留数定理计算积分
- 格式:ppt
- 大小:1.80 MB
- 文档页数:40
留数定理公式总结留数定理是复变函数论中的一个重要定理,在数学分析和工程技术等领域都有着广泛的应用。
咱们先来瞅瞅留数定理的公式到底是啥样的。
留数定理表述为:设函数$f(z)$在区域$D$内除有限个孤立奇点$z_1,z_2,\cdots,z_n$外处处解析,$C$是$D$内包围诸奇点的一条正向简单闭曲线,那$f(z)$沿$C$的积分就等于$2\pi i$乘以$f(z)$在$C$内各奇点的留数之和,即:$\oint_C f(z)dz = 2\pi i \sum_{k = 1}^{n}Res[f,z_k]$这里的$Res[f,z_k]$表示$f(z)$在奇点$z_k$处的留数。
那留数又咋算呢?对于孤立奇点$z_0$,如果它是可去奇点,那留数为$0$;如果是$m$阶极点,就有公式$Res[f,z_0] = \frac{1}{(m -1)!}\lim_{z \to z_0}\frac{d^{m - 1}}{dz^{m - 1}}[(z - z_0)^mf(z)]$。
咱们通过一个具体例子来感受一下留数定理的魅力。
比如说,计算积分$\int_{|z| = 2} \frac{e^z}{z(z - 1)}dz$。
首先得找出被积函数的奇点,很明显,$z = 0$和$z = 1$是奇点。
对于$z = 0$,它是一阶极点,$Res[f,0] = \lim_{z \to 0} z\frac{e^z}{z(z - 1)} = -1$;对于$z = 1$,也是一阶极点,$Res[f,1] = \lim_{z \to 1} (z - 1)\frac{e^z}{z(z - 1)} = e$。
然后根据留数定理,原积分就等于$2\pi i (-1 + e)$。
留数定理在解决一些复杂的积分问题时特别有用。
比如说,计算一些实函数在无穷区间上的积分,通过巧妙地构造复变函数和积分路径,然后利用留数定理就能轻松搞定。
我记得有一次给学生们讲留数定理的应用,有个学生就特别迷糊,怎么都搞不明白。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。