光纤光栅理论
- 格式:ppt
- 大小:2.09 MB
- 文档页数:43
光纤光栅原理及应用光纤光栅是一种通过在光纤中引入周期性折射率变化的装置,利用折射率变化来调制和处理光信号。
光纤光栅的工作原理基于布拉格光栅的原理,它可以实现光的反射、衍射和干涉,具有许多重要的应用。
光纤光栅的工作原理可以分为两种类型:折射率周期变化型和几何尺寸周期变化型。
在折射率周期变化型中,光纤的折射率会周期性地改变,形成一定的折射率分布。
而在几何尺寸周期变化型中,光纤的尺寸周期性改变,例如通过在光纤表面制造微细结构。
光纤光栅的应用十分广泛。
以下是一些光纤光栅的常见应用:1.光纤通信系统中的滤波器:光纤光栅可以用作滤波器来选择性地过滤光纤通信信号,去除噪声和干扰,从而提高信号质量和传输效率。
2.光纤传感器:由于光纤光栅对于外界环境的敏感性,它可以用作各种类型的传感器,例如温度传感器、应变传感器和压力传感器等。
当外界环境发生变化时,光纤光栅会产生相应的光强、频率或相位变化,从而测量环境的变化量。
3.激光器输出功率控制:光纤光栅可以通过调整光纤中的折射率改变激光器的输出功率。
通过改变光纤光栅的特性,可以有效地控制激光器的输出光强,实现激光器的功率稳定控制。
4.光纤光栅传输线惯性测量:光纤光栅可以用作惯性传感器,测量力、加速度或角度的变化。
通过测量光纤光栅的变化,可以获得与物体的动态运动相关的信息。
5.光纤光栅激光器:光纤光栅可以用作可调谐激光器,通过改变光纤光栅的特性,可以实现激光器输出波长的调谐。
这对于光通信系统、光谱分析和光学成像等领域非常重要。
以上只是光纤光栅的一些常见应用,随着技术的不断发展,光纤光栅的应用领域还在不断扩展。
光纤光栅具有体积小、重量轻、高稳定性和高灵敏度等优点,因此在光学传感、通信和激光器等领域具有广泛应用前景。
光纤布拉格光栅理念原理与技术特征光纤布拉格光栅(Fiber Bragg Grating,FBG)是一种利用光纤中的布拉格光栅实现光波频率选择与调制的技术。
它在光通信、传感器等领域具有广泛的应用。
本文将从原理和技术特征两个方面来详细介绍光纤布拉格光栅技术。
光纤布拉格光栅的原理可追溯到布拉格散射理论。
布拉格散射是指当一束光波经过一个均匀光周期结构时,会在每个周期出现反射或透射,形成和入射光波相干的反射光波。
布拉格光栅是一种具有空间周期结构的光学元件,由一系列等距离的折射率变化组成。
光纤布拉格光栅则将布拉格光栅结构移植到了光纤中,形成了一种具有周期性折射率变化的光纤元件。
光纤布拉格光栅一般采用两种方法制备,即直写法和光干涉法。
直写法是指通过高能激光束直接照射在光纤的芯部,通过光纤材料的光学非线性效应和热效应来形成布拉格光栅结构。
光干涉法是指将两束光波通过干涉结构产生干涉现象,经过光纤芯部后,在折射率变化的作用下形成布拉格光栅。
1.高可靠性:光纤材料的插入损耗低,与光纤之间的耦合效率高,使得光纤布拉格光栅具有较高的传输效率,并且能够长时间保持稳定的性能。
2. 宽带性:光纤布拉格光栅的制备工艺已经趋于成熟,能够制备出能够覆盖整个光通信波段(1260~1650 nm)的宽带布拉格光栅。
3.稳定性:光纤布拉格光栅在光纤中的固定度较高,不易受到外界环境的干扰,能够长时间稳定地工作。
4.温度和应变传感:由于光纤布拉格光栅的折射率与温度和应变有关,因此可以通过测量布拉格光栅的中心波长偏移来实现温度和应变的传感。
这种传感技术具有高灵敏度、快速响应和长距离传输等优点,在工业和生物医学领域有广泛的应用前景。
5. 光互联和光波长多路复用:光纤布拉格光栅可以用作光纤互联中的微型光学件,实现在光纤网络中的信号调制、调整和复用等功能。
同时,光纤布拉格光栅也可以用于光波长多路复用(Wavelength Division Multiplexing,WDM)系统中,实现光路的选择和分离。
第1章 光纤光栅光学性质的研究光纤光栅是一种全光纤的滤波器件,它的光学性质决定了它的广泛应用。
研究光纤光栅光学性质的基本理论是耦合波理论。
基于耦合波理论的传输矩阵法是一种快速数值模拟非均匀光纤光栅光学特性的方法。
在本章,系统地总结了应用耦合波理论研究光纤光栅的光学性质的方法。
光栅反射带宽是其作为滤波器的主要性能指标,本章研究了光栅参数对光栅反射带宽的影响。
其它主要研究包括寻找传输矩阵法中分割段数的最优值,各种参数对线性啁啾光纤光栅光学性质的影响,包括反射谱和时延特性受光栅长度、光纤折射率微扰幅度、啁啾系数和光波从不同方向入射时的影响,以及各种切趾函数对光纤光栅的作用。
第一节 研究光纤光栅的基本理论:耦合波理论1 光纤光栅中的折射率分布光纤光栅中的折射率微扰是由制作时所用紫外光的场分布决定的。
一般全息曝光和相位图2.1-1几中典型光纤光栅的折射率微扰分布a uniform gratingb chirped gratingc Gauss gratingd phase shift gratinge Moire gratingf super structure grating掩模板法制作光纤光栅时的场分布具有余弦函数的形式,所以光栅的折射率微扰也具有余弦函数形式,一般可以写为:⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡φ+Λπν+δ=δ)z (z 2cos )z (1)z (n )z (n eff eff(2.1-1))z (n eff δ是折射率微扰的平均值,可以看成一个光栅周期内折射率变化的直流部分,ν是光栅条纹的可见度,Λ是光栅的周期,φ(z)可以用来描述光栅的啁啾。
光纤光栅的光学性质就决定于上式中各个参数的选择,我们将它们统称为光栅参数。
光纤光栅的光学性质就由这些光栅参数决定,通过选择它们沿光纤方向不同的变化形式,可以得到适用于不同目的的光栅。
图2.1-1是几中常见的光纤光栅的折射率微扰的分布示意图:1. 均匀光纤光栅:各个光栅参数沿光纤方向是常量,这种光栅可以得到解析的理论分析结果,是耦合波理论分析光纤光栅光学性质的出发点。
光纤光栅理论与分析方法光纤是一种介质光波导,其特点是将光波限制在其纤芯或包层传输,理论上分析光波在光纤中传输的一些基本特性,最基本的方法是求解一定边界条件下的麦克斯韦方程组。
但在光纤中写入光栅后,直接从麦克斯韦方程组研究其特性比较困难,而利用耦合模理论则简单得多。
早在光纤光栅出现以前,耦合模理论已经用于分析平面波导光栅、波导间的耦合。
从耦合模理论可以得到耦合模方程,一般情况下的耦合模方程较为复杂,但在某些特殊情况下可以得到简化并精确求解,本章中的均匀光纤布拉格光栅就是耦合模方程精确求解的例子。
对于均匀光纤布拉格光栅的耦合模方程,能够求解出其解析解,然而,对于非均匀光纤布拉格光栅,求解耦合模方程将变的十分复杂和繁琐且不适合数值计算。
从耦合模方程得到的传输矩阵分析法弥补了这些缺点,利用传输矩阵,可以很方便的分析各种特殊结构的光纤光栅(如啁啾光纤光栅、相移光纤光栅、取样光纤光栅等)。
本章最后详细的分析了基于时间因果律的剥层算法,从频域上对光纤光栅进行重构设计。
利用剥层算法实现了任意光谱形状的光纤光栅重构,并设计了一种反射谱为理想矩形型的光纤光栅。
1.1耦合模理论利用麦克斯韦方程组研究光波导,直接求解较为困难,只有少数几种情况可以直接求解,如圆柱波导、矩形波导等。
在一些情况下,可以借助这些能够求解的光波导来研究一些无法直接求解的光波导,对于无法直接求解的光波导,可以看作是可求解光波导受到一些微扰形成的。
从而避开直接求解麦克斯韦方程组。
这一方法就是耦合模理论,耦合模理论是从麦克斯韦方程组推导得到的,其基本思想是利用可求解光波导的解,研究受到微扰的光波导,耦合模理论的理论基础在于规则光波导的模具有正交性。
由于本征模之间存在的正交关系,而且构成完备的正交集,因此可以将微扰光波导的解分解成本征模的线性叠加[]。
根据光的电磁理论,光波导中的电磁波用电场强度矢量E(x,y,z,t)和磁场强度矢量H (x, y,z,t)来描述,麦克斯韦方程组中E(x,y,z,t)和H (x, y,z,t)满足如下关系:(0-1) (0-2)其中J是介质中的传导电流密度。
高等光学论文光纤光栅的理论基础研究光纤光栅的理论基础研究光纤由于具有损耗低、带宽大、不受电磁干扰和对许多物理量具有敏感性等优点,已成为现代通信网络中的重要传输媒介和传感领域的重要器件。
光纤传感以其灵敏度高、抗电磁干扰、耐腐蚀、可弯曲、体积小、可埋入工程材料及进行分布式测量等优点受到了广泛重视。
光纤光栅是近十多年来得到迅速发展的一种光纤器件,其应用是随着写入技术的不断改进而发展起来的。
光纤光栅是利用光纤材料的光敏性,通过紫外光曝光的方法将入射光相干场图样写入纤芯,在纤芯内产生沿纤芯轴向的折射率周期性变化,从而形成永久性空间的相位光栅,其作用实质上是在纤芯内形成一个窄带的(透射或反射)滤波器或反射镜。
当一束宽光谱光经过光纤光栅时,满足光纤光栅布拉格条件的波长将产生反射,其余的波长透过光纤光栅继续传输。
第一部分光纤光栅的简介1 光纤光栅的发展1978年,加拿大通信研究中心的Hill等发现纤芯掺锗的光纤具有光敏性,并利用驻波干涉法制成了世界上第一根光纤光栅[1]。
1989年,美国东哈特福联合技术研究中心的Meltz等利用244nm的紫外光双光束全息曝光法成功地制成了光纤光栅[2],用两束相干光相遇时所产生的干涉条纹使光敏光纤曝光,形成折射率的周期性永久改变,从而制成光栅。
这种光栅已达到实用阶段。
但这种方法有其缺点:一是对光源的相干性要求较高;二是对系统的稳定性要求高。
1993年,贝尔实验室的Lemaire等用光纤载氢技术增强了光纤的光敏性[3],这种方法适用于任何掺锗的光纤。
通过光纤的载氢能够将在不增加掺锗浓度的情况下,使光纤的光敏性大大提高。
1993年,又提出了制作光纤Bragg光栅的相位掩模法[4,5],是到目前为止最为实用化的一种方法,仍被普遍采用,但这种方法的主要缺点是制作掩模版,一种掩模版只对应一种波段的光纤光栅。
1996年,出现了长周期光纤光栅[6~8],这种光栅的周期较长,可以在数十微米到几百微米之间。
光纤光栅原理
光纤光栅原理是基于光的干涉效应,通过在光纤中引入周期性的折射率变化来实现的。
光纤光栅中的周期性折射率变化可以通过不同的方式实现,其中一种常见的方式是通过在光纤中引入周期性的应变或温度变化。
这种变化会导致光纤的折射率发生变化,从而形成了光纤光栅。
当光信号传输到光纤光栅中时,会与光栅发生相互作用。
由于光纤光栅中存在周期性的折射率变化,光信号会被散射成不同的方向。
其中,散射角度与波长之间存在一定的关系,被称为布拉格条件。
根据布拉格条件,当光信号的波长等于光纤光栅中的布拉格波长时,散射角度达到最大值,此时信号被完全反射回原始的传输方向。
当光信号的波长与布拉格波长不完全匹配时,只有部分光信号会被反射回原始方向,其余的会被散射到其他方向。
基于以上原理,光纤光栅可用于实现光信号的滤波、衍射、分路、光谱分析等应用。
在光通信领域中,光纤光栅还用于实现波长选择性的光纤耦合器、滤波器、传感器等器件。
总的来说,光纤光栅通过引入周期性的折射率变化,利用光的干涉效应实现了对光信号的调控和处理。
它在光通信和光传感等领域具有广泛的应用前景。
光纤光栅的原理及应用1. 引言光纤光栅是一种基于光纤的传感器,利用光纤中的光栅结构对外界的物理量进行测量和检测。
它具有体积小、响应速度快、测量范围广等优点,在许多领域中得到了广泛的应用。
本文将介绍光纤光栅的原理和一些常见的应用场景。
2. 光纤光栅的原理光纤光栅是通过在光纤中引入光栅结构来实现的。
光栅是一种具有周期性折射率变化的结构。
当光线穿过光栅时,会发生光的衍射现象,产生多个方向的散射光。
通过检测这些散射光的强度或频率,可以获得与外界物理量相关的信息。
在光纤光栅中,光纤的折射率会随着光栅的周期性变化而改变。
这种周期性变化可以通过多种方式来实现,例如使用光栅写入技术、光纤拉伸等。
变化的折射率将会对光的传播产生影响,使得传输的光线被限制在光纤的特定区域内。
3. 光纤光栅的应用3.1 光纤传感器光纤光栅可以用作光纤传感器来检测各种物理量,如压力、温度、应变等。
通过测量光纤光栅中的散射光的强度或频率变化,可以推断出被测量物理量的大小。
由于光纤光栅具有高灵敏度和快速响应的特点,因此在工业、医疗、航空等领域得到了广泛应用。
3.2 光纤通信光纤光栅也可以用于光纤通信系统中。
通过在光纤中引入光栅结构,可以实现滤波、增益控制、波长选取等功能。
光纤光栅可以对光信号进行调制和调控,提高光纤通信系统的性能和稳定性。
3.3 光纤激光器光纤光栅还可以用于光纤激光器的制作。
在光纤中引入光栅结构,可以形成一种反射镜,形成光纤激光腔。
通过调控光纤光栅的周期和折射率变化,可以调节激光器的输出功率和频率。
光纤激光器广泛应用于光通信、光谱分析等领域。
3.4 光纤传输系统光纤光栅也可以用于光纤传输系统中的信号调制和解调。
通过在传输光纤中引入光栅结构,可以实现波长选择、信号复用等功能。
光纤光栅可以对光信号进行调制,提高传输系统的带宽和传输距离。
3.5 光纤传感网络光纤光栅还可以用于构建光纤传感网络。
通过在光纤中布置多个光纤光栅传感器,可以实现对大范围区域的实时监测和测量。
光纤光栅传感器理论基础1光纤光栅的基础理论介绍 (1)1.1光纤光栅的发展 (1)1.2光纤光栅的分类 (2)1.3光纤光栅的制作 (5)2光纤布拉格光栅的结构 (6)3光纤布拉格光栅的传感机理 (7)3.1光纤布拉格光栅的温度传感模型 (8)3.2光纤布拉格光栅的应变传感模型 (9)3.3光纤光栅的交叉感染传感模型 (10)4光纤光栅的几种典型解调方法 (11)4.1非平衡M-Z干涉仪扫描法 (11)4.2可调谐F-P滤波法 (12)4.3 边缘滤波器法 (13)1光纤光栅的基础理论介绍1.1光纤光栅的发展在光纤中制作光栅新技术的出现,在二十世纪末带来的巨大的影响。
它给光纤通信技术以及光纤传感技术等相关领域带来了一次里程碑式的革命,使得人们可以制作大量基于光纤光栅的新型光有源∕无源器件和智能传感器。
光纤光栅的研究最初主要集中在光纤布拉格光栅(Fiber Bragg grating:FBG)。
1978年,加拿大通信研究中心的K.O.Hill等人首次观察到掺锗光纤中光诱导产生光栅效应,并利用驻波法在掺锗光纤中研制出世界上第一支永久性的实现反向模式间耦合的光纤光栅——光纤布拉格光栅。
1989年,美国东哈特福德联合技术研究中心的G.Meltz等人运用准分子激光泵浦的可调谐倍频染料激光器输出的244nm紫外光作为光源,用双光束侧面全息相干法在掺锗石英光纤上研制出世界上第一根位于通信波段布拉格谐振波长的光纤光栅,使光纤光栅的制作技术实现了突破性进展。
1993年,Hill等人又提出了用紫外光垂直照射相位掩模形成的衍射条纹曝光氢载光纤写入光纤布拉格光栅的相位掩模法,降低了对紫外光源相干性的要求,重复性好,适于大规模生产,这使得光纤光栅真正走向实用化和产品化。
同年,董亮等人还提出了在线成栅法,在光纤拉制过程中对光纤逐点写入形成光栅,免去了光纤光栅制作时剥去光纤涂敷层的工序,适于大规模制作高反射率、窄线宽的光纤光栅。