高中数学定积分的概念
- 格式:ppt
- 大小:830.50 KB
- 文档页数:15
高二数学定积分知识点总结一、定积分的概念1.1 定积分的引入在高中数学中,我们学过了不定积分的概念和性质,定积分就是在这个基础上引入的。
当我们对一个函数进行积分时,如果我们要计算的量是函数在一个区间上的面积或者体积,那么我们就需要用到定积分。
定积分可以看做是一个变量的特定区间上的累积和。
1.2 定积分的定义设函数f(x)在区间[a, b]上有定义,将[a, b]分成n等分,每个小区间的长度为Δx=n(b-a),在第i个小区间上任取一点ξi,则f(x)在[a, b]上的定积分为:∫[a,b]f(x) dx=lim{n→∞}∑{i=1}^{n}f(ξi)Δx其中lim{n→∞}表示当n趋向于无穷大时的极限。
1.3 定积分的几何意义定积分的几何意义即函数f(x)在[a, b]上的定积分就是函数y=f(x)与x轴所围区域的有向面积。
1.4 定积分的性质(1)定积分的线性性质:∫[a,b][f(x)+g(x)] dx=∫[a,b]f(x) dx+∫[a,b]g(x) dx(2)定积分的估值性质:若f(x)在[a, b]上连续,则必定存在α∈[a, b],使得∫[a,b]f(x)dx=f(α)(b-a)1.5 定积分的计算定积分的计算主要是通过不定积分的计算来实现。
通过不定积分求出F(x)的原函数后,即可得到∫[a,b]f(x) dx=F(b)-F(a)。
二、定积分的应用2.1 定积分的物理意义定积分在物理学中有着重要的应用,它可以用来计算物体的质量、重心、压力、力矩等。
在力学中,定积分常用来计算物体的质心以及转动惯量等。
2.2 定积分的几何应用定积分可以用来求曲线与坐标轴所围成的曲边梯形或者曲边梯形的面积,也可以用来计算曲线的弧长、曲线旋转体的体积等几何问题。
2.3 定积分的工程应用在工程问题中,定积分可以用来计算各种曲线的长度、曲线所围成的区域面积、曲线所绕成的物体的体积等。
2.4 定积分的经济应用在经济学中,定积分可以用来计算总收益、总成本、总利润等与变量有关的经济指标。
高中数学定积分的概念及相关题目解析在高中数学中,定积分是一个重要的概念,它在数学和实际问题中都有广泛的应用。
本文将介绍定积分的概念,并通过具体的题目解析来说明其考点和解题技巧,帮助高中学生更好地理解和应用定积分。
一、定积分的概念定积分是微积分中的一个重要概念,它是对函数在一个区间上的积分结果的确定值。
定积分的符号表示为∫,下面是定积分的定义:设函数f(x)在区间[a, b]上有定义,将[a, b]分成n个小区间,每个小区间的长度为Δx,选取每个小区间中的一个点ξi,作为f(x)在该小区间上的取值点。
那么,定积分的近似值可以表示为:∫[a, b]f(x)dx ≈ Σf(ξi)Δx当n趋向于无穷大时,定积分的近似值趋向于定积分的准确值,即:∫[a, b]f(x)dx = lim(n→∞)Σf(ξi)Δx这个准确值就是函数f(x)在区间[a, b]上的定积分。
二、定积分的考点和解题技巧1. 计算定积分的基本方法对于一些简单的函数,可以直接使用定积分的定义进行计算。
例如,计算函数f(x) = x²在区间[0, 1]上的定积分:∫[0, 1]x²dx = lim(n→∞)Σf(ξi)Δx = lim(n→∞)Σ(ξi)²Δx在这个例子中,可以将区间[0, 1]等分成n个小区间,每个小区间的长度为Δx = 1/n。
然后,选取每个小区间中的一个点ξi,可以选择ξi = i/n。
这样,定积分的近似值可以表示为:∫[0, 1]x²dx ≈ Σ(ξi)²Δx = Σ(i/n)²(1/n)当n趋向于无穷大时,可以求出定积分的准确值。
在这个例子中,计算过程如下:∫[0, 1]x²dx = lim(n→∞)Σ(i/n)²(1/n)= lim(n→∞)(1/n³)Σi²= lim(n→∞)(1/n³)(1² + 2² + ... + n²)= lim(n→∞)(1/n³)(n(n+1)(2n+1)/6)= 1/3因此,函数f(x) = x²在区间[0, 1]上的定积分的值为1/3。
高中数学定积分知识点高中数学中的定积分,是一个重要的数学概念。
它在微积分中起到了至关重要的作用,不仅仅是理论上的基础,也是解决实际问题的关键工具。
在本文中,我们将探讨一些关于高中数学定积分的知识点,帮助读者更好地理解和应用这一概念。
首先,我们需要明确定积分的定义和基本性质。
定积分可以理解为一个函数在某个区间上的累积效应。
它可以表示为函数f(x)在[a, b]区间上的面积或曲线下方的积分值。
定积分的计算有多种方法,其中一种常见的方法是使用黎曼和来逼近。
定积分有一些基本的性质,其中包括线性性质、可加性质、保号性质等。
这些性质使我们能够更加灵活地使用定积分来求解各种问题。
此外,定积分还有一个重要的应用是计算曲线的弧长。
通过定积分,我们可以精确地计算出曲线的弧长,而不需要使用近似方法。
在应用定积分解决实际问题时,我们通常需要先建立一个数学模型。
这个模型可以是一个函数,描述了变量之间的关系。
然后,我们可以使用定积分来求解这一函数在某个区间上的累积效应,得到我们想要的结果。
例如,在物理学中,我们可以使用定积分来计算物体的质量、面积、体积等。
除了常见的计算求解问题,定积分还有一些更深入的概念和应用。
例如,定积分可以用来计算函数的平均值。
通过将函数在某个区间上的定积分除以区间的长度,我们可以得到函数在该区间上的平均值。
这对于理解函数在一个区间内的变化趋势是非常有帮助的。
此外,定积分还可以用于求解微分方程。
微分方程是描述自然现象中变化的方程,定积分可以帮助我们从微分方程的解中得到更多的信息。
例如,通过将微分方程转化成定积分的形式,我们可以求解出函数的图像、特定点的坐标等。
值得一提的是,高中数学中的定积分只是微积分的一个基础,对于后续的学习和研究,定积分还有更多的应用和拓展。
通过进一步学习和研究,我们可以了解到曲线的曲率、曲线下的曲面积分等更加复杂的概念和方法。
综上所述,高中数学中的定积分是一个非常重要的概念,它不仅仅是理论上的基础,也是解决实际问题的关键工具。
对定积分的概念剖析学习定积分对理解中学教材是必要的,如祖日恒原理.只有学习了定积分才能更好地理解它,要想学好本部分,也需从定义学起. 一、关于定积分的概念 1.定积分的定义:如果函数()f x 在区间[]a b ,上连续(如图1),用分点011i i n a x x x x x b -=<<<<<<=L L .将区间[]a b ,等分成n 个小区间,在每个小区间1[]i i x x -,上任取一点(12)i i n ξ=L ,,,,作和式11()()nni i i i baf x f n ξξ==-∆=∑∑,当n →∞时,上述和式无限接近某个常数,这个常数叫做函数()f x 在区间[]a b ,上的定积分,记作()baf x dx ⎰,即1()lim ()nbi an i b af x dx f n ξ→=-=∑⎰∞,这里,a 与b 分别叫做积分下限与积分上限,区间[]a b ,叫做积分区间,函数()f x 叫做被积函数,x 叫做积分变量,()f x dx 叫做被积式.注意:1.定积分是一种“和”的极限,蕴含着分割、近似代替,求和、取极限的思想方法,这种思想方法来源于“计算底边在区间[]a b ,上,高为()y f x =的曲边梯形的面积”. ①分割:将大曲边梯形分割成很多个小曲边梯形,即在区间[]a b ,内取1n -个点,它们依次为0121n n a x x x x x b -=<<<<=<L ,这些点把区间[]a b ,等分成n 个小区间1[]12i i x x i n -=L ,,,,,.②近似代替:当分点较多,又分割的较细时,即在每个小区间上f 的值变化不大时,在每个小区间1[]i i x x -,上任取一点i ξ,以()i f ξ为高,1[]i i x x -,为底的小矩形面积近似代替相应区间上的小曲边梯形的面积(近似代替可以有以直代曲,以匀速代变速,以恒力代变力,以圆柱代圆锥等多种方式).③求和:将区间[]a b ,上近似代替小曲边梯形的小矩形的面积加起来,就是所求曲边梯形面积的近似值.④取极限:当上述分割越来越细,即分点无限增多,同时小区间的长度趋近于零时,则求和公式的极限就是曲边梯形的面积.许多实际问题,如求体积、变力作功、变速直线运动的路程等,都可以通过“分割、近似代替、求和、取极限”归结成这种特殊结构的“和”的极限.抛开实际问题的具体意义,从数学结构上来考虑问题,就产生了定积分的定义.2.在定义中均假设a b <,当a b =或a b >时,有()0baf x dx =⎰或()()baabf x dx f x dx =-⎰⎰.3.定积分是一种“和”的极限值,所以是一个常数,与被积函数()f x 在积分区间[]a b ,有关,与积分变量用什么字母表示无关.4.如果被积函数()f x 在积分区间[]a b ,上连续,那么定积分()ba f x dx ⎰必定存在,如无特别声明,我们总假定被积函数()f x 在积分区间上连续. 2.定积分的几何意义:(1)当函数()0f x ≥时,定积分()ba f x dx ⎰在几何上表示:由曲线()y f x =、直线x a x b ==,及x 轴所围成的曲边梯形(图2)的面积S .即()baS f x dx =⎰.(2)如果在区间[]a b ,,函数()0f x ≤时,那么曲边梯形位于x 轴下方(图3).在1()lim ()nbi an i b a f x f n ξ→=-=∑⎰∞.右端的和式中,由于0b a n ->,()0i f ξ≤,故()0i b af nξ-≤0.从而积分()0baf x dx ⎰≤,这时它等于图3所示曲边梯形面积的负值,即()b af x dx S =-⎰或()baS f x dx =-⎰S.(3)当()f x 在区间[]a b ,上有正有负时,积分()baf x dx ⎰在几何上表示图4所示的几个小曲边梯形面积的代数和(x 轴上方面积取正号,x 轴下方面积取负号)123()baf x dx S S S =-+-⎰.二、典例分析例1 根据定积分的几何意义计算定积分:312x dx -⎰.解:由几何意义,所求定积分表示由直线13x x ==,及02y y x ==-,所围成图形的面积,即图中阴影部分面积.因此311121111122x dx -=⨯⨯+⨯⨯=⎰.例2 利用定积分定义计算:21(1)x dx +⎰.解:被积函数()1f x x =+,在区间[12],上连续,故可积. 将区间[12],分成n 等份,每个区间的长度为1x n ∆=,在11[]11i i i i x x n n --⎡⎤=++⎢⎥⎣⎦,,上取点111i i i x nξ--==+,(12)i n =L ,,,. 于是111()()112i i i i f f x n nξ---==++=+, 从而得到21111121()2n nn i i i i i i f x n n n n ξ===--⎛⎫⎛⎫∆=+=+ ⎪ ⎪⎝⎭⎝⎭∑∑∑·221[012(1)]n n n n =+++++-L · 21(1)12222n n n n n --=+=+·. 所以21115(1)lim 22222n n x dx n →-⎛⎫+=+=+= ⎪⎝⎭⎰∞.。
高中定积分的计算在高中数学学习中,定积分是一个重要的概念和计算方法。
它不仅在数学领域有着广泛的应用,而且在物理、经济等其他学科中也具有重要意义。
本文将介绍高中定积分的基本概念、计算方法和一些常见的应用场景。
一、定积分的基本概念定积分是微积分中的重要内容,是对曲线下面积的一种度量。
定积分的计算可以理解为将曲线下的面积划分为无限多个无穷小的矩形,并将这些矩形的面积加起来,得到整个曲线下的面积值。
在高中数学中,定积分可以用下面的形式表示:∫[a,b] f(x) dx其中,f(x)表示被积函数,[a,b]表示积分区间,dx表示积分的自变量。
定积分的结果是一个数值,表示被积函数在积分区间内的曲线下面积。
二、定积分的计算方法高中定积分的计算方法主要有三种:几何法、代数法和牛顿-莱布尼茨公式。
1. 几何法:这种方法利用几何图形的面积性质来计算定积分。
常见的几何图形包括矩形、三角形、梯形等。
通过将曲线下的面积分割成这些几何图形,然后计算它们的面积并相加,就可以得到定积分的值。
2. 代数法:代数法是通过对被积函数进行积分运算来计算定积分。
这种方法可以利用积分的基本性质和常见函数的积分公式来进行计算。
通过将被积函数进行积分并确定积分上下限,就可以得到定积分的结果。
3. 牛顿-莱布尼茨公式:这是一种基于导数和原函数的关系来计算定积分的方法。
根据牛顿-莱布尼茨公式,如果一个函数F(x)是f(x)的原函数,那么在积分区间[a,b]上,有:∫[a,b] f(x) dx = F(b) - F(a)这种方法适用于已知被积函数的原函数的情况,可以直接通过求原函数的差值来计算定积分。
三、定积分的应用场景高中数学的定积分不仅仅是一种计算方法,还具有一些实际应用场景。
以下是一些常见的应用示例:1. 面积计算:定积分可以用来计算曲线下的面积,例如计算二次曲线的面积、圆的面积等。
2. 长度计算:通过对曲线方程求导得到曲线的斜率,再利用定积分计算曲线的弧长。
高中数学知识点归纳定积分基础知识高中数学的定积分是数学中非常重要的一个概念,它是微积分的核心内容之一。
在学习定积分的过程中,我们需要了解一些基础知识,本文将对高中数学中定积分的基础知识进行归纳总结。
一、定积分的概念定积分是积分学中重要的概念之一,它可以看作是函数在一个区间上的加权平均。
定积分的定义是:设函数f(x)在区间[a,b]上有定义,将[a,b]等分成n个小区间,每个小区间的长度为Δx,然后在每个小区间上取一点ξ_i,构成一个积分和S_n,当n趋向于无穷大时,若极限存在且与ξ_i的选法无关,则称该极限为函数f(x)在区间[a,b]上的定积分,记作∫(a,b)f(x)dx。
二、定积分的计算方法在计算定积分时,可以使用不同的方法,具体的计算方法如下:1. 几何意义法:根据定积分的几何意义,可以将定积分看作是曲线与坐标轴所围成的面积。
根据几何图形的性质,可以求得定积分的值。
2. 定积分的性质法:根据定积分的性质,可以利用一些性质对定积分进行化简。
比如定积分的线性性质、区间可加性等。
3. 换元法:对于一些较复杂的函数,可以通过变量代换的方法将其化简为简单的形式,然后进行定积分的计算。
4. 分部积分法:对于一些乘积形式的函数,可以通过分部积分的方法将其化简为简单的形式,然后进行定积分的计算。
5. 积分表法:对于一些常见的函数,可以通过积分表中的公式直接进行定积分的计算。
三、定积分的应用领域定积分在数学中有广泛的应用领域,具体包括以下几个方面:1. 几何应用:定积分可以用来计算曲线与坐标轴所围成的面积、曲线的弧长、曲线的平均值等。
2. 物理应用:在物理学中,定积分可以用来求解物体在一定时间内的位移、速度、加速度等。
3. 统计学应用:在统计学中,定积分可以用来计算概率密度函数下的概率、求解统计分布的期望值等。
4. 经济应用:在经济学中,定积分可以用来计算收入曲线下的总收入、成本曲线下的总成本等。
总结:高中数学中的定积分是微积分学习的重要内容,通过学习定积分的基础知识,我们可以更好地理解和应用定积分。
定积分、微积分基本定理1.定积分、微积分基本定理【定积分】定积分就是求函数在区间中图线下包围的面积.即由所围成图(f X)[a,b] y=0,x=a,x=b,y=(f X)形的面积.这个图形称为曲边梯形,特例是曲边三角形,表示的是一个面积,是一个数.定积分的求法:求定积分首先要确定定义域的范围,其次确定积分函数,最后找出积分的原函数然后求解,这里以例题为例.【微积分基本定理】在高等数学中对函数的微分、积分的研究和对相关概念及用途的数学称作微积分.积分学、极限、微分学及其应用是微积分的主要内容.微积分也称为数学分析,用以研究事物运动时的变化和规律.在高等数学学科中,微积分是一个基础学科.其中,微积分的核心(基本)定理是푏푎F(x)=(f x)(f x)푓(푥)푑푥= 퐹(푏)―퐹(푎),其中,而必须在区间(a,b)内连续.2例 1:定积分|3 ―2푥|푑푥=1解:1 | 3﹣2x | dx2=321(3 ―2푥)푑푥+232(2푥―3)푑푥3=(﹣2)1 +(x2﹣3x)|233x x |221/ 2=12通过这个习题我们发现,第一的,定积分的表示方法,后面一定要有;第二,每一段对应的被积分函数的表dx达式要与定义域相对应;第三,求出原函数代入求解.例 2:用定积分的几何意义,则39 ―푥2푑푥.―3解:根据定积分的几何意义,则39 ―푥2푑푥表示圆心在原点,半径为3的圆的上半圆的面积,―3故3―39 ―푥2푑푥=12 × 휋× 32 =9휋.2这里面用到的就是定积分表示的一个面积,通过对被积分函数的分析,我们发现它是个半圆,所以可以直接求他的面积.【考查】定积分相对来说比较容易,一般以选择、填空题的形式出现,这里要熟悉定积分的求法,知道定积分的含义,上面两个题代表了两种解题思路,也是一般思路,希望同学们掌握.2/ 2。
高中数学积分知识点总结积分是高中数学中的重要内容,它是微积分的一部分,用于研究函数的积累效应和区域面积计算等问题。
在高中数学学习过程中,积分作为一个重要的工具和思维方式,常常被运用到各个数学领域中。
本文将总结高中数学中常用的积分知识点,帮助大家更好地掌握和应用积分。
1. 定积分定积分是积分的一种形式,它可以用于计算曲线与坐标轴之间所夹的面积。
定积分的定义可以简单表示为:若f(x)在[a,b]上连续,则存在F(x),使得F'(x)=f(x),则∫[a,b]f(x)dx=F(b)-F(a)。
其中,F(x)称为f(x)的原函数。
2. 基本积分法在求解积分的过程中,常常会用到基本积分法,即利用函数的原函数进行积分计算。
常用的基本积分公式包括:常数积分法、幂函数积分法、三角函数积分法、指数函数积分法、对数函数积分法等。
通过熟练掌握这些基本积分法则,可以简化积分运算的复杂程度。
3. 不定积分和定积分的关系不定积分是定积分的逆运算,它与定积分之间有着密切的关系。
具体而言,设F(x)为f(x)的一个原函数,那么f(x)的不定积分可以表示为∫f(x)dx=F(x)+C,其中C为常数。
因此,不定积分求解的目的是寻找原函数,而定积分的求解则是通过计算积分的上下界之差来求解曲线与坐标轴所夹的面积。
4. 曲线的面积计算积分在计算曲线与坐标轴所夹的面积时发挥着重要的作用。
一般情况下,曲线的面积可以通过定积分来求解。
当曲线与x轴之间的面积为正值时,采用∫f(x)dx的形式进行计算;当曲线与x轴之间的面积为负值时,则需取绝对值。
此外,若要计算曲线与y轴之间的面积,需对积分表达式进行变形,如∫|f(x)|dx。
5. 函数的平均值在积分中,还可以通过函数的平均值来求解一些问题。
平均值的计算方式为函数的积分值除以积分区间的长度。
具体而言,设函数f(x)在[a,b]上连续,则函数f(x)在[a,b]上的平均值为f_avg=(1/(b-a))∫[a,b]f(x)dx。
定积分的概念及其简单应用知识集结知识元定积分的应用知识讲解1.定积分的应用【应用概述】正如前面定积分的概念哪里所说,定积分表示的是一个面积,是一个大于零的数.那么它在实际当中的应用也就和求面积相关.例1:定积分|sin x|dx的值是.解:|sin x|dx==﹣cos x+cos x=1+1+0﹣(﹣1)=3.这个题如果这样子出,|sin x|在区间(0,)上与x轴所围成的面积,那么就成了一个应用题.如何解这类应用题呢?其实就是构建一个定积分,找到区间和要积分的函数即可.【定积分在求面积中的应用】1、直角坐标系下平面图形的面积2、极坐标系下平面图形的面积由连续曲线r=r(θ)及射线θ=α,θ=β所围成的平面图形的面积(图6)为3、用定积分求平面图形的面积的步骤a)根据已知条件,作出平面图形的草图;根据图形特点,恰当选取计算公式;b)解方程组求出每两条曲线的交点,以确定积分的上、下限;c)具体计算定积分,求出图形的面积.例题精讲定积分的应用例1.直线x=1,x=e与曲线y=围成的面积是()A.B.C.D.例2.由曲线,直线y=x所围成的封闭图形的面积是()A.B.C.D.1例3.抛物线y=x2-1与直线y=x+1所围成的平面图形的面积是()A.B.C.5D.用定积分研究简单几何体的体积知识讲解1.用定积分求简单几何体的体积【知识点的知识】1、已知平行截面面积的立体的体积2、旋转体的体积例题精讲用定积分研究简单几何体的体积例1.祖暅原理也称祖氏原理,是我国数学家祖暅提出的一个设计集合求积的著名命题:“幂势既同,则积不容异”,“幂”是截面积,“势”是几何体的高,意思是两个同高的立体,如在等高处截面积相等,则体积相等.由曲线x2=4y,x2=-4y,x=4,x=-4围成图形绕y轴旋转一周所得为旋转体的体积为V1:满足x2+y2≤16,x2+(y-2)2≥4,x2+(y+2)2≥4的点(x,y)组成的图形绕y轴旋转一周所得旋转体的体积为V2,则()A.V1=V2B.V1=V2C.V1=V2D.V1=2V2例2.曲线y=e x,直线x=0,x=与x轴围成的平面图形绕x轴旋转一周得到旋转体的体积是()A.B.C.D.例3.曲线y=x2和y2=x所围成的平面图形绕x轴旋转一周后,所形成的旋转体的体积为()A.B.C.D.。
第3讲 定积分与微积分基本定理一、知识梳理 1.定积分的概念在⎠⎛ab f (x )d x 中,a ,b 分别叫作积分下限与积分上限,区间[a ,b ]叫作积分区间,f (x )叫作被积函数,x 叫作积分变量,f (x )d x 叫作被积式.2.定积分的性质(1)⎠⎛a b kf (x )d x =k ⎠⎛ab f (x )d x (k 为常数);(2)⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛ab f 2(x )d x ;(3)⎠⎛ab f (x )d x =⎠⎛ac f (x )d x +⎠⎛cb f (x )d x (其中a <c <b ).3.微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,且F ′(x )=f (x ),那么⎠⎛ab f (x )d x =F (b )-F (a ),这个结论叫作微积分基本定理,又叫作牛顿莱布尼茨公式.其中F (x )叫作f (x )的一个原函数.为了方便,常把F (b )-F (a )记作F (x )⎪⎪⎪b a ,即⎠⎛ab f (x )d x =F (x )⎪⎪⎪ba =F (b )-F (a ).常用结论1.定积分应用的常用结论当曲边梯形位于x 轴上方时,定积分的值为正;当曲边梯形位于x 轴下方时,定积分的值为负;当位于x 轴上方的曲边梯形与位于x 轴下方的曲边梯形面积相等时,定积分的值为零.2.若函数f (x )在闭区间[-a ,a ]上连续,则有 (1)若f (x )为偶函数,则⎠⎛-a a f (x )d x =2⎠⎛0a f (x )d x .(2)若f (x )为奇函数,则⎠⎛-aa f (x )d x =0. 二、教材衍化1.设f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,2x ,x <0,则⎠⎛-11f (x )d x 的值是( )A.⎠⎛-11x 2d xB .⎠⎛-112xd xC.⎠⎛-10x 2d x +⎠⎛012xd xD .⎠⎛-102x d x +⎠⎛01x 2d x解析:选D.由分段函数的定义及定积分运算性质, 得⎠⎛-11f (x )d x =⎠⎛-102xd x +⎠⎛01x 2d x .故选D.2. ⎠⎛2e +11x -1d x=________. 解析:⎠⎛2e +11x -1d x =ln(x -1)|e +12=ln e -ln 1=1. 答案:13.若⎠⎜⎛0π2(sin x -a cos x )d x =2,则实数a 等于________.解析:由题意知(-cos x -a sin x )⎪⎪⎪⎪π20=1-a =2,a =-1.答案:-14.汽车以v =(3t +2)m/s 作变速直线运动时,在第1 s 至第2 s 间的1 s 内经过的位移是________m.解析:s =⎠⎛12(3t +2)d t =⎪⎪⎪⎝ ⎛⎭⎪⎫32t 2+2t 21 =32×4+4-⎝ ⎛⎭⎪⎫32+2=10-72=132(m).答案:132一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)设函数y =f (x )在区间[a ,b ]上连续,则⎠⎛a b f (x )d x =⎠⎛ab f (t )d t .( )(2)若f (x )是偶函数,则⎠⎛-a a f (x )d x =2⎠⎛0a f (x )d x .( )(3)若f (x )是奇函数,则⎠⎛-aa f (x )d x =0.( )(4)曲线y =x 2与直线y =x 所围成的区域面积是⎠⎛01(x 2-x )d x .( )答案:(1)√ (2)√ (3)√ (4)× 二、易错纠偏常见误区|K(1)误解积分变量致误; (2)不会利用定积分的几何意义求定积分;(3)f (x ),g (x )的图象与直线x =a ,x =b 所围成的曲边图形的面积的表达式不清致错. 1.定积分⎠⎛-12(t 2+1)d x =________.解析:⎠⎛-12(t 2+1)d x =(t 2+1)x |2-1=2(t 2+1)+(t 2+1)=3t 2+3. 答案:3t 2+3 2.⎠⎛22-x 2d x =________解析:⎠⎛22-x 2d x 表示以原点为圆心,2为半径的14圆的面积,故⎠⎛22-x 2d x =14π×(2)2=π2.答案:π23.如图,函数y =-x 2+2x +1与y =1相交形成一个闭合图形(图中的阴影部分),则该闭合图形的面积是________.解析:由⎩⎪⎨⎪⎧y =-x 2+2x +1,y =1,得x 1=0,x 2=2.所以S =⎠⎛02(-x 2+2x +1-1)d x =⎠⎛02(-x 2+2x )d x =⎝ ⎛⎭⎪⎫-x33+x 2⎪⎪⎪20=-83+4=43.答案:43[学生用书P53]定积分的计算(多维探究)角度一 利用微积分基本定理求定积分计算下列定积分:(1)⎠⎛122xd x ;(2)⎠⎛0πcos x d x ;(3)⎠⎛13⎝⎛⎭⎪⎫2x -1x 2d x .【解】 (1)因为(ln x )′=1x ,所以⎠⎛122x d x =2⎠⎛121xd x =2ln x ⎪⎪⎪21=2(ln 2-ln 1)=2ln 2.(2)因为(sin x )′=cos x ,所以⎠⎛0πcos x d x =sin x ⎪⎪⎪π0=sin π-sin 0=0.(3)因为(x 2)′=2x ,⎝ ⎛⎭⎪⎫1x ′=-1x 2,所以⎠⎛13⎝ ⎛⎭⎪⎫2x -1x 2d x =⎠⎛132x d x +⎠⎛13⎝ ⎛⎭⎪⎫-1x 2d x =x 2⎪⎪⎪31+1x ⎪⎪⎪31=223. 角度二 利用定积分的几何意义求定积分计算下列定积分:(1)⎠⎛011-(x -1)2d x ;(2)⎠⎛-55(3x 3+4sin x )d x .【解】 (1)根据定积分的几何意义,可知⎠⎛011-(x -1)2d x 表示的是圆(x -1)2+y 2=1的面积的14(如图中阴影部分). 故⎠⎛011-(x -1)2d x =π4.(2)设y =f (x )=3x 3+4sin x ,则f (-x )=3(-x )3+4sin(-x )=-(3x 3+4sin x )=-f (x ), 所以f (x )=3x 3+4sin x 在[-5,5]上是奇函数. 所以⎠⎛-50(3x 3+4sin x )d x =-⎠⎛05(3x 3+4sin x )d x .所以⎠⎛-55(3x 3+4sin x )d x =⎠⎛-50(3x 3+4sin x )d x +⎠⎛05(3x 3+4sin x )d x =0.计算定积分的解题步骤(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差. (2)把定积分变形为求被积函数为上述函数的定积分. (3)分别用求导公式的逆运算找到一个相应的原函数.(4)利用微积分基本定理求出各个定积分的值,然后求其代数和.[提醒] 当被积函数的原函数不易求,而被积函数的图象与直线x =a ,x =b ,y =0所围成的曲边梯形的面积易求时,可利用定积分的几何意义求定积分.1.⎠⎛-11e |x |d x 的值为( )A .2B .2eC .2e -2D .2e +2解析:选C.⎠⎛-11e |x |d x =⎠⎛-10e -xd x +⎠⎛01e xd x=-e -x ⎪⎪⎪1-1+e x ⎪⎪⎪1=[-e 0-(-e)]+(e -e 0)=-1+e +e -1=2e -2,故选C. 2.⎠⎛01⎝⎛⎭⎪⎫1-x 2+12x d x =________.解析:⎠⎛01⎝ ⎛⎭⎪⎫1-x 2+12x d x =⎠⎛011-x 2d x +⎠⎛0112x d x ,⎠⎛0112x d x =14,⎠⎛011-x 2d x 表示四分之一单位圆的面积,为π4,所以结果是π+14.答案:π+14利用定积分求平面图形的面积(师生共研)(一题多解)求由抛物线y 2=2x 与直线y =x -4围成的平面图形的面积. 【解】如图所示,解方程组⎩⎪⎨⎪⎧y 2=2x ,y =x -4,得两交点的坐标分别为(2,-2),(8,4).法一:选取横坐标x 为积分变量,则图中阴影部分的面积S 可看作两部分面积之和, 即S =2⎠⎛022x d x +⎠⎛28(2x -x +4)d x =18.法二:选取纵坐标y 为积分变量,则图中阴影部分的面积S =⎠⎛-24⎝⎛⎭⎪⎫y +4-12y 2d y =18.设阴影部分的面积为S ,则对如图所示的四种情况分别有:(1)S =⎠⎛ab f (x )d x .(2)S =-⎠⎛ab f (x )d x .(3)S =⎠⎛a c f (x )d x -⎠⎛c b f (x )d x .(4)S =⎠⎛ab f (x )d x -⎠⎛ab g (x )d x =⎠⎛ab [f (x )-g (x )]d x .1.已知曲线C :y =x 2+2x 在点(0,0)处的切线为l ,则由C ,l 以及直线x =1围成的区域的面积等于________.解析:因为y ′=2x +2,所以曲线C :y =x 2+2x 在点(0,0)处的切线的斜率k =y ′|x=0=2,所以切线方程为y =2x ,所以由C ,l 以及直线x =1围成的区域如图中阴影部分所示,其面积S =⎠⎛01(x 2+2x -2x )d x =⎠⎛01x 2d x =x 33⎪⎪⎪10=13.答案:132.已知函数f (x )=-x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与x 轴在原点处相切,且x 轴与函数图象所围区域(图中阴影部分)的面积为112,则a 的值为________.解析:f ′(x )=-3x 2+2ax +b ,因为f ′(0)=0,所以b =0,所以f (x )=-x 3+ax 2,令f (x )=0,得x =0或x =a (a <0).S 阴影=-⎠⎛a0(-x 3+ax 2)d x =112a 4=112,所以a =-1. 答案:-1定积分在物理中的应用(师生共研)(1)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t+251+t(t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是( )A .1+25ln 5B .8+25ln 113C .4+25ln 5D .4+50ln 2(2)一物体在力F (x )=⎩⎪⎨⎪⎧5,0≤x ≤2,3x +4,x >2(单位:N)的作用下沿与力F 相同的方向,从x =0处运动到x =4(单位:m)处,则力F (x )做的功为________J.【解析】 (1)令v (t )=0得,3t 2-4t -32=0, 解得t =4⎝ ⎛⎭⎪⎫t =-83舍去. 汽车的刹车距离是⎠⎛04⎝ ⎛⎭⎪⎫7-3t +251+t d t =[7t -32t 2+25ln(t +1)]⎪⎪⎪40 =4+25ln 5.(2)由题意知,力F (x )所做的功为W =⎠⎛04F (x )d x =⎠⎛025d x +⎠⎛24(3x +4)d x =5×2+⎝ ⎛⎭⎪⎫32x 2+4x ⎪⎪⎪42=10+⎣⎢⎡⎦⎥⎤32×42+4×4-⎝ ⎛⎭⎪⎫32×22+4×2=36(J).【答案】 (1)C (2)36定积分在物理中的两个应用(1)求物体做变速直线运动的路程,如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的路程s =⎠⎛ab v (t )d t .(2)变力做功,一物体在变力F (x )的作用下,沿着与F (x )相同方向从x =a 移动到x =b 时,力F (x )所做的功是W =⎠⎛ab F (x )d x .1.物体A 以v =3t 2+1(m/s)的速度在一直线l 上运动,物体B 在直线l 上,且在物体A 的正前方5 m 处,同时以v =10t (m/s)的速度与A 同向运动,出发后,物体A 追上物体B所用的时间t (s)为( )A .3B .4C .5D .6解析:选C.因为物体A 在t 秒内行驶的路程为⎠⎛0t (3t 2+1)d t ,物体B 在t 秒内行驶的路程为⎠⎛0t 10t d t ,因为(t 3+t -5t 2)′=3t 2+1-10t ,所以⎠⎛0t (3t 2+1-10t )d t =(t 3+t -5t 2)⎪⎪⎪t=t 3+t -5t 2=5,整理得(t -5)(t 2+1)=0,解得t =5.2.设变力F (x )作用在质点M 上,使M 沿x 轴正向从x =1运动到x =10,已知F (x )=x 2+1且方向和x 轴正向相同,则变力F (x )对质点M 所做的功为________J(x 的单位:m ;力的单位: N).解析:变力F (x )=x 2+1使质点M 沿x 轴正向从x =1运动到x =10所做的功为W =⎠⎛110F (x )d x =⎠⎛110(x 2+1)d x ,因为⎝ ⎛⎭⎪⎫13x 3+x ′=x 2+1,所以原式=342(J).答案:342[学生用书P274(单独成册)][基础题组练]1.定积分⎠⎛01(3x +e x)d x 的值为( )A .e +1B .eC .e -12D .e +12解析:选D.⎠⎛01(3x +e x)d x =⎝ ⎛⎭⎪⎫32x 2+e x ⎪⎪⎪10=32+e -1=12+e.2.若f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x +⎠⎛0a 3t 2d t ,x ≤0,f (f (1))=1,则a 的值为( )A .1B .2C .-1D .-2解析:选A.因为f (1)=lg 1=0,f (0)=⎠⎛0a 3t 2d t =t 3⎪⎪⎪a 0=a 3,所以由f (f (1))=1得a3=1,所以a =1.3.若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =( )A .-1B .-13C.13D .1解析:选B.因为f (x )=x 2+2⎠⎛01f (x )d x ,所以⎠⎛01f (x )d x =⎝ ⎛⎭⎪⎫13x 3+2x ⎠⎛01f (x )d x |10 =13+2⎠⎛01f (x )d x ,所以⎠⎛01f (x )d x =-13. 4.设f (x )=⎩⎨⎧1-x 2,x ∈[-1,1],x 2-1,x ∈(1,2],则⎠⎛-12f (x )d x 的值为( )A.π2+43 B .π2+3C.π4+43D .π4+3解析:选A.⎠⎛-12f (x )d x =⎠⎛-111-x 2d x +⎠⎛12(x 2-1)d x =12π×12+⎝ ⎛⎭⎪⎫13x 3-x ⎪⎪⎪21=π2+43,故选A.5.由曲线y =x 2和曲线y =x 围成的一个叶形图如图所示,则图中阴影部分的面积为( )A.13 B .310 C.14D .15解析:选A.由⎩⎨⎧y =x 2,y =x ,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =1,y =1,所以阴影部分的面积为⎠⎛01(x -x 2)d x =13.故选A. 6.定积分⎠⎛-11(x 2+sin x )d x =________.解析:⎠⎛-11(x 2+sin x )d x=⎠⎛-11x 2d x +⎠⎛-11sin x d x=2⎠⎛01x 2d x =2·x 33⎪⎪⎪10=23.答案:237.⎠⎛-11(x 2tan x +x 3+1)d x =________.解析:因为x 2tan x +x 3是奇函数.所以⎠⎛-11(x 2tan x +x 3+1)d x =⎠⎛-111d x =x |1-1=2.答案:28.一物体受到与它运动方向相反的力:F (x )=110e x+x 的作用,则它从x =0运动到x=1时F (x )所做的功等于________.解析:由题意知W =-⎠⎛01⎝⎛⎭⎪⎫110e x +x d x=-⎝ ⎛⎭⎪⎫110e x +12x 2⎪⎪⎪10=-e 10-25.答案:-e 10-259.求下列定积分: (1)⎠⎛12⎝⎛⎭⎪⎫x -x 2+1x d x ;(2)⎠⎛-π0(cos x +e x)d x . 解:(1)⎠⎛12⎝⎛⎭⎪⎫x -x 2+1x d x =⎠⎛12x d x -⎠⎛12x 2d x +⎠⎛121x d x =x 22⎪⎪⎪21-x 33⎪⎪⎪21+ln x ⎪⎪⎪21=32-73+ln 2=ln 2-56. (2)⎠⎛-π0(cos x +e x )d x =⎠⎛-π0cos x d x +⎠⎛-π0e x d x =sin x ⎪⎪⎪0-π+e x ⎪⎪⎪0-π=1-1e π. 10.已知函数f (x )=x 3-x 2+x +1,求其在点(1,2)处的切线与函数g (x )=x 2围成的图形的面积.解:因为(1,2)为曲线f (x )=x 3-x 2+x +1上的点,设过点(1,2)处的切线的斜率为k ,则k =f ′(1)=(3x 2-2x +1)|x =1=2,所以过点(1,2)处的切线方程为y -2=2(x -1),即y =2x .y =2x 与函数g (x )=x 2围成的图形如图中阴影部分所示,由⎩⎪⎨⎪⎧y =x 2,y =2x 可得交点A (2,4),O (0,0),故y =2x 与函数g (x )=x 2围成的图形的面积S =⎠⎛02(2x -x 2)d x =⎝ ⎛⎭⎪⎫x 2-13x 3⎪⎪⎪20=4-83=43. [综合题组练]1.由曲线xy =1,直线y =x ,x =3所围成的封闭平面图形的面积为( )A.329 B .4-ln 3C .4+ln 3D .2-ln 3 解析:选B.画出平面图形,根据图形确定积分的上、下限及被积函数.由曲线xy =1,直线y =x ,x =3所围成的封闭的平面图形如图所示:由⎩⎪⎨⎪⎧xy =1,y =x ,得⎩⎪⎨⎪⎧x =1,y =1 或⎩⎪⎨⎪⎧x =-1,y =-1.(舍)由⎩⎪⎨⎪⎧y =x ,x =3,得⎩⎪⎨⎪⎧x =3,y =3. 故阴影部分的面积为⎠⎛13⎝ ⎛⎭⎪⎫x -1x d x = ⎝ ⎛⎭⎪⎫12x 2-ln x ⎪⎪⎪31=4-ln 3. 2.设函数f (x )=ax 2+c (a ≠0),若⎠⎛01f (x )d x =f (x 0),0≤x 0≤1,则x 0的值为________. 解析:⎠⎛01f (x )d x =⎠⎛01(ax 2+c )d x =⎝ ⎛⎭⎪⎫13ax 3+cx ⎪⎪⎪10=13a +c =f (x 0)=ax 20+c , 所以x 20=13,x 0=±33. 又因为0≤x 0≤1,所以x 0=33. 答案:333.⎠⎛-11(1-x 2+e x-1)d x =________. 解析:⎠⎛-11(1-x 2+e x-1)d x =⎠⎛-111-x 2d x +⎠⎛-11(e x -1)d x . 因为⎠⎛-111-x 2d x 表示单位圆的上半部分的面积, 所以⎠⎛-111-x 2d x =π2.而⎠⎛-11(e x -1)d x =(e x -x )⎪⎪⎪1-1 =(e 1-1)-(e -1+1)=e -1e -2, 所以⎠⎛-11(1-x 2+e x -1)d x =π2+e -1e -2. 答案:π2+e -1e-2 4.若函数f (x )在R 上可导,f(x)=x 3+x 2f ′(1),则⎠⎛02f (x )d x =________. 解析:因为f (x )=x 3+x 2f ′(1),所以f ′(x )=3x 2+2xf ′(1).所以f ′(1)=3+2f ′(1),解得f ′(1)=-3.所以f (x )=x 3-3x 2.故⎠⎛02f (x )d x =⎠⎛02(x 3-3x 2)d x =⎝ ⎛⎭⎪⎫x 44-x 3⎪⎪⎪20=-4. 答案:-45.如图,在曲线C :y =x 2,x ∈[0,1]上取点P (t ,t 2),过点P 作x 轴的平行线l .曲线C 与直线x =0,x =1及直线l 围成的图形包括两部分,面积分别记为S 1,S 2.当S 1=S 2时,求t 的值.解:根据题意,直线l 的方程是y =t 2,且0<t <1.结合题图,得交点坐标分别是 A (0,0),P (t ,t 2),B (1,1).所以S 1=⎠⎛0t (t 2-x 2)d x =⎝ ⎛⎭⎪⎫t 2x -13x 3⎪⎪⎪t 0 =t 3-13t 3=23t 3,0<t <1. S 2=⎠⎛t1(x 2-t 2)d x =⎝ ⎛⎭⎪⎫13x 3-t 2x ⎪⎪⎪1t =⎝ ⎛⎭⎪⎫13-t 2-⎝ ⎛⎭⎪⎫13t 3-t 3=23t 3-t 2+13,0<t <1. 由S 1=S 2,得23t 3=23t 3-t 2+13, 所以t 2=13.又0<t <1,所以t =33. 所以当S 1=S 2时,t =33.。
(一).关于原函数与不定积分概念的几点说明1. 原函数与不定积分是两个不同的概念,它们之间有着密切的联系。
对于定义在某个区间上的函数f(x),若存在函数F(x),使得该区间上的每一点x处都有F/(x)=f(x),则称F(x)是f(x)在该区间上的原函数。
而表达式F(x)+C(C为任意常数)称为f(x)的不定积分。
2. f(x)的原来函数若存在,则原函数有无限多,但任意两个原函数之间相差某个常数。
因此求f(x)的不定积分∫f(x)dx时,只需求出f(x)的一个原函数F(x),再加上一个任意常数C即可,即∫f(x)dx = F(x)+C。
3. 原函数F(x)与不定积分∫f(x)dx是个体与全体的关系,F(x)只是f(x)的某个原函数,而∫f(x)dx是f(x)的全部原函数,因此一个原函数只是加上任意常数C后,即F(x)+C才能成为f(x)的不定积分。
例如x2 + 1,x2-3,x2+12都是2x的原函数,但都不是2x的不定积分,只有x2 + C才是2x的不定积分(其中C是任意常数)。
4. f(x)的不定积分∫f(x)dx中隐含着积分常C,因此计算过程中当不定积分号消失后一定要加上一个任意的常数C。
5. 原函数存在的条件:如果函数f(x)在某区间上连续,则在此区间上f(x)的原函数一定存在。
由于初等函数在其定义域区间上都是连续的,所以初等函数在其定义区间上都有原函数,值得注意的是,有些初等函数的原函数很难求出来,甚至不能表为初等函数,例如下列不定积分∫ dx ∫都不能“积”出来,但它们的原函数还是存在的。
(二)换元积分法的几点说明换元积分法是把原来的被积表达式做适当的换元,使之化为适合基本积分公式表中的某一形式,再求不定积分的方法。
1. 第一换元积分法(凑微分法):根据一阶微分形式的不变性,若dF(u)=f(u)du则dF(u(x))=f(u)du利用不定积分与微分的互逆关系,可以把它转化为不定积分的换元公式:∫f[u(x)]du(x)= ∫f(u)du (令u = u(x))= F(u)+ C (求积分)= F(u(x))+ C (令 u = u(x))在具体问题中,凑微分要根据被积函数的形式特点灵活运用。