的基础,也是利用达朗贝尔原理解决工业机器人动力学问题的基础。
工业机器人动力学问题有两类:(1)动力学正问题——已知关节的驱动力,求工业机器人系统相应的运动参数,包括关节位移、速度和加速度。
(2)动力学逆问题——已知运动轨迹点上的关节位移、速度和加速度,求出相应的关节力矩。
研究工业机器人动力学的目的是多方面的。
动力学正问题对工业机器人运动仿真是非常有用的。
动力学逆问题对实现工业机器人实时控制是相当有用的。
利用动力学模型,实现最优控制,以期达到良好的动态性能和最优指标。
工业机器人动力学模型主要用于工业机器人的设计和离线编程。
在设计中需根据连杆质量、运动学和动力学参数,传动机构特征和负载大小进行动态仿真,对其性能进行分析,从而决定工业机器人的结构参数和传动方案,验算设计方案的合理性和可行性。
第!!卷!第"期#$%&!!!’$&"!!!!!平!原!大!学!学!报()*+’,-)./0’12*,’*’0#3+4052!!!!!667年8月!(9:;&!667工业机器人的力学分析姬清华!平原大学机电工程学院"河南新乡<7"66"#!!摘!要!随着机电一体化技术的迅速发展!工业机器人在工业生产中的地位越来越重要!本文从工业机器人的力学分析入手!分别作了静力学和动力学的分析研究!为工业机器人手部及运动各构件提供了力学的分析原理及方法"关键词!工业机器人#静力学#动力学#力矩中图分类号!5/!<!W !!!文献标识码!,!!文章编号!=66>?"@<<!!667#6"?6==8?6!!!收稿日期!!667?6"?6>作者简介!姬清华$=@A 8%&!男!河南新乡人!主要从事机电一体化及数控加工方面的研究"!!随着工业机器人技术的发展"工业机器人的力学分析变得至关重要$工业机器人力学分析主要包括静力学分析和动力学分析"它们是工业机器人操作机设计%控制器设计和动态仿真的基础$P 静力学分析静力学分析是研究操作机在静态工作条件下"手臂的受力情况$P &P 静力平衡方程如图=所示"为开式链手臂中单个杆件的受力情况$杆件)通过关节)和)N =分别与杆件)U =和)N =相连接"以)关节的回转轴线和)N =关节回转轴线为2)U =和2)坐标分别建立两个坐标系)U =和)$令5)U =")表示)U =杆作用在杆上的力"5)")N =表示)杆作用在)N =杆上的力"则U 5)")N =表示)N =杆作用在)杆上的力"*)为)杆的重心"重力<1作用在*)上"于是杆件)的力平衡方程为&5)U =")N 5)N =")N <)1K 6)K ="!"’"#若以5)")N =代替5)N =")"则有&5)U =")U 5)")N=N <)1K 6!=#!!又令;)U =为)U =杆作用于)杆上的力矩"U ;)")N =为)N =杆作用于)杆的力矩"则力矩平衡方程为;)U =")U ;)")N=U !&)")N =N &)"*)#V 5)U =")N !U &)"*)#V U 5)")N =K 6!!)K ="!"’"!!#式中"第三项为5)U =")对重心取矩"第四项为U 5)")N =对重心取矩$若工业机器人操作机由#个杆件构成"则由式图=!杆件的受力分析!=#和式!!#可列出!#个方程"两式共涉及力和力矩!#g !个"因此"一般需结出两个初始条件方程才能有解$在工业机器人作业过程中"最直接受影响的是操作机手部与环境之间的作用力和力矩"故通常假设这两个量为已知"以使方程有解$从施加在操作机手部的力和力矩开始"依次从末杆件到机座求出所施加的力和力矩"将式!=#和式!!#合并并变成从前杆到后杆的递推公式"即5)U =")K 5)")N=U <)1;)U =")K ;)")N =N !&)U =")N &)"*)#V 5)U =")U !&)"*)V 5)")N =#!!)K ="!"’"#P &N 关节力和关节力矩为了使操作机保持静力平衡"需要确定驱动器对相应杆件的输入力和力短与其所引起的操作机(8==( 万方数据手部力和力矩之间的关系!令*)为驱动元件)的第)个驱动器的驱动力或驱动力矩"并假设关节处无摩擦"则有当关节是移动副时"如图!所示"*)应与该关节的作用力5)U =")在2)U =上的分量平衡"即*)K -O)U =5)U=")式中-)U =为)U =关节轴的单位向量!上式表明驱动器的输入力只与5)U =")在2)U =轴上的分量平衡"其他方向的分量由约束力平衡"约束力不作功!当关节是转动副时"*)表示驱动力距"它与作用力矩;)U =")在2)U =轴上的分量相平衡"即*)K -O)U =;)U=")图!!移动关节上的关节力N 动力学分析动力学分析是研究操作机各主动关节驱动力与手臂运动的关系"从而得出工业机器人动力学方程!目前已提出了多种动力学分析方法"这里仅就用牛顿欧拉方程建立工业机器人动力学方程作简要介绍!图"!杆件动力学方程的建立!!动力学方程可以用两个方程表达#一个用以描述质心的移动"另一个描述质心的转动!前者称为牛顿运动方程"后者称为欧拉运动方程!取工业机器人手臂的单个杆件作为自由体"其受力分析如图"所示!图中(*)为杆件)相对于固定坐标系的质心速度"+)为杆件)的转动角速度!因为固定坐标系是惯性参考系"所以将杆件)的惯性力加入到静力学方程式$=%中"于是有牛顿运动方程#5)U =")U 5)")N=N <)1U <)W (*)K 6)K ="!"&"#$"%作用在杆件)上的惯性矩是该杆件的瞬时角动量对时间的变化率!令+)为角速度向量"B )为杆件)质心处的惯量"于是角动量为B )+)!因为惯量随杆件方位的变化而变化"所以角动量对时间的导数不仅包含B )W +)"而且包含因B )的变化而引起的变化+)V B )+)"即陀螺力矩"上述两项加到静力学力矩平衡式$!%中"得;)U =")U ;)")N =N &)"*)V 5)")N =U &)U ="*)V 5)U =")U B W +)U +)V B )+)K 6)K ="!"&"#$<%公式$"%和$<%是单个杆件的动力学特性关系式"若将工业机器人的:个杆件均列出相应的上述两个方程"即得到工业机器人完整的动力学方程组的基本形式#牛顿’欧拉方程!!!参考文献!!="徐元昌#陶学恒&工业机器人!["&北京$中国轻工业出版社#=@@@&!!"陈小川#刘晓冰&虚拟制造体系及其关键技术!("&计算机辅助设计与制造#=@@@#%=6&&!""盛晓敏#邓朝晖&先进制造技术!["&北京$机械工业出版社#!66<&!<"邱士安&机电一体化技术!["&西安$西安电子科技出版社#!66<&【责任编校!李东风】@"@"’-.()(45B %*$’")*(!"U 474#_K +)"2?$,’$C "*0$#)*$+$#DX +"*8&)*$+X #1)""&)#1H "I $&8<"#8’5%)#1.3$#6#)("&7)8."9)#:)$#1"!"#$#<7"66"40)#$%@7(#1’*##_C G BG B ;F E J C II ;T ;%$J M ;:G$O [;H B E G F E :C H D "G B ;F $K $GE J J %C ;IC :C :I 9D G F L BE T ;K ;H $M ;M $F ;E :IM $F ;C M J $FG E :G &5B C D E F G CH %;E :E %L c ;D O F $M M ;H B E :C H D "I C D H 9D D ;D O F $MG B ;D G E G C H D E :II L :E M C H D D ;J E F E G ;%L E :I$O O ;F D G B ;G B ;$F C ;D $O E :E %L c C :Q E F M M $T ;M ;:G E :I H $M J$:;:G $O F $K $G D &A %.:41/(#F $K $G (D G E G C H D (I L :E M C H D (M $T ;M ;:G )A ==) 万方数据工业机器人的力学分析作者:姬清华, JI Qing-hua作者单位:平原大学,机电工程学院,河南,新乡,453003刊名:平原大学学报英文刊名:JOURNAL OF PINGYUAN UNIVERSITY年,卷(期):2005,22(3)被引用次数:2次1.邱士安机电一体化技术 20042.盛晓敏;邓朝晖先进制造技术 20043.陈小川;刘晓冰虚拟制造体系及其关键技术 1999(10)4.徐元昌;陶学恒工业机器人 19991.陈登瑞六自由度机械手本体结构关键技术研究[学位论文]硕士 20062.张烈霞工业机器人运动及仿真研究[学位论文]硕士 2006本文链接:/Periodical_pydxxb200503036.aspx。
第四章静力学和刚度分析(部分)4.1 引言本章研究并联机器的静力学和刚度。
机器工作时,末端执行器必然要对外界施加一定的力和力矩,而这些均由关节来提供。
对于串联机器,驱动力通过一个开环运动链传递;对于并联机器,驱动力通过几个并联路径传递到末端执行器。
它们的研究方法有一定的不同。
机器的静力学是在假设机器不发生运动时,研究各关节和末端执行器所承受的力和力矩之间的关系,包括大小和方向。
静力学分析对确定机器各构件和轴承的尺寸,以及确定合适的驱动器是必需的,是机器人柔顺控制(compliance control)的基础。
本章中,为简化描述,我们使用关节力和操作力这样的术语来表示关节和终端上的力和力矩。
机器静力学分析的方法有多种,包括矢量法、虚功原理、螺旋代数和四元数等。
矢量法又称为Chace方法,针对机器的每个构件,建立隔离体图和静力平衡方程,然后统一求解。
虚功原理是基于能量转换的方法,在并联机器的研究中应用非常广泛。
本章重点介绍基于矢量法和虚功原理的静力学分析。
另外,在探讨操作力与关节力之间的关系时,必须考虑各构件受力和变形的关系,因为如果构件变形过大将导致机器性能变坏。
终端和关节的受力与变形之间的关系属于机器的刚度分析范畴,这也是本章重要内容之一。
本章首先介绍机器人静力学分析的一些基础知识,包括:构件隔离体图和静力平衡方程,基于不同坐标系下的构件静力平衡方程,基于虚功原理的静力学分析方法,刚度矩阵和柔度矩阵。
在随后的并联机器静力学分析部分,应用矢量法和虚功原理对两种不同构型的机器进行了静力学分析。
在刚度分析部分,我们首先介绍只考虑系统驱动误差的刚度矩阵的求解;然后重点介绍目前应用非常广泛的用于刚度分析的有限元方法,并且针对几台实际的并联机器,给出了具体的建模和求解过程,并提供了大量的实验数据和分析结论,这些数据对设计和建造该类并联机器具有很好的参考价值。
4.2 静力学和刚度分析基础这一部分主要介绍机器人静力学和刚度分析的一些基础方法和概念,包括,机构的隔离体图,静力平衡方程,基于不同坐标系的构件静力平衡方程,虚功原理,刚度和柔度矩阵。