石墨烯的结构性能
- 格式:doc
- 大小:234.50 KB
- 文档页数:4
第一章石墨烯性能及相关概念1 石墨烯概念石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。
石墨烯狭义上指单层石墨,厚度为0.335nm,仅有一层碳原子。
但实际上,10层以内的石墨结构也可称作石墨烯,而10层以上的则被称为石墨薄膜。
单层石墨烯是指只有一个碳原子层厚度的石墨,碳原子-碳原子之间依靠共价键相连接而形成蜂窝状结构。
完美的石墨烯具有理想的二维晶体结构,由六边形晶格组成,理论比表面积高达2.6×102m2 /g。
石墨烯具有优异的导热性能(3×103W/(m•K))和力学性能(1.06×103 GPa)。
此外,石墨烯稳定的正六边形晶格结构使其具有优良的导电性,室温下的电子迁移率高达1.5×104 cm2 / (V·s)。
石墨烯特殊的结构、突出的导热导电性能和力学性能,引起科学界巨大兴趣,成为材料科学研究热点。
石墨烯结构图2 石墨烯结构石墨烯指仅有一个原子尺度厚单层石墨层片,由 sp2 杂化的碳原子紧密排列而成的蜂窝状晶体结构。
石墨烯中碳 -碳键长约为 0.142nm。
每个晶格内有三个σ键,连接十分牢固形成了稳定的六边状。
垂直于晶面方向上的π键在石墨烯导电的过程中起到了很大的作用。
石墨烯是石墨、碳纳米管、富勒烯的基本组成单元,可以将它看做一个无限大的芳香族分子,平面多环烃的极限情况就是石墨烯。
形象来说,石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构,看上去就像一张六边形网格构成的平面。
在单层石墨烯中,每个碳原子通过 sp2 杂化与周围碳原子成键给构整流变形,每一个六边单元实际上类似苯环,碳原子都贡献出个一个未成键电子。
单层石墨烯厚度仅0.35nm ,约为头发丝直径的二十万分之一。
石墨烯的结构非常稳定,碳原子之间连接及其柔韧。
受到外力时,碳原子面会发生弯曲变形,使碳原子不必重新排列来适应外力,从而保证了自身的结构稳定性。
石墨烯的性质及应用石墨烯是一种由碳原子通过共价键结合形成的二维晶体结构,具有一系列独特的性质和应用潜力。
以下将详细介绍石墨烯的性质和应用。
性质:1. 单层结构:石墨烯是由单层碳原子构成的二维晶体结构,在垂直方向上只有一个原子层,具有单层的特点。
2. 高强度:尽管石墨烯只有一个碳原子层,但其强度非常高。
石墨烯的破断强度远远超过钢铁,是已知最强硬的材料之一。
3. 高导电性:石墨烯的碳原子呈现出类似于蜂窝状的排列方式,使得电子能够在其表面自由传导。
石墨烯的电子迁移率是晶体硅的200倍以上,使得其具有非常高的导电性能。
4. 高热导性:由于石墨烯中的碳原子排列紧密,热量传递效率非常高。
石墨烯的热导率超过铜的13000倍,是已知最高的热导材料之一。
5. 弹性:石墨烯具有非常强的弹性,在拉伸过程中可以扩展到原始长度的20%以上,然后恢复到原始形状。
这种弹性使得石墨烯在柔性电子学和拉伸传感器等领域具有广泛应用。
应用:1. 电子器件:石墨烯的高导电性和高迁移率使其成为制造高速电子器件的理想材料。
石墨烯可以作为传统半导体材料的替代品,用于制造更小、更快的电子元件,如晶体管、电容器和电路等。
2. 透明导电膜:石墨烯具有优异的透明导电性能,可以制备成透明导电膜,用于制造触摸屏、显示器和太阳能电池等设备。
相比于传统的氧化铟锡(ITO)薄膜,石墨烯具有更好的柔性和耐久性。
3. 电池材料:石墨烯可以用作锂离子电池的电极材料,具有高电导性和高比表面积的优势。
石墨烯电极可以提高电池的充放电速度和储能密度,有望在电动汽车和可再生能源储存等领域得到应用。
4. 传感器:石墨烯具有优异的电子迁移率和极高的比表面积,使其成为制造高灵敏传感器的理想材料。
石墨烯传感器可以用于检测气体、压力、湿度和生物分子等,具有快速响应和高灵敏度的特点。
5. 柔性电子学:石墨烯的高强度和高弹性使其成为柔性电子学的重要组成部分。
石墨烯可以制备成柔性电路、柔性显示屏和柔性传感器等,有望应用于可穿戴设备、智能医疗和可卷曲设备等领域。
石墨与石墨烯的结构石墨和石墨烯都是碳的同素异形体,石墨是一种层状的物质,由细小的石墨片或石墨屑组成。
每层石墨由由无限延伸的sp2 杂化的C-C键纵向连接成为六边形的碳环,每两个相邻的六边形中间有一个共边,构成了石墨的典型结构,这些平面的碳原子会与另一个氧原子或氮原子交互作用形成氢键或范德华键,并且在水中能够稳定地分散。
因此,石墨层具有类似于液晶的结构,具有很好的泡沫性。
石墨烯是由单层石墨构成,形成了一种二维的几何形状。
石墨烯具有非常特殊的结构,由大量的六边形碳原子构成,并且是一种二维的几何形状,有着非常优异的性能。
每个单层石墨烯只有一个原子厚,从而赋予了它非常特殊的物理、化学、热力学和电学性质。
石墨烯的碳原子以完美的sp2 杂化的形式分布,形成一个致密的二维晶体结构,具有优秀的力学、导电和热导性能。
石墨与石墨烯的结构在形态上的差异源自其中碳原子的配位方式。
石墨中的碳原子为sp2杂化,连接成六边形状,并具有三个相邻的碳原子与其配位,形成面心立方排列。
在每个碳原子之间的范德华力导致其具有膨胀性能,使得石墨中层间间距比较大。
因此,石墨层之间可以通过范德华力相互分离,形成石墨中的本质结构。
而石墨烯中的碳原子配位方式也是sp2杂化,但是仅与其相邻的两个碳原子配位,形成一个平面的六边形结构。
因此石墨烯仅拥有一层碳原子,具有非常特殊的物理、化学、热力学和电学性质。
同时,由于石墨烯的纳米结构呈现出低维、强薄化的特征,因此石墨烯的某些性质比石墨更为突出,如强度、导电性和热导性。
总之,石墨和石墨烯是两种由碳原子组成的独特结构,它们在材料学、科学领域都具有重要的地位。
石墨由多层平面构成,之间的距离较远,具有泡沫性能,而石墨烯是由单层石墨组成的二维结构,具有非常特殊的物理、化学、热力学和电学性质。
两者的不同结构和性质使得它们有着广泛的应用前景,在新能源、电子器件、传感器、高强度材料等方面具有巨大的潜力。
石墨烯简介摘要:在碳材料中,石墨烯具有特殊的单层窝蜂状结构,由于特殊的分子结构,使得石墨烯具有优良的化学和物理性质,例如:超高的比表面积超高的比表面积(2630m2/g),导电性能(电导率106S/m),机械性能(杨氏模量有1TPa)等,在高科技领域中展现了巨大的潜力。
同时,石墨烯在能源、生物技术、航天航空等领域都展现出宽广的应用前景。
但是由于石墨烯片层之间存在范德华力,促使分子层之间易发生团聚,不利于石墨烯的分散,导致电阻率升高和片层厚度增加,无法大规模高质量的制备石墨烯。
本文主要介绍石墨烯的结构,性质,制备方法,以及石墨烯在现阶段的应用。
关键词:石墨烯结构性质制备应用目录第一部分:石墨烯的结构第二部分:石墨烯的性质第三部分:石墨烯的制备方法第四部分:石墨烯的应用及其前景第五部分:结语第一部分:石墨烯的结构严格意义上的石墨烯原子排列与单层石墨的相同,厚度仅有一个原子尺寸,即0.335nm,因此又被称为目前世界上已知的最薄的材料,每个碳原子附近有三个碳原子连接成键,碳.碳键长0.142nm,通过sp2杂化与邻近的三个碳原子成键形成正六边形,连接十分牢固,因此可是称为最坚硬的材料。
然后每个正六边形在二维结构平面,不断无限延伸形成了一个巨大的平面多环芳烃[1],如图1-1所示。
2007年,Meryer[2]根据自己的研究发现大多数的石墨烯片层呈现单原子厚度,同时表现出有序的结构,通过透射电镜发现,该片层并非完全平整,表现出粗糙的起伏。
也正因为这种褶皱的存在,才使得二维晶体结构能够存在。
图1-1石墨烯的结构构型第二部分:石墨烯的性质石墨烯在力学、电学、光学、热学等方面具有优异特性。
力学特性石墨烯中,碳原子之间的连接处于非常柔韧的状态.当被施加外部机械力时,碳原子面会弯曲变形.碳原子不必重新排列来适应外力,因此保持了结构稳定。
石墨烯是人类已知强度最高的材料,比世界上强度最高的钢铁高100多倍。
电学特性石墨烯具有超高的电子迁移率,它的导电性远高于目前任何高温超导材料。
石墨烯的性质及其应用上课班级:年级:专业:学号:姓名:电话:1、石墨烯的特性:导电性:石墨烯结构非常稳定,迄今为止,研究者仍未发现石墨烯中有碳原子缺失的情况。
石墨烯中各碳原子之间的连接非常柔韧,当施加外部机械力时,碳原子面就弯曲变形,从而使碳原子不必重新排列来适应外力,也就保持了结构稳定。
这种稳定的晶格结构使碳原子具有优秀的导电性。
石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。
由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯中电子受到的干扰也非常小。
石墨烯最大的特性是其中电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度。
石墨烯有相当的不透明度:可以吸收大约 2.3%的可见光。
而这也是石墨烯中载荷子相对论性的体现机械特性:石墨烯是人类已知强度最高的物质,比钻石还坚硬,强度比世界上最好的钢铁还要高上100倍。
电子的相互作用:利用世界上最强大的人造辐射源,美国加州大学、哥伦比亚大学和劳伦斯?伯克利国家实验室的物理学家发现了石墨烯特性新秘密:石墨烯中电子间以及电子与蜂窝状栅格间均存在着强烈的相互作用。
科学家借助了美国劳伦斯伯克利国家实验室的“先进光源(ALS)”电子同步加速器。
这个加速器产生的光辐射亮度相当于医学上X射线强度的1亿倍。
科学家利用这一强光源观测发现,石墨烯中的电子不仅与蜂巢晶格之间相互作用强烈,而且电子和电子之间也有很强的相互作用。
化学性质:我们至今关于石墨烯化学知道的是:类似石墨表面,石墨烯可以吸附和脱附各种原子和分子。
从表面化学的角度来看,石墨烯的性质类似于石墨,可利用石墨来推测石墨烯的性质。
石墨烯化学可能有许多潜在的应用,然而要石墨烯的化学性质得到广泛关注有一个不得不克服的障碍:缺乏适用于传统化学方法的样品。
这一点未得到解决,研究石墨烯化学将面临重重困难。
电子运输在发现石墨烯以前,大多数(如果不是所有的话)物理学家认为,热力学涨落不允许任何二维晶体在有限温度下存在。
石墨烯的物理性质及其应用石墨烯是由碳原子组成的二维材料,具有许多特殊的物理性质,如高导热性、高电导性、高透明度、高强度等,因此在科学研究和工业应用领域备受关注。
一、石墨烯的物理性质1.高导热性石墨烯具有超高的导热性能,可达到3000W/m·K,是传统导热材料的100倍以上。
2.高电导性石墨烯也具有超高的电导性,约为1000000S/m,是铜的约10倍。
3.高透明度石墨烯是一种几乎透明的材料,可透过大部分的可见光,透过率可达97.7%。
4.高强度石墨烯的强度非常高,其弹性模量约等于1300GPa,是钢的200倍。
5.独特的电子结构石墨烯具有独特的电子结构,呈现出带有马约拉纹的能带结构,使得其在电子输运方面具有非常特殊的性质。
二、石墨烯的应用1.半导体由于石墨烯拥有独特的电子结构和优异的电传输性能,因此可以应用于半导体领域,有望取代硅元件,开启下一代电子器件领域。
2.能源石墨烯的高导热性和高电导性,使其可以应用于能源领域。
比如可以用于太阳能电池、燃料电池等。
3.生物医疗石墨烯具有优异的生物相容性和生物降解性,可能成为未来生物医药领域的新材料。
可以应用于传感器、病毒检测、药物传递等领域。
4.航空航天石墨烯的高强度和轻质特性,使其成为理想的航空航天材料。
可以应用于制造飞机、火箭等部件。
5.3D打印石墨烯的高强度、高导电性和高导热性,使其成为3D打印领域的前景材料。
可以应用于打印电子器件、生物医学器械等。
综上所述,石墨烯具有许多优异的物理性质和应用前景。
在未来的科技发展中,石墨烯将成为一个备受关注的领域,许多应用将被推广和拓展。
石墨烯的结构及性质、用途一、石墨烯的发现2004年,英国曼彻斯特大学的安德烈·K·海姆(Andre K. Geim)等制备出了石墨烯。
海姆石墨烯和他的同事偶然中发现了一种简单易行的新途径。
他们强行将石墨分离成较小的碎片,从碎片中剥离出较薄的石墨薄片,然后用一种特殊的塑料胶带粘住薄片的两侧,撕开胶带,薄片也随之一分为二。
不断重复这一过程,就可以得到越来越薄的石墨薄片,而其中部分样品仅由一层碳原子构成——他们制得了石墨烯。
斯德哥尔摩2010年10月5日电瑞典皇家科学院5日宣布,将2010年诺贝尔物理学奖授予英国曼彻斯特大学科学家安德烈-海姆和康斯坦丁-诺沃肖洛夫,以表彰他们在石墨烯材料方面的卓越研究。
二、石墨烯结构石墨烯的问世引起了全世界的研究热潮。
它不仅是已知材料中最薄的一种,还非常牢固坚硬;作为单质,它在室温下传递电子的速度比已知导体都快。
石墨烯在原子尺度上结构非常特殊,必须用相对论量子物理学(relativistic quantum physics)才能描绘。
石墨烯结构非常稳定,迄今为止,研究者仍未发现石墨烯中有碳原子缺失的情况。
石墨烯中各碳原子之间的连接非常柔韧,当施加外部机械力时,碳原子面就弯曲变形,从而使碳原子不必重新排列来适应外力,也就保持了结构稳定。
这种稳定的晶格结构使碳原子具有优秀的导电性。
石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。
由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨毡石墨烯中电子受到的干扰也非常小。
三、石墨烯的性质石墨烯最大的特性是其中电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度。
这使得石墨烯中的电子,或更准确地,应称为“载荷子”(electric charge carrier),的性石墨烯晶体质和相对论性的中微子非常相似。
为了进一步说明石墨烯中的载荷子的特殊性质,我们先对相对论量子力学或称量子电动力学做一些了解。
石墨烯的研究与应用综述一、石墨烯的结构与特性石墨烯是碳原子紧密堆积成单层二维蜂窝状晶格结构的一种碳质新材料,是最薄的二维材料,单层的厚度仅0.335nm。
石墨烯可塑性极大,是构建其他维数碳材料的基本单元,可以包裹成零维的富勒烯结构,卷曲成一维的碳纳米管,以及堆垛成三维的石墨等。
石墨烯的理论研究已有60多年的历史,但直至2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫,利用胶带剥离高定向石墨的方法获得真正能够独立存在的二维石墨烯晶体,二人因此荣获2010年诺贝尔物理学奖。
石墨烯具有一些奇特的物理特性:导电性极强:石墨烯中的电子没有质量,电子的运动速度能够达到光速的1/300,是世界上电阻率最小的材料。
良好的导热性:石墨烯的导热性能优于碳纳米管和金刚石,单层石墨烯的导热系数可达5300瓦/米水度,远高于金属中导热系数高的银、铜等。
极好的透光性:石墨烯几乎是完全透明的,只吸收2.3%的光,并使所有光谱的光均匀地通过。
超高强度:石墨烯被证明是当代最牢固的材料,硬度比莫氏硬度10级的金刚石还高,却又拥有很好的韧性,可以弯曲。
超大比表面积:石墨烯拥有超大的比表面积(单位质量物料所具有的总面积),这使得石墨烯成为潜力巨大的储能材料。
石墨烯特殊的结构形态,具备目前世界上最硬、最薄的特征,同时具有很强的韧性、导电性和导热性,这些极端特性使其拥有巨大发展空间,应用于电子、航天、光学、储能、生物医药、日常生活等大量领域。
二、石墨烯的制备方法石墨烯的制备方法主要有机械法和化学法2种。
机械法包括微机械分离法、取向附生法和加热碳化硅法;化学法包括外延生长法、化学气相沉积法与氧化石墨还原法。
微机械分离法是直接将石墨烯薄片从较大的晶体上剪裁下来,可获得高品质石墨烯,且成本低,但缺点是石墨烯薄片尺寸不易控制,不适合量产;取向附生法是利用生长基质原子结构“种”出石墨烯,石墨烯性能令人满意,但往往厚度不均匀;加热碳化硅法能可控地制备出单层或多层石墨烯,是一种新颖、对实现石墨烯的实际应用非常重要的制备方法,但制备大面积具有单一厚度的石墨烯比较困难。
石墨烯能态密度
引言概述:
石墨烯作为一种新型的二维材料,具有出色的导电性、热传导性和机械性能,引起了广泛的研究兴趣。
石墨烯的能态密度是描述其电子能级分布的重要物理量,对于理解和设计石墨烯的电子性质具有重要意义。
本文将从五个大点出发,详细阐述石墨烯的能态密度。
正文内容:
1. 石墨烯的基本特性
1.1 石墨烯的结构特点
1.2 石墨烯的电子能级分布
1.3 石墨烯的导电性和热传导性
2. 石墨烯的能带结构
2.1 石墨烯的能带图像
2.2 石墨烯的费米能级
2.3 石墨烯的能带间隙
3. 石墨烯的能态密度计算方法
3.1 第一性原理计算方法
3.2 紧束缚模型计算方法
3.3 有效质量模型计算方法
4. 石墨烯的能态密度的影响因素
4.1 温度的影响
4.2 外加电场的影响
4.3 缺陷和杂质的影响
5. 石墨烯的能态密度的应用
5.1 石墨烯的能带调控
5.2 石墨烯的电子输运性质
5.3 石墨烯的光电性能
总结:
综上所述,石墨烯的能态密度是描述其电子能级分布的重要物理量。
石墨烯的能带结构、能态密度计算方法以及影响因素的研究为我们深入理解石墨烯的电子性质提供了重要的理论基础。
石墨烯的能态密度的应用涉及到能带调控、电子输运性质和光电性能等领域,对于石墨烯在电子器件、光电器件等领域的应用具有重要意义。
随着对石墨烯的研究不断深入,相信石墨烯的能态密度将在更多领域展现出其独特的应用价值。
石墨烯结构石墨烯不仅是已知材料中最薄的一种,还非常牢固坚硬;作为单质,它在室温下传递电子的速度比已知导体都快。
石墨烯(Graphene)是一种由碳原子构成的单层片状结构的新材料。
是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料[1]。
石墨烯一直被认为是假设性的结构,无法单独稳定存在[1],直至2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因“在二维石墨烯材料的开创性实验”为由,共同获得2010年诺贝尔物理学奖[2]。
石墨烯目前是世上最薄却也是最坚硬的纳米材料[3] ,它几乎是完全透明的,只吸收%的光"[4];导热系数高达5300 W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率*超过15000 cm2/V·s,又比纳米碳管或硅晶体*高,而电阻率只约10-6 Ω·cm,比铜或银更低,为目前世上电阻率最小的材料[1]。
因为它的电阻率极低,电子迁移的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。
由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。
石墨烯另一个特性,是能够在常温下观察到量子霍尔效应。
石墨烯的碳原子排列与石墨的单原子层雷同,是碳原子以sp2混成轨域呈蜂巢晶格(honeycomb crystal lattice)排列构成的单层二维晶体。
石墨烯可想像为由碳原子和其共价键所形成的原子尺寸网。
石墨烯的命名来自英文的graphite(石墨) + -ene(烯类结尾)。
石墨烯被认为是平面多环芳香烃原子晶体。
石墨烯的结构非常稳定,碳碳键(carbon-carbon bond)仅为Å。
石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排轻型飞机材料等。
石墨烯结构式石墨烯是一种由碳原子构成的单层二维晶体结构,具有极高的强度、导电性和热导率等特殊性能。
它的结构式可以用化学式C表示,是一种类似于石墨的材料,但比石墨更薄、更轻、更坚硬。
石墨烯的发现和研究,是现代纳米材料领域的一项重大科学成果,也是材料科学和纳米技术领域的一大突破。
石墨烯的结构式是由碳原子构成的六角形晶格结构,每个碳原子与周围三个碳原子通过共价键相连,形成一个平面六角形的网格结构。
这种结构与石墨的基本结构类似,但石墨烯只有一个单层的结构,而石墨则是由多层石墨烯堆叠而成的。
石墨烯的结构式为C,其中每个碳原子都与周围三个碳原子形成共价键,构成一个六角形的晶格结构。
这种结构类似于蜂窝状的网格结构,使得石墨烯具有极强的强度和稳定性。
此外,石墨烯的碳原子之间的距离非常接近,只有0.142纳米,因此具有极高的电子迁移率和导电性能。
同时,石墨烯也是一种非常轻的材料,其密度只有0.77克/立方厘米,比水还轻。
石墨烯的发现和研究,始于2004年。
当时,安德烈·海姆和康斯坦丁·诺沃肖洛夫等科学家在实验室中使用胶带将石墨片剥离成单层,发现了这种新型的二维材料。
这项发现被评为2004年度科学突破之一,引起了全球科学界的广泛关注和研究。
石墨烯的特殊性能和潜在应用领域非常广泛。
由于其极高的强度和稳定性,可以用于制备高强度的复合材料、纳米电子器件和生物医学传感器等。
同时,石墨烯的导电性和热导率非常高,可以用于制备高效的电池、电容器、透明导电膜和热界面材料等。
此外,石墨烯还具有优异的吸附性能和化学反应活性,可以用于制备高效的催化剂、分离膜和生物医学材料等。
总之,石墨烯是一种非常特殊的材料,具有极高的强度、导电性和热导率等特殊性能。
其结构式为C,由碳原子构成的六角形晶格结构。
石墨烯的发现和研究,是现代纳米材料领域的一项重大科学成果,也是材料科学和纳米技术领域的一大突破。
石墨烯的应用潜力非常广泛,可以用于制备高强度的复合材料、纳米电子器件和生物医学传感器等。
姓名:李雄杰学号:20071050198专业:物理学石墨烯的结构性能及应用(云南大学物理科学技术学院物理系云南昆明650091)摘要:石墨烯是2004年才发现的一种有奇异性能的新型材料,它是由碳原子组成的二维六角点阵结构,具有单一原子层或几个原子层厚。
石墨烯因其具有独特的电子能带结构和具相对论电子学特性,是迄今为止人类发现的最理想的二维电子系统,且具有丰富而新奇的物理特性。
本文详细介绍了石墨烯的结构,特殊性能及相关应用。
关键词:石墨烯;结构性能;相关应用一、引言石墨烯是2004年以来发现的新型电子材料【1】石墨烯是sp2杂化碳原子形成的厚度仅为单层原子的排列成蜂窝状六角平面晶体。
在单层石墨烯中,碳碳键长为0.142nm,厚度只有0.334nm。
石墨烯是构成下列碳同素异型体的基本单元:例如:石墨,碳纳米管和富勒烯。
石墨烯被认为是平面多环芳香烃原子晶体。
石墨烯在电子和光电器件领域有着重要和广阔的应用前景【2】正因为如此,石墨烯的两位发现者获得了2010年的诺贝尔物理学奖。
图1石墨烯结构图石墨烯是一种没有能隙的半导体,具有比硅高100倍的载流子迁移率(2×105cm2/v),在室温下具有微米级自由程和大的相干长度,因此石墨烯是纳米电路的理想材料石墨烯具有良好的导热性[3000W/(m·K)]、高强度(110GPa)和超大的比表面积(2630mZ/g)。
这些优异的性能使得石墨烯在纳米电子器件、气体传感器、能量存储及复合材料等领域有光明的应用前景【3-4】二.石墨烯的特殊性能石墨烯是一种半金属或者零带隙二维材料,在靠近布里渊区6个角处的低能区,其E-k色散关系是线性的【5】,因而电子或空穴的有效质量为零,这里的电子或空穴是相对论粒子,可以用自旋为1/2粒子的狄拉克方程来描述。
石墨烯的电子迁移率实验测量值超过15000cm2/(V·s)(载流子浓度n≈1013cm-2),在10~100K范围内,迁移率几乎与温度无关,说明石墨烯中的主要散射机制是缺陷散作者简介:李雄杰(1987-)、男,湖南人,云南大学物理学专业在读本科生,主要研究碳纳米材料及应用。
石墨烯是一种由碳原子构成的二维材料,具有优异的力学性能和导电性能。
石墨烯海水淡化膜利用石墨烯的独特结构和性能,可以有效地将海水中的盐分和杂质去除,从而实现海水淡化的目的。
本文将从石墨烯海水淡化膜的原理入手,对其进行详细的介绍。
1. 石墨烯的结构石墨烯是一种具有二维晶格结构的材料,其碳原子以蜂窝状的六角网格排列,形成了稳定的结构。
由于石墨烯材料的特殊结构,使其具有极大的比表面积和高度的柔韧性,这使得石墨烯在海水淡化膜中具有独特的优势。
2. 石墨烯海水淡化膜的制备石墨烯海水淡化膜通常采用化学气相沉积法或化学氧化还原法制备。
在化学气相沉积法中,石墨烯通过化学气相沉积的方法沉积在支撑膜上,形成石墨烯海水淡化膜。
在化学氧化还原法中,石墨烯经过氧化和还原的化学过程,最终形成海水淡化膜。
3. 原理石墨烯海水淡化膜的原理主要包括两个方面:孔径排列和离子交换。
3.1 孔径排列石墨烯海水淡化膜上的孔径排列是实现海水淡化的关键。
石墨烯具有非常小的孔径,可以有效地阻挡盐分和杂质的通过,使得海水在通过海水淡化膜时,大部分的盐分和杂质被滤除,从而得到淡化水。
3.2 离子交换通过海水淡化膜上的石墨烯材料,可以实现离子的交换。
石墨烯具有优异的电导率和化学活性,可以吸附并交换海水中的离子,使得海水中的盐分得到去除,同时低浓度的溶质也能被有效地去除。
4. 优势石墨烯海水淡化膜相比传统的海水淡化膜具有明显的优势。
4.1 高效性由于石墨烯材料具有极大的比表面积和优异的电导率,海水淡化膜能够以更高的效率去除海水中的盐分和杂质,从而实现更高效的海水淡化过程。
4.2 耐久性石墨烯具有极强的力学性能和化学稳定性,使得海水淡化膜具有更长的使用寿命和更好的耐久性。
4.3 可再生性石墨烯是一种可再生的材料,可以通过简单的再生工艺使得海水淡化膜具有更好的再利用性。
5. 应用前景石墨烯海水淡化膜的研发和应用具有广阔的应用前景。
5.1 可再生能源开发海水淡化是解决淡水资源短缺问题的重要途径,石墨烯海水淡化膜可以为可再生能源开发提供更多的淡水资源,推动可再生能源的发展。
石墨烯的结构性能
摘要:石墨烯是2004年才发现的一种有奇异性能的新型材料,它是由碳原子组
成的二维六角点阵结构,具有单一原子层或几个原子层厚。
石墨烯因其具有独特的电子能带结构和具相对论电子学特性,是迄今为止人类发现的最理想的二维电子系统,且具有丰富而新奇的物理特性。
本文详细介绍了石墨烯的结构,特殊性能以及对石墨烯原胞进行了5×5×1的扩展,通过密度泛函理论 ( DFT) 和广义梯度近似 ( GGA)对50个碳原子的本征石墨烯超晶胞进行电子结构计算。
关键字:石墨烯,结构,特殊性能,超晶胞,电子结构计算
一、引言
石墨烯是2004年以来发现的新型电子材料石墨烯是sp2杂化碳原子形成的厚度仅为单层原子的排列成蜂窝状六角平面晶体。
在单层石墨烯中,碳碳键长为0.142nm,厚度只有0.334nm。
石墨烯是构成下列碳同素异型体的基本单元:例如:石墨,碳纳米管和富勒烯。
石墨烯被认为是平面多环芳香烃原子晶体。
石墨烯在电子和光电器件领域有着重要和广阔的应用前景正因为如此,石墨烯的两位发现者获得了2010年的诺贝尔物理学奖。
石墨烯是一种没有能隙的半导体,具有比硅高100倍的载流子迁移率,在室温下具有微米级自由程和大的相干长度,因此石墨烯是纳米电路的理想材料,石墨烯具有良好的导热性[3000W/(m·K)]、高强度(110GPa)和超大的比表面积 (2630mZ /g)。
这些优异的性能使得石墨烯在纳米电子器件、气体传感器、能量存储及复合材料等领域有光明的应用前景
二、石墨烯的特殊性能
石墨烯是一种半金属或者零带隙二维材料,在靠近布里渊区6个角处的低能区,其E-k色散关系是线性的 ,因而电子或空穴的有效质量为零,这里的电子或空穴是相对论粒子,可以用自旋为1/2粒子的狄拉克方程来描述。
石墨烯的电子迁移率实验测量值超过15000cm/(V·s)(载流子浓度n≈10 cm ),在10~100K范围内,迁移率几乎与温度无关,说明石墨烯中的主要散射机制是缺陷散射,因此,可以通过提高石墨烯的完整性来增加其迁移率,长波的声学声子散射使得石墨烯的室温迁移率大约为200000cm /(V·s),其相应的电
阻率为lO -6 ·cm,比室温电阻率最小的银的电阻率还小。
硅的电子迁移率为l400cm2/(V.s),电子在石墨烯中的传输速度是在硅中的100倍,因而未来的半导体材料是石墨烯而不是硅。
这将使开发更高速的计算机芯片和生化传感器成为
衬底上时,由于衬底的光学声子对电子的散射可能。
但是当石墨烯生长在siO
2
比石墨烯本身对电子的散射要强很多,导致电子的迁移率下降为40000cm /(V·s)。
同时,人们也研究了化学掺杂对石墨烯载流子迁移率的影响。
Schedin 等发现,即使杂质浓度超过10 cm ,载流子迁移率也没有发生变化。
Chen等研究发现,低温和超高真空的环境下,对石墨烯掺杂金属钾可以使载流子的迁移率下降至原来的1/20左右,而当加热石墨烯,去除掺杂的钾后,载流子的迁移率又可以恢复到以前的水平。
石墨烯独特的电子特性产生了一种令人预想不到的高不透光性,这种单原子层对白光的吸收率是一个非常令人惊奇的数字:a≈2.3%,a是精细结构常数。
石墨烯的电子特性可以用传统的紧束缚模型来描述,在这个模型中,电子能量与波数可以用式(1)来表示:
其中: =2.8eV为最紧邻跃迁能量,a为晶格常数,色散关系中的正负号分别对应于导带和价带,它们在6个K点处值相同。
这6个K点中有2个是无关的,而其它4个由于对称性而完全等价。
在K点附近,能量线性地依赖于波数,非常像相对论粒子。
石墨烯被认为是理想的自旋电子学材料,因为其自旋一轨道耦合很弱,而且碳原子的核磁矩几乎为零,因此,电子的自旋注入核探测可以在室温下进行。
石墨烯中,电子自旋扩散长度在室温下甚至超过l m。
石墨烯是现在世界上已知的最为坚固的材料。
哥伦比亚大学JamesHone组的研究人员将石墨烯薄片衬于直径为空洞上,用显微镜确定石墨烯的位置后,开始利用硅探头来
l~1.5 m的SiO
2
按压石墨烯薄膜,但是,他们很快发现硅探头的强度不够,往往是石墨烯薄膜未破,硅探头就断了,后来就只能改用半径大概为10~30nm的钻石探头来按压,以得到薄膜被破坏时的应力值。
然而令人震惊的是,石墨烯的强度是世界上最好的钢强度的100倍。
最后,研究人员利用原子力显微镜针尖测量了石墨烯的力学性能,其弹性系数为10 N/m,而杨氏模量达0.5TPa。
三、本征石墨烯超晶胞模型
几何结构的优化和电子结构的计算是采用基于密度的泛函理论 ( DFT) castep软件包完成。
在进行结构弛豫和电子结构的计算中。
采用广义梯度近似修正的泛函处理交换相关势能。
能带结构积分路径的选取如图1所示。
为减少平面波的数量采用超软赝势描述原子实与价电子之间相互作用。
平面波截断能设置为280ev,k-point设置为1×1×2对应第一布里渊区。
结构优化采用BFGS算法,优化参数设置如下:单元电子能收敛标准为1. 0 ×10 - 5 eV/ atom,原子间相互作用力力收敛标准为0. 03 eV,晶体内应力收敛标准为0.05GPa,原子最大位移收敛标准为1.0×10-13m,三维模型中真空层取1.0×10-9m,石墨烯原胞结构如2(a)所示,能带结构如2(b),
由图2可以看出,对于石墨烯原胞,其能带结构带隙为零,表现了很强的金属特性。
文中对石墨烯原胞进行5×5×1的扩展,得到50个碳原子的超晶胞。
对几何模型进行优化后,结果如图3所示
图3
在计算模型的电学性质时,采用的积分路径如图1所示,首先从F出发,到达X点,再从X点到达K点,最后从K点回到F点,从而完成在布里渊区的计算。
图1
50个碳原子的本征石墨烯超晶胞模型的能带结构,如图4所示,其中黑色虚线表示体系的费米能级,在能带结构中只关心费米能级附近的计算,因此在计算中,选取费米能级附近的20条能带附近进行分析。
图4
由图4可以看出,对于50个碳原子的超晶胞,能带带隙为零,以上计算结果与实验测试相符合,表明石墨烯具有良好的导电性。
四、结束语
本文对石墨烯结构和特殊性能的分析中得到石墨烯具有以下特点:石墨烯结构非常稳定,具有优秀的导电性,受到的干扰非常小,电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度,有相当的不透明度,是人类已知强度最高的物质比钻石还坚硬,强度比世界上最好的钢铁还要高上100倍。
同时为了分析石墨烯的能带结构,采用了对石墨烯原胞进行5×5×1的扩展,得到50个碳原子的超晶胞,利用软件得到了原胞和超晶胞的能带结构图,从图中看到能带间隙为零,解释了石墨烯的导电性。
参考文献:
1.《缺陷对石墨烯电子结构的影响》苗亚宁
2.《石墨烯结构性能和应用》李熊杰
3.《石墨烯电子能带结构的计算》黄铁铁
4.《石墨烯能带结构的紧束缚计算》梁先庆
5.《石墨烯弯曲形变的电子结构和特性的研究》傅青方
6. 黄昆,韩汝琦.固体物理学[M].北京:高等教育出版社,199
7.
7. 冯端,金国钧.凝聚态物理学[M].北京:高等教育出版社,2003.
8. 王永龙,张兆忠,张桂红. Matlab语言基础与应用[M]. 北京:电子工业出版社,2010.。