复合材料的基本理论
- 格式:ppt
- 大小:3.96 MB
- 文档页数:48
复合材料的复合原则与机制复合材料的性能与微观相的特性、形状、体积分数、分散程度以及界面特性等有很大的关系。
在对复合材料进行设计和性能预测以及性能分析时,需要用到复合材料的一些基本理论,即复合材料的复合原则与机制。
一、颗粒增强原理颗粒增强复合材料中主要承受载荷的是基体而非颗粒。
从宏观上看,颗粒增强复合材料中的颗粒是随机弥散分布在基体中的,这些弥散的质点阻碍基体中的位错运动。
如果质点是均匀分布的球形颗粒,直径为d,体积分数为Vp,则复合材料的屈服强度可用下式表示:式中Gm为基体的切变模量,b为柏氏矢量。
可以看出,弥散颗粒的尺寸越小,体积分数越大,强化效果越好。
颗粒增强的拉伸强度往往不是增强,而是降低的。
当基体与颗粒无偶联时,可以认为颗粒最终与基体完全脱离,颗粒占有的体积可看作孔洞,此时基体承受全部载荷,颗粒增强复合材料的拉伸强度为:式中为基体的拉伸强度。
上式表明,随颗粒体积含量Vp 的增加而下降。
并且此式仅适用于Vp≤40%的情况。
有偶联时的情况比较复杂,此时材料的拉伸强度不再出现随颗粒体积含量的增加而单调下降的情况,且拉伸强度明显提高。
除了以上直接的影响之外,加入颗粒导致晶粒尺寸、空洞和晶界性能的变化也间接的影响复合材料的力学性能。
二、连续纤维增强连续纤维增强复合材料是由长纤维和基体组成的复合材料。
在工程上,一般将复合材料简化为图3的层板模型来分析其力学行为。
图3的二维层板模型有并联和串连两种考虑方式。
在串联模型中,纤维薄片和基体薄片在横向上呈串联形式,意味着纤维在横向上完全被基体隔开,适用于纤维所占百分比较少的情况;而并联模型则意味着纤维在横向上完全连通,适用于纤维含量较多的情况。
1.串联模型的弹性常数:(1)纵向弹性模量E11在串联模型中取出代表体积单元,平均应力σ1。
由材料力学知道,已知纤维材料的弹性模量E f和基体材料的弹性模量Em, 欲求单元应变ε1或纵向弹性模量E11的问题是一次超静定问题。
复合材料单层板理论复合材料是一类新型材料复合材料是一类新型材料,其强度高、刚度大、质量轻,并具有抗疲劳、耐高温、减振、可设计等一系列优点,近几十年来,在航空航天、能源、交通、建筑、机械、信息、化工、医疗和体育等部门日益得到广泛应用。
复合材料是一种多相材料,它具有非均匀性和各向异性,其强度和刚度分析的理论与方法不同于金属材料。
随着对复合材料力学特性的深入研究,已经形成了复合材料力学学科体系并得到蓬勃发展。
ABC电子国内外许多高等院校巳将复合材料力学列为力学及相关专业本科生和研究生的必修和选修课程。
为了满足高等学校力学专业本科生和研究生的复合材料力学课程教学的需要,笔者在参考国内外复合材料力学书籍的基础上,结合多年来从事复合材料力学教学的体会,编写了这本《复合材料力学基础》。
本书阐述了连续纤维增强复合材料力学基础、复合材料宏观力学基本理论和分析方法。
全书内容分为7章。
第1窜是复合材料概述,第2章介绍变形体几何分析和基本守恒原理,第3章是线弹性各向异性弹性力学本构方程,第4章为复合材料单层板理论,第5章是复合材料单层板强度理论,第6章是复合材料层合板理论,第7章介绍复合材料层合板弯曲、屈曲和振动。
本书可供高等院校力学及相关专业本科生、研究生复合材料力学课程作为教材使用,也司供有关科技人员学习参考。
复合材料是指两种或两种以上具有不同性能的材料在宏观尺度上组合成的一种多相材料。
每一种组成材料称为复合材料的组分,包容组分称为基体IC现货材料(简称为基体),被包容材料称为增强材料,基体与增强材料的结合面称为界面(基体与增强材料在其界面上束发生化学反应,无相互溶解)。
在工程上,复合材料是指通过物理和化学方法格一种(或几种)材料按照一定方式加入到另一种材料中,从而克服单一材料性能的某些弱点。
对于复合材料力学,单一材料性能的改善主要是指材料的力学性能(比强度、比刚度、耐腐蚀和耐磨损、湿热效应等)。
从不同的角度来看,复合材料具有不同的含义。
复合材料的界面理论1、界面形成及其形成1.1界面的定义复合材料的界面是指基体与增强相之间化学成分有显著变化的、构成彼此结合的、能起载荷传递作用的微小区域。
复合材料的界面是一个多层结构的过渡区域,约几个纳米到几个微米。
此区域的结构与性质都不同于两相中的任何一相。
这一界面区由五个亚层组成,每一亚层的性能都与基体和增强相的性质、复合材料成型方法有关。
界面区域如图1-1所示。
1.2界面的形成复合材料体系对界面要求各不相同,它们的成形加工方法与工艺差别很大,各有特点,使复合材料界面形成过程十分复杂,理论上可分为两个阶段: 第一阶段:增强体与基体在一组份为液态(或粘流态)时的接触与浸润过程。
在复合材料的制备过程中,要求组份间能牢固的结合,并有足够的强度。
要实现这一点,必须要使材料在界面上形成能量最低结合,通常都存在一个液态对固体的相互浸润。
所谓浸润,即把不同的液滴放到不同的液态表面上,有时液滴会立即铺展开来,遮盖固体的表面,这一现象称为“浸润”。
第二阶段:液态(或粘流态)组份的固化过程,即凝固或化学反应。
固化阶段受第一阶段的影响,同时它也直接决定着所形成的界面层的结构。
以固热性树脂的固化过程为例,固化剂所在位置是固化反应的中心,固化反应从中心以辐射状向四周扩展,最后形成中心密度大、边缘密度小的非均匀固化结构,密度大的部分称为胶束或胶粒,密度小的称胶絮。
2、界面对复合材料性能的影响及影响界面结合强度的因素 2.1界面对复合材料性能的影响复合材料内界面结合强度是影响复合效果的最主要因素。
界面的结合强度主要取决于界面的结构、物理与化学性能。
具有良好结合强度的界面,可以产生如下强化效应:(1)阻止裂纹的扩散,提高材料的韧性;(2)通过应力传递,使强化相承受较大的外载荷,提高复合材料的承载能力;(3)分散和吸收各种机械冲击和热冲击的能量,提高抗外加冲击的能力;(4)使强化相与基体产生既相互独立又相互协调的作用,弥补各自的缺点,获得新的材料使用性能。
3复合材料的设计原理和复合理论3.1 概述材料设计是指根据对材料性能的要求而进行的材料获得方法与工程途径的规划。
对设计一词的传统解释为:进行某项制作或工程以前,根据该项目的使用目的和性能要求,拟定其材料、结构、工艺、用地、进度、费用等各方面的计划和估算。
在传统设计中,材料仅仅处于在市场上可以提供的范围内被选择的地位。
当一种材料被设计人员选定后,设计的任务仅仅是确定其构件的几何尺寸。
例如设计一个承受内外压差P(由于外压通常为一个大气压,一般远小于压力容器的额定内压,此处P往往取为内压)的一定直径的圆筒,只需根据其受力来计算其壁厚t(见图3-1)。
由管壁取出单元体进行力学分析。
因管壁的径向应力较小可略去不计,按平面应力状态来计算,即仅考虑周向应力σc和轴向应力σa。
图3-1 承受内压p圆筒的应力分析由材料力学的知识知,周向力的平衡为:2σc tΔl = p dΔl轴向力的平衡为:p(πd2/4) =σaπdt由以上二式可以分别求出管壁所受的周向应力σc和轴向应力σa为:σc = pd /(2t)(3-1)σa = pd /(4t) (3-2)可见:σc= 2σa(3-3)令σc≤[σ],据此决定圆筒的壁厚t,则t ≥pd /(2[σ ])(3-4)其中,t为壁厚;d为圆筒的直径;[σ]为所选材料的许用应力,一般由材料手册查得。
公式(3-3)说明危险将出现于周向,但是,如果按照式(3-4)来设计,则轴向的强度储备过多,对于各向同性材料,这种浪费是无法避免的。
传统设计的流程(或步骤)可以归纳为:选取材料→查取其[σ]值→确定壁厚t→计算重量→确定加工方法→计算成本复合材料设计是通过改变原材料体系、比例、配置和复合工艺类型及参数,来改变复合材料的性能,特别是使其具有各向异性,从而适应在不同位置、不同方向和不同环境条件下的使用要求。
复合材料的可设计性赋予了结构设计者更大的自由度,从而有可能设计出能够充分发掘与应用材料潜力的优化结构。
第1章绪论1.复合材料的定义(Composition Materials , Composite)复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。
复合材料=基体(连续相)+增强材料(分散相)分散相是以独立形态分布在整个连续相中,两相之间存在着相界面。
分散相可以是增强纤维,也可以是颗粒或弥散的填料。
2.复合材料常见分类方法:1)按性能分:常用复合材料、先进复合材料2)按用途分:结构复合材料、功能复合材料3)按复合方式分:宏观复合、微观复合4)按基体材料分:聚合物基、金属基、无机非金属基5)按增强体形式分:纤维增强复合材料、颗粒增强、片材增强、叠层复合3.复合材料在结构设计过程中的结构层次分几类,各表示什么?在结构设计过程中的设计层次如何,各包括哪些内容?三个结构层次: 一次结构——单层材料——微观力学一次结构二次结构——层合体——宏观力学二次结构三次结构——产品结构——结构力学三次结构设计层次:单层材料设计、铺层设计、结构设计4.复合材料力学主要是在单层板和层合板这两个结构层次上展开的,其研究内容分为微观力学和宏观力学两部分。
第2章复合材料界面和优化设计1.复合材料是由两种或两种以上不同物理、化学性质的物质以微观或宏观形式复合而成的多相材料。
2.复合材料界面机能:1)传递效应:基体可通过界面将外力传递给增强物,起到基体与增强体之间的桥梁作用2)阻断效应:适当的界面有阻止裂纹扩展、中断材料破坏、减缓应力集中的作用3)不连续效应:在界面上产生物理性能不连续性和界面摩擦现象,如抗电性、电感应性、磁性、耐热性等4)散热和吸收效应:5)诱导效应3.界面效应既与界面结合状态、形态和物理、化学性质等相关,也与界面两边组元材料的浸润性、相容性、扩散性等密切相关。
4.聚合物基复合材料是由增强体与聚合物基体复合而形成的材料。
聚合物基复合材料分类:热塑性、热固性聚合物基复合材料。
热塑性聚合物基复合材料成型两个阶段:①熔体与增强体之间接触和润湿②复合后体系冷却凝固成型。
复合材料概念复合材料概念Company number:【0089WT-8898YT-W8CCB-BUUT-202108】1 总论1)复合材料概念、命名、分类及其基本性能。
概念:复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。
命名:将增强材料的名称放在前面,基体材料的名称放在后面,再加上“复合材料”。
基本性能:可综合发挥各种组成材料的优点,使一种材料具有多种性能,具有天然材料所没有的性能。
可按对材料性能的需要进行材料的设计和制备。
可制成所需的任意形状的产品。
性能的可设计性是复合材料的最大特点。
2)聚合物基复合材料的主要性能比强度、比模量大;耐疲劳性能好;减震性好;过载时安全性好;具有多种功能性;有很好的加工工艺性。
3)金属基复合材料的主要性能高比强度、高比模量;导热、导电性能好;热膨胀系数小、尺寸稳定性好;良好的高温性能;耐磨性好;良好的疲劳性能和断裂韧性;不吸潮、不老化、气密性好。
4)陶瓷基复合材料的主要性能强度高、硬度大、耐高温、抗氧化,高温下抗磨损性好、耐化学腐蚀性优良,热膨胀系数和相对密度较小5)复合材料的三个结构层次一次结构:由基体和增强材料复合而成的单层材料,其力学性能决定于组份材料的力学性能、相几何和界面区的性能。
二次结构:单层材料层合而成的层合体,其力学性能决定于单层材料的力学性能和铺层几何。
三次结构:工程结构或产品结构,其力学性能决定于层合体的力学性能和结构几何。
6)复合材料设计的三个层次单层材料设计:包括正确选择增强材料、基体材料及其配比,该层次决定单层板的性能。
铺层设计:包括对铺层材料的铺层方案做出合理安排,该层次决定层合板的性能。
结构设计:确定产品结构的形状和尺寸。
2 基体材料1)金属基体材料选择基体的原则、金属基结构复合材料的基体、金属基功能复合材料的基体原则:金属基复合材料的使用要求;金属基复合材料组成特点;集体金属与增强物的相容性。
结构复合材料的基体可大致分为轻金属基体和耐热合金基体两大类。
复合材料界面理论简介摘要:纤维复合材料作为先进材料,质量轻,强度高等特点使其在航空、航天、船舶、汽车等工程领域应用越来越发挥其重要性。
随着复合材料应用领域的扩展,对材料性能提出了更高的要求。
复合材料的性能取决于增强体纤维、树脂基体和界面性能,其中纤维和树脂之间的界面粘结力是一个重要因素。
界面粘结强度,即纤维断裂处通过基体向纤维传递应力的能力,直接影响到复合材料的强度、韧性和破坏模式等宏观力学行为。
因此,研究界面之间的相互作用,对于界面的设计、预测有非常重要的作用。
本文介绍了几种常见的几面之间的相互作用理论。
关键词:界面;形成;相互作用理论;1界面简介复合材料是由两种或两种以上化学和物理性质不同的材料复合而成的,那么必然存在着异种材料的接触面,这个接触面就是界面。
一般人们对复合材料界面的定义是,指基体与增强物之间化学成分有显著变化的、构成彼此结合的、能起载荷传递作用的微小区域。
聚合物基复合材料界面的形成可以分成两个阶段:第一阶段是基体与增强纤维的接触与浸润过程。
增强纤维优先吸附能较多降低其表面能的组分,因此界面聚合物在结构上与聚合物基体是不同的。
第二阶段是聚合物的固化阶段。
聚合物通过物理的或化学的变化而固化,形成固定的界面层。
2界面作用理论2.1浸润性理论1963年,Zisman提出浸润性理论,认为浸润是形成界面的基本条件之一,若两相物质能实现完全浸润,则表面能较高的一相物体表面的物理吸附将大大超过另一相物体的内聚能强度,从而使两相物体具有良好的粘合强度。
这种理论认为两相物体间的结合模式属于机械互锁和浸润吸附。
其中机械粘合是一种机械互锁现象,即在形成复合材料的两相相互接触过程中,若浸润性差,两相接触的只是一些点,接触面有限(见图1(a))。
若浸润性好,液相可扩展到另一相表面的坑凹中,因而两相接触面积大,结合紧密,产生机械锚合作用(见图1(b))。
而物理吸附主要为范德华力的作用。
图1浸润与不浸润的界面显然,聚合物基体对增强材料良好的浸润性将有利于提高界面的复合强度,但浸润性不是界面粘接的唯一条件。
第二章复合材料的复合效应第一节复合效应概述复合材料的复合原理是研究复合材料的结构特性、开拓新材料领域的基础。
耦合:不同性质材料之间的相互作用。
→复合材料性能与结构的协同相长特性(即复合后的材料性能优于每个单独组分的性能)。
从力学、物理学上理解复合材料多样性的基础。
拟解决的问题:寻找材料复合的一般规律。
研究增强机理。
一、材料的复合效应线性效应:平均效应、平行效应、相补效应、相抵效应。
非线性效应:相乘效应、诱导效应、共振效应、系统效应。
复合效应是复合材料的研究对象和重要内容,也是开拓新型复合材料、特别是功能型复合材料的基础理论问题。
非线性效应尚未被充分认识和利用,有待于研究和开发。
1、平均效应:P c=P m V m+P f V f(P:材料性能;V:材料体积含量;c:复合材料;m:基体;f:增强体或功能体)应用:力学性能中的弹性模量、线膨胀率等结构不敏感特性;热传导、电导等物理常数。
例:复合材料的弹性模量:E c=E m V m+E f V f(混合定律)2、相补效应:性能互补→提高综合性能。
例:脆性高强度纤维与韧性基体复合,适宜的结合形成复合材料。
→性能显示为增强体与基体互补。
3、相乘效应:X/Y·Y/Z=X/Z(X、Y、Z:物理性能)两种具有转换效应的材料复合→发生相乘效应→设计功能复合材料。
例:磁电效应(对材料施加磁场产生电流)——传感器,电子回路元件中应用。
压电体BaTiO3与磁滞伸缩铁氧体NiFe2O4烧结而成的复合材料。
对该材料施加磁场时会在铁氧体中产生压力,此压力传递到BaTiO3,就会在复合材料中产生电场。
最大输出已达103V·A。
单一成分的Cr2O3也有磁电效应,但最大输出只有约170V·A。
4、共振效应:两个相邻的材料在一定条件下,产生机械的、电的、磁的共振。
应用:改变复合材料某一部位的结构→复合材料固有频率的改变→避免材料工作时引起的破坏。
吸波材料:调整复合材料的固有频率,吸收外来波。
高延性水泥基复合材料(HDCC)是一种具有应变硬化、多缝开裂和高延性等特性的新型纤维增强水泥基复合材料。
概念提出之始,是以微观力学参数为基础进行设计,通过取得基体韧度、界面粘结和纤维特性三者的最优组合,实现高延性。
然而细观力学设计是一个非常大的系统工程,同时水泥基复合材料本身也是一种十分复杂的材料,因此从原材料性能的影响规律和优化配合比,以材料的宏观力学性能作为设计目标,从经验的和定性的初步设计开始,实现HDCC最优的材料制备技术显得很有必要。
断裂韧度反应了基体抵抗开裂的能力,也是高延性水泥基复合材料(HDCC)的设计基础。
Li等指出当聚乙烯醇纤维体积掺量为2%,HDCC 基体的断裂韧度Jm应低于0.01 kJ/㎡。
纤维和基体界面粘结应力一定时,基体的开裂韧度越低,越容易产生多缝开裂现象。
影响HDCC性能的因素非常多,除了原材料品种及性能与配合比参数如水胶比、胶砂比、粉煤灰含量和其他掺合料的影响外,还受养护条件、流动性、龄期等因素的影响。
从而使得HDCC的配合比设计非常复杂困难。
本文全面系统研究了配合比设计参数、原材料优选、拌合物流动性及养护制度等对HDCC的力学性能尤其是拉伸延性的影响,同时测试了部分配合比的干燥收缩、氯离子扩散性和水渗透性。
从粉煤灰掺量、胶砂比、集料含量、纤维掺量、适当的颗粒状材料、水泥品种、粉煤灰品种、防水剂、外加剂掺量及品种、拌合物流动性、不同养护制度等方面,优化了特定材料下的材料制各技术。
所制备的HDCC最大延性达5%左右,达到国际先进水平。
在配合比设计基础上,综合众多因素,本文全面系统研究了配合比设计参数等对HDCC基体的断裂韧度的影响规律。
测试了不同龄期的基体抗压强度、断裂韧度等,深入揭示了水胶比、粉煤灰含量、灰砂比等配合比关键参数和粉煤灰品种,橡胶微粉等对HDCC基体断裂性能的影响规律和机理。
充分表明了微观结构决定着材料的宏观行为。
因此在断裂韧度的基础上,选择了部分基体的配合比,制备了微观测试样品,系统进行了MIP、XRD和纳米硬度等微观性能的分析,并借助裂端位错行为的分子动力学理论,分析了<20nm微孔对断裂性能的影响,并采用拟合与微观力学分析方法,得出了孔隙率和微孔含量与断裂性能之间的定量关系。
复合材料与粘弹性力学课程设计引言复合材料是由两种或两种以上不同性质的材料通过一定的方法组合而成的新型材料,具有良好的综合性能。
粘弹性力学是研究材料的变形与应力之间的关系,是复合材料研究的一个重要方向。
本课程设计旨在通过学习复合材料与粘弹性力学的基本理论,研究和设计具有良好性能的复合材料材料。
课程设计内容1.复合材料的基本原理复合材料是由两种或两种以上不同性质的材料组合而成的一种材料。
这些材料的组合可以是物理的、化学的或机械性的。
复合材料的性质取决于其组成成分、组织结构和生产工艺等因素。
本部分将介绍复合材料的基本原理和组成成分。
2.复合材料的制备方法在本部分,我们将介绍复合材料的制备方法。
复合材料的制备方法包括层叠法、注塑法、吹塑法、梯度材料法等。
各种方法都有其独特的优点和缺点,本部分将讨论每种方法的优缺点。
3.复合材料的性能测试复合材料的性能测试是确定其适用性和质量的关键。
该部分将讨论复合材料的物理性能、力学性能和热性能等,以及用于测试这些性能的测试方法和仪器。
4.粘弹性力学基本原理粘弹性力学是研究材料的变形与应力之间的关系的一种学科。
在本部分,我们将讨论粘弹性力学的基本原理和粘弹性模型等相关概念。
5.复合材料的力学性能研究本部分将介绍复合材料的力学性能研究方法,如测试复合材料的滞回曲线、制备复合材料的模型、建立复合材料的有限元模型等等,以便更好地了解和研究复合材料的力学性能。
6.复合材料的设计在本部分,我们将介绍复合材料的设计方法和过程,为学生提供基本的设计思路和技能,以便他们在将来的工作中能够设计出更具有实战意义的复合材料。
课程设计目标通过本课程设计,学生应达到以下目标:1.理解复合材料的基本原理和制备方法;2.掌握复合材料的物理性能、力学性能和热性能测试方法;3.了解粘弹性力学的基本原理和粘弹性模型;4.掌握测试和研究复合材料的力学性能的方法;5.能够基于复合材料的性能设计出满足实际需求的复合材料。