高中数学常用的解题方法与技巧2
- 格式:ppt
- 大小:228.50 KB
- 文档页数:8
高中数学解题技巧一、“构造法+函数法”的结合而且本题还可以从另一个思路进行解答,就是运用复数模的概念,将相联系的数据和看成一个模函数,仍然可以得到所求的结果。
二、转换法这种方法是体现学生的想象力及创新能力的方法,也是数学解题技巧中最富有挑战性的方法,能将复杂的题型辅以转换的功能,成为简单的、易被理解的题型。
比如,一个正方体平面为ABCB和A1B1C1D1,在正方体的棱长D1C1和C1B1分别设置两点E和F为中点,AC与BD相交于P点,A1C1于EF相交于Q点,求证:(1)点D、B、F、B在同一平面上;(2)如果线段A1C通过平面DBFE,交点到R点,那么P、R、Q三点共线?解题(1):由题可知:线段EF是△D1B1C1的中位线,所以,EF与B1D1平行,在正方体AC1中,线段B1D1与BD平行,相应得出:线段EF与线段BD相平行,由此得出线段EF和BD在一个平面,所以可以求得点D、B、F、E在同一个平面。
解题(2):假设平面A1ACC1为x,平面BDEF为y,由于Q点在平面AC,所以Q点也属于平面x,为x和y的交点,同属两个平面的点。
同理可得,点P也属x、y的公共点,而R点是平面A1C与平面y的交点,所以,可以得到P、Q、R 三点共线。
三、反证法任何事物的结果有时顺着程序去思考,往往不得要领,倘若从结果向事物开始的方向或用假设的反方向去推理,反倒会“一片洞天”。
数学解题技巧也是如此。
首先,假设命题结论相反的答案,顺理演绎地解答,得出假设的矛盾结果,从另一侧面论证了正确答案。
例如,苏教版教材必修1《函数》章节,已知函数f(x)是一项正负无限大范围内的增函数,a、b都为实数,求证:(1)假设:(a+b)≥0,则函数式表示为:f(a)+f(b)≥f(-a)+f(-b)成立;(2)求证(1)问中逆命题是否正确。
解题分析:(1)因为(a+b)≥0,移项后,可得:a≥-b,由于函数为单调递增函数,则:f(a)≥f(-b),又(a+b)≥0,移项后,可得:b≥-a,f(b)≥f(-a);两个方程相加,得:f(a)+f(b)≥f(-a)+f(-b),由此证明完毕。
高中数学解题技巧方法总结第1篇(1)利用y=sin x和y=cos x的值域直接求.(2)把所给的三角函数式变换成y=A sin(ωx+φ)+b(或y=A cos(ωx+φ)+b)的形式求值域.(3)把sin x或cos x看作一个整体,将原函数转换成二次函数求值域.(4)利用sin x±cos x和sin x cos x的关系将原函数转换成二次函数求值域.高中数学解题技巧方法总结第2篇(1)分组转化求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减.(2)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.(4)倒序相加法如果一个数列{an}的前n项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.(5)并项法一个数列的前n项和中,可两两结合求和,称为并项法求和,形如:(-1)nf(n)类型,可考虑利用并项法求和.高中数学解题技巧方法总结第3篇先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值.推断数列的通项公式解答此类问题的具体步骤:(1)分式中分子、分母的特征;(2)相邻项的变化特征;(3)拆项后的特征;(4)各项的符号特征和绝对值特征;(5)化异为同,对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;(6)对于符号交替出现的情况,可用(-1)k或(-1)k+1,k∈N*处理.高中数学解题技巧方法总结第4篇以退求进,立足特殊发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。
高中数学52个秒杀技巧,是从大量的数学题目和考试中总结出的快速解题方法,这些技巧可以帮助学生在考试中节省时间,提高解题效率。
以下是一些常用的秒杀技巧:
1. 因式分解法:对于多项式,通过分解成几个一次或二次因式的乘积形式,使其变得更简单。
2. 配方法:将一个多项式通过配方转化为另一个多项式,常常用于解决平方项问题。
3. 代数变换法:通过代数运算,将复杂的问题转化为简单的问题,例如通过移项、合并同类项等。
4. 数形结合法:利用几何图形直观地解决代数问题,或者利用代数方法解决几何问题。
5. 特殊值法:在解决方程或不等式问题时,可以先假设一些特殊值,看看是否能得到有用的信息。
6. 排除法:在做选择题时,可以通过排除明显错误的选项,来找到正确答案。
7. 整体法:将多个变量或者多个方程作为一个整体来处理,简化问题。
8. 方程组解法:对于多个方程组成的方程组,可以利用代入法、消元法等方法求解。
9. 函数性质法:利用函数的性质,如单调性、奇偶性、周期性等,来解决函数问题。
10. 微积分法:在高中数学中,微积分主要用来解决变化率问题,
如求函数的导数和积分。
以上只是部分秒杀技巧,实际上还有很多其他的技巧,如不等式的性质、概率的计算方法、排列组合等。
这些技巧需要学生在平时的学习中不断积累和练习,才能在考试中熟练运用。
高中数学解题的典型方法与技巧高中数学解题的典型方法与技巧在解数学题目时,不是运算错误确实是时刻不够,总之,确实是最后得不到全分!这是为啥呢?三个字:不熟练。
那如何才能熟练呢?除了大量刷题之外,你需要的更多的是总结,小数老师总结了21个解题方法和技巧,需要的就用起来吧!第一章高中数学解题差不多方法一、配方法配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。
何时配方,需要我们适当推测,同时合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。
有时也将其称为“凑配法”。
最常见的配方是进行恒等变形,使数学式子显现完全平方。
它要紧适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。
配方法使用的最差不多的配方依据是二项完全平方公式(a+b)2=a2+2ab +b2,将那个公式灵活运用,可得到各种差不多配方形式,如:二、换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。
换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
换元法又称辅助元素法、变量代换法。
通过引进新的变量,能够把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。
或者变为熟悉的形式,把复杂的运算和推证简化。
它能够化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。
换元的方法有:局部换元、三角换元、均值换元等。
局部换元又称整体换元,是在已知或者未知中,某个代数式几次显现,而用一个字母来代替它从而简化问题,因此有时候要通过变形才能发觉。
三角换元,应用于去根号,或者变换为三角形式易求时,要紧利用已知代数式中与三角知识中有某点联系进行换元。
高中数学19种答题方法 6种解题思想1.函数函数题目,先直接思考后建立三者的联系。
首先考虑定义域,其次使用三合一定理。
2.方程或不等式如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3.初等函数面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。
如所过的定点,二次函数的对称轴4.选择与填空中的不等式选择与填空中出现不等式的题目,优选特殊值法;5.参数的取值范围求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6.恒成立问题恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7.圆锥曲线问题圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;8.曲线方程求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);9.离心率求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;10.三角函数三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;11.数列问题数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;12.立体几何问题立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2 ;与球有关的题目也不得不防,注意连接心心距创造直角三角形解题;13.导数导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;14.概率概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;15.换元法遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;16.二项分布注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;17.绝对值问题绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;18.平移与平移有关的,注意口诀左加右减,上加下减只用于函数,沿向量平移一定要使用平移公式完成;19.中心对称关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。
(原创实用版3篇)编制人员:_______________审核人员:_______________审批人员:_______________编制单位:_______________编制时间:____年___月___日序言下面是本店铺为大家精心编写的3篇《高中数学技巧大全80个小绝招》,供大家借鉴与参考。
下载后,可根据实际需要进行调整和使用,希望能够帮助到大家,谢射!(3篇)《高中数学技巧大全80个小绝招》篇1以下是一些高中数学技巧的小绝招:1. 熟记各种公式和定理,掌握它们的推导过程。
2. 熟练掌握基本运算法则,包括加减、乘除、乘方、开方等。
3. 解方程时,注意等式两边的对齐,以及解出的根是否满足原方程。
4. 解不等式时,注意解集的表示方法和不等式的基本性质。
5. 解绝对值不等式时,注意使用零点分段法。
6. 解一次函数和二次函数的图像问题,掌握函数图像的平移、拉伸、翻折等变换。
7. 解指数函数和对数函数问题,注意底数的取值范围和函数的定义域。
8. 解对数方程和对数不等式,注意对数函数的单调性。
9. 解三角函数问题,掌握正弦、余弦、正切的定义和基本公式。
10. 解向量问题,注意向量的加减、数乘、向量积等运算。
11. 解平面几何问题,掌握三角形的基本性质、面积公式以及四边形的相关概念。
12. 解立体几何问题,注意空间几何体的表面积和体积公式。
13. 解排列组合问题,掌握排列组合公式和递推关系。
14. 解二项式定理问题,掌握二项式展开式的通项公式。
15. 解概率统计问题,注意随机事件、概率和期望的计算。
16. 解线性规划问题,掌握线性规划的基本概念和求解方法。
17. 解导数问题,注意导数的定义、性质和基本公式。
18. 解常用函数的导数,如幂函数、指数函数、对数函数、三角函数等。
19. 解导数的应用问题,如最值、单调性、凸凹性等。
20. 解积分问题,注意积分的基本性质、常见函数的积分公式和分部积分法。
21. 解定积分问题,掌握定积分的计算和基本性质。
高二数学技巧应对各类题型的窍门高二是高中学习的关键阶段,数学学科的难度和综合性都有所提升。
面对各类题型,掌握一些实用的技巧和窍门能够帮助我们更加高效地解题,提高成绩。
接下来,我将为大家分享一些应对高二数学各类题型的方法。
一、选择题1、直接法直接从题设条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密的推理和准确的运算,从而得出正确的结论。
这种方法适用于简单的选择题。
2、排除法从选项入手,根据题设条件与各选项的关系,通过分析、推理、计算、判断,对选项进行筛选,将其中与题设相矛盾的干扰项逐一排除,从而获得正确答案。
3、特殊值法根据题目中的条件,选取某个符合条件的特殊值或特殊图形,代入选项进行检验,从而得到正确答案。
这种方法常用于一些具有一般性结论的选择题。
4、数形结合法根据题目的条件,作出相应的图形,借助图形的直观性,经过简单的推理或计算,从而得出答案。
5、估算推理法有些选择题,由于题目条件限制,无法进行精确的运算和推理,此时可以运用估算的方法,大致确定答案的范围,从而选出正确答案。
二、填空题1、概念准确填空题考查的往往是对数学概念、定理、公式等的准确理解和运用。
因此,在答题时,一定要对相关的概念、定理、公式等有清晰的认识,确保答案的准确性。
2、认真审题仔细阅读题目,理解题意,明确题目要求填写的内容是数值、表达式还是图形等。
3、注意单位和取值范围如果题目中涉及到单位或取值范围,一定要注意填写准确,避免因粗心大意而丢分。
4、答案最简在填写答案时,要尽量将答案化简到最简形式,以确保答案的规范性。
三、解答题1、认真读题,明确要求在解答解答题时,首先要认真读题,理解题目所给的条件和问题,明确解题的目标和要求。
2、分析思路,选择方法根据题目所涉及的知识点和条件,分析解题的思路,选择合适的解题方法。
可以从已知条件出发,逐步推导得出结论;也可以从结论入手,反推所需的条件。
3、书写规范,步骤完整在书写解答过程时,要注意书写规范,字迹清晰。
高中数学解题技巧与方法高中数学是一门重要的学科,对于学生来说也是相对较难的一门课程。
许多学生在面对数学题目时感到困扰,不知道如何下手。
本文将介绍一些高中数学解题的技巧和方法,帮助学生提高解题能力。
一、理清思路在解题之前,首先要理清思路。
仔细阅读题目,分析题目的要求和条件。
可以在纸上做标记或者画图来帮助理解题目。
同时,还需要在脑海中构建一个解题方案,明确解题的步骤和方法。
二、多角度思考在解题过程中,不要被固定的思维方式所限制。
尝试从不同的角度思考问题,寻找不同的解题思路。
这样可以帮助我们发现更多的解题路径,并提高解题的灵活性。
三、建立逻辑思维数学问题大多需要通过逻辑推理来解决。
因此,培养逻辑思维是解题的关键。
可以通过做逻辑思维训练题或者进行推理游戏来提高自己的逻辑思维能力。
合理运用推理能力,可以更快地找到解题的方法。
四、归纳总结解题过程中,要善于归纳总结。
将解题的方法和思路记录下来,形成笔记或者思维导图。
这样有助于巩固所学知识,也方便在以后的学习中查阅。
通过总结,我们可以更好地掌握解题的技巧和方法。
五、练习巩固只有通过大量的练习,才能真正掌握解题的技巧和方法。
可以选择一些专门的习题集或者题库进行练习。
在解题过程中,可以注意查漏补缺,弄清楚自己的知识盲点,并通过练习加以强化。
六、寻求帮助如果在解题过程中遇到困难,不要害怕寻求帮助。
可以向老师请教,或者与同学进行讨论。
他们可能提供一种不同的解题思路,帮助我们更好地理解和解决问题。
总结起来,高中数学解题需要理清思路,多角度思考,建立逻辑思维,归纳总结,通过练习巩固,并勇于寻求帮助。
掌握好这些技巧和方法,相信大家在解题过程中能够事半功倍,取得更好的成绩。
加油吧!。
高中数学解题方法及技巧分析数学解题方法和技巧对不同类型的数学习题的作答效率和正确率有非常大的影响。
下面是小编为大家整理的关于高中数学解题方法及技巧分析,希望对您有所帮助。
欢迎大家阅读参考学习!1高中数学解题方法及技巧分析构建数学整体数学学习需要高中生具备整体思维,对现有条件等知识进行关联,建立起相关概念和数学知识的密切联系,才能灵活地对不同类型数学问题进行解答,最终将所学知识应用到实际数学问题解决过程中。
构建数学是一个长期的过程,需要不断对已经掌握的旧有数学知识不断理解和深化,才能形成整体数学意识,这样在解题时才能避免仅关注某一个条件,而不能建立条件之间的联系。
从我班实际情况来看,有些同学解题时,错误地认为原有数学知识是不可能解答新数学问题的,因此面对之前没有见过的数学问题,往往不知道从何处下手。
很多数学问题看似“新类型”,其实考察的知识点都是之前学习过的,需要我们整体看待这些问题,将题目中现有的条件及隐含的元素积极联系,以提高解题效率。
例如,我遇到过一个三角函数题,计算出22.5度的三角函数值,惯性思维下,我按照固有思路计算,但是发现计算起来非常麻烦,于是我转换角度,借用44.5度的三角函数值,并利用所学数学定理,即余弦定理、正弦定理,更为简便、快速地计算出题目所要求的22.5度的三角函数值。
解题后我进行了答题反思,发现使用数学整体思路解题比单一元素解题更为便捷高效,不管习题类型如何变化,要记住“万变不离其宗”,应当想办法运用已有知识联系题目,最终可能获得意想不到的收获。
巧妙加减同一个量求解积分等类型数学习题时,经常会使用“加减同一个量”“拼凑”出想要的公式模型或者定理,这样一来可以十分巧妙地解答出高中数学相关习题。
比如,求解积分函数时,应用“加减同一个量”的数学解题方法,可以在被积函数中需要时首先故意加上或者人为减去一个相等的量,为了确保最终答案正确性,还需要在给出答案之前,相应地减去或者加上这一个“相等的量”,这样才算解题完毕,避免答案错误。
高中中的解题思路与答题技巧高中数学解题思路与答题技巧高中数学作为一门重要的学科,对学生的综合能力有着重要的培养作用。
在学习高中数学的过程中,解题思路和答题技巧是至关重要的。
本文将介绍高中数学解题思路与答题技巧,帮助学生更好地应对数学考试。
一、解题思路1. 审题仔细、理解题意:在解决任何问题之前,首先要仔细审题,理解题目的要求。
要确保对题目的意思没有理解上的偏差,避免走入误区。
2. 确定解题方法:针对不同类型的题目,要选择相应的解题方法。
比如,在解决代数方程题时,可以运用因式分解、配方法等;在几何题中,则要熟悉几何定理和定律,灵活应用。
3. 分析问题、拆解难题:将复杂的问题拆解为若干较为简单的小问题进行分析,有助于更好地理解问题与解决问题。
这样做能够提高解题的效率和准确性。
4. 快速推理、形成思路:在解题过程中,要利用已知条件和解题技巧,进行快速推理。
形成解题的思路,避免走弯路。
通过构建合理且可行的思路,有助于解题的顺利进行。
5. 反复检查、确保准确:对于解答题来说,不仅要按照思路解决问题,还要进行反复检查,确保得出的结论准确无误。
对于选择题来说,也要仔细核对选项,确认最终答案。
二、答题技巧1. 掌握基本概念和公式:高中数学中有很多重要的基本概念和公式,这些都是解题不可或缺的基础。
要熟练掌握这些概念和公式,并能够熟练灵活地运用到解题中。
2. 积累解题经验:通过大量的练习和实践,积累解题经验是非常重要的。
做题时要注意总结方法和技巧,遇到新题目时能够迅速找到解题的思路。
3. 注意留白和标记重点:在解答题目时,要注意合理利用卷面空白处,留下足够的计算空间。
同时,对于关键步骤和重要中间结果,要做好标记,便于审阅和检查。
4. 注重解题过程的演算:在解答过程中,不仅要写出最终答案,还要详细展示解题过程,注重中间步骤的演算。
这样不仅方便检查,也有助于得分。
5. 注意单位和精度:在解决实际问题时,要注意单位的转换和保持精度。