航天动力复合材料技术发展现状及设想
- 格式:docx
- 大小:20.80 KB
- 文档页数:4
复合材料技术的研究现状与发展趋势复合材料技术在过去几十年中有了较大的发展,创造了大量的应用场景,也极大地推动了相关行业的进步。
本文将从研究现状以及未来的发展趋势两个方面来探讨复合材料技术的发展。
一、研究现状1.复合材料的定义复合材料是指将两种或两种以上不同材料结合在一起所形成的材料,通过对其进行复合,可以有效提高其力学性能和其他性能指标。
2.制造复合材料的方法目前制造复合材料的方法有很多种,其中最常见的方法是:手工铺层法、机器成型、自动复合机材法、自动纺织机法等。
每种方法都有其特点和适用范围。
3.复合材料的应用复合材料的应用领域非常广泛,如航空航天、汽车、船舶、建筑、电子等领域。
例如,碳纤维复合材料被广泛应用于航空领域中,可以制作轻量化的飞行器部件,如机翼、尾翼、机身等。
4.复合材料的优缺点复合材料具有较高的强度、刚度和韧性,同时还具有重量轻、易成型、良好的耐腐蚀性等优点,因此得到了广泛的应用。
但是,相对于传统材料来说,复合材料的成本较高,并且其开发和制造过程中还存在一些技术难点。
二、发展趋势1.材料的多样化和复合材料的集成在未来的发展趋势中,复合材料材料的多样化和复合材料的集成将是其中的关键点。
由于不同的材料具有不同的特性,因此它们可以用于不同的应用领域。
例如,钛合金和钢可以用于制造大型飞行器,而纤维素和树脂可以用于制造家具和纸质制品。
2.制造过程的自动化和数字化制造过程的自动化和数字化也是未来发展的重要方向。
通过在制造过程中引入自动化和数字化技术,如3D打印技术,可以提高制造效率和质量,同时降低成本。
3.绿色复合材料的开发随着环保意识的不断提高,绿色复合材料的开发也将成为一个重要的方向。
目前已有一些绿色复合材料得到了广泛应用,如生物基复合材料和可降解的聚酯复合材料等。
这些材料既具有较高的性能,又能够快速降解,并对环境产生较小的污染。
4.应用领域的扩大未来,复合材料的应用领域也将不断扩大。
例如,目前一些复合材料已经被用于制造电池、太阳能电池板和医疗器械等领域。
航空航天材料发展现状
航空航天材料是航空航天工程的基础,对保障飞行安全和提升飞行性能具有重要作用。
随着航空航天技术的不断进步和航空航天工程应用领域的不断拓展,航空航天材料的发展也在不断推进。
一方面,航空航天材料的性能要求日益提高。
航空航天工程中需要使用的材料必须具备高强度、高刚度、低密度、优异的耐热性、耐腐蚀性和耐磨损性等特点。
为了满足这些要求,科学家们不断开展研究,推出了一系列具有卓越性能的新材料。
例如,高温合金、复合材料和先进陶瓷材料等,它们拥有较高的比强度和比刚度,能够承受极端工作条件下的高温和高压。
另一方面,航空航天材料的制备技术也日益完善。
随着纳米技术、材料表面修饰技术和先进制造工艺的发展,航空航天材料制备的精度和控制能力有了显著提高。
例如,采用蒸镀、离子注入、溅射等技术可对材料进行表面改性和改良,提高其耐热性和耐腐蚀性能。
此外,先进制造工艺,如增材制造和纳米级制备技术,为航空航天材料的制备提供了新的思路和方法。
与此同时,航空航天材料的绿色环保性也成为发展的重要方向。
随着全球环境问题的日益突出,传统航空航天材料对环境的影响也引起了广泛关注。
因此,研究人员致力于开发可再生材料、轻量化材料和低能耗制备技术,以降低航空航天材料对环境的负面影响。
综上所述,航空航天材料的发展正朝着高性能、高精度和绿色
环保的方向不断推进。
随着科技的不断进步和创新的不断涌现,相信航空航天材料将在未来发挥更加重要的作用。
复合材料行业供需现状与发展战略规划复合材料是一种由两种或两种以上的材料组合而成的材料,具有各种特殊性质和应用优势,被广泛应用于航空航天、汽车制造、建筑、电子等领域。
目前,复合材料行业供需现状较好,市场需求增长迅速,但竞争激烈,企业发展面临一些挑战。
首先,复合材料行业面临的供需问题主要是供应能力与市场需求的匹配。
随着经济的快速发展和工业结构调整,国内外市场对高性能、轻量化、环保的复合材料的需求不断增加。
然而,目前国内复合材料制造技术相对落后,主要依赖进口产品。
在复合材料供应方面,产品的规模化生产和质量稳定性有待提高,以满足市场需求。
其次,复合材料行业面临的竞争问题主要是技术创新和品牌建设。
目前,国内外竞争对手众多,技术水平不断提高,产品品质和稳定性也不断增加。
因此,企业需不断进行技术创新,提高产品的性能和品质,同时加强品牌建设,提升消费者对品牌的信任度和忠诚度。
此外,复合材料行业面临的发展问题主要是产业链的完善和人才培养。
目前,国内复合材料产业链尚不完善,从材料研发、生产、销售到废弃物处理等环节都存在一定的问题。
因此,企业需加强产业链合作,形成协同效应,提高整体效益。
同时,复合材料行业需要大量专业技术人才的支持,企业需注重人才培养和引进,提高研发和生产的能力。
针对以上供需现状和发展问题,复合材料行业可以制定以下发展战略规划:首先,加强技术创新和产品研发。
企业应加大研发投入,提高自主创新能力,推动技术进步和产品升级,以满足市场多样化需求。
此外,企业可以加强与高校、科研机构的合作,引进优秀人才和研究成果,推动技术创新。
其次,完善产业链合作,提高整体效益。
企业可以与上下游企业进行合作,形成产业联盟,共同开展材料研发、生产和销售,提高供应链效率和产品质量。
另外,加强品牌建设,提高市场竞争力。
企业可以通过提高产品品质和稳定性,加强售后服务,树立品牌形象和口碑,提升消费者对品牌的信任度和忠诚度。
最后,注重人才培养和引进。
新型材料在航空航天领域的发展现状与未来展望航空航天行业一直是科技创新的重要领域之一,而新型材料的应用正不断推动着航空航天技术的发展。
新型材料的出现使得飞机和航天器的性能有了质的飞跃,提高了安全性、降低了成本,并为未来的发展提供了无限的可能。
在过去,航空航天领域主要使用铝合金和钛合金等传统材料。
然而,随着科技的发展,一些新型材料开始蓬勃发展,并逐渐应用于飞机和航天器的结构中。
最具代表性的是复合材料,如碳纤维增强复合材料和玻璃纤维增强复合材料。
这些材料具有优良的强度和轻质化特性,能够极大地减轻飞机和航天器的重量,提高载荷能力和燃油效率。
复合材料在空中客车A350、波音787梦幻飞机等商用飞机中的应用广泛。
以A350为例,它使用了53%的复合材料,使得飞机整体重量减轻了25%。
这不仅降低了燃料消耗,还提升了飞机的航程。
类似地,波音787的机身和机翼也使用了大量的复合材料,使得飞机具有更好的强度和刚度,减少了疲劳裂纹的产生。
除了复合材料,新型金属材料也在航空航天领域取得了长足的进展。
比如镍基合金和钛铝合金等材料,具有优异的高温和耐腐蚀性能,很适合用于发动机涡轮叶片和航天器的结构部件。
此外,新型陶瓷材料也被应用于高温部件,如航天器的热防护瓦片和发动机的热隔离板,能够有效地保护结构不受高温气流和火焰侵蚀。
未来,新型材料在航空航天领域的应用将继续拓展。
随着人类对宇宙探索的热情不断升温,航天器的需求将越来越大。
为了达到更高的飞行速度和更远的航程,超轻型材料和高温材料的需求将不断增加。
此外,智能材料和柔性材料也将成为未来的发展方向。
智能材料能够感知环境变化并做出相应的响应,具有巨大的潜力应用于航天器的自适应控制。
柔性材料则能够适应不同形状和变化的应力,对于增加飞机和航天器的结构韧性和抗损伤能力具有重要意义。
然而,新材料的应用也面临一些挑战。
首先,新材料的研发和生产成本较高,对航空航天公司和制造商提出了更高的要求。
固体发动机复合材料壳体成型技术在航天领域的前景展望近年来,航天领域对于提高发动机性能和降低重量的需求越来越迫切。
固体发动机作为一种常用的动力装置,在可靠性和推力方面具有一定优势。
然而,传统的金属材料壳体在满足高温、高压和高推力等航天需求方面存在一些局限性。
为了克服这些限制,并实现航天发动机的进一步发展,固体发动机复合材料壳体成型技术应运而生。
固体发动机复合材料壳体成型技术是一种利用复合材料制造发动机壳体的方法。
复合材料由两个或两个以上的不同成分组成,通过合理的配比和加工工艺,能够充分发挥各种材料的优势,提高整体性能。
相比传统的金属材料,复合材料具有强度高、重量轻、耐热性好、抗腐蚀性强等优点,非常适合航天领域的应用。
使用固体发动机复合材料壳体成型技术有以下几个方面的前景展望:1. 降低重量:复合材料的比强度高于传统金属材料,因此使用复合材料制造发动机壳体可以显著降低其重量,提高航天器整体性能。
轻量化设计在航天领域中具有重要意义,可以提高运载能力,降低燃料消耗,进一步推动航天技术的发展。
2. 提高耐热性:复合材料具有良好的耐高温性能,能够在高温环境下保持良好的强度和刚度。
这对于固体发动机来说至关重要,因为发动机在燃烧过程中会产生巨大的热量。
采用复合材料壳体可以有效抵御高温环境的侵蚀和热应力,延长发动机的使用寿命。
3. 提高安全性:固体发动机是航天器的重要组成部分,其性能和安全性直接关系到整个任务的成功与否。
复合材料壳体相较于金属壳体具有更好的断裂韧性和抗冲击性,能够在较大外力作用下保持完整性,减少发生事故的风险。
提高航天器的安全性是追求的重要目标之一,固体发动机复合材料壳体成型技术可以在一定程度上实现这一目标。
4. 实现可持续发展:复合材料制造技术具有较好的环境可持续性,可以通过回收再利用材料减少资源消耗,减轻对环境的压力。
与此同时,使用复合材料壳体还可以降低发动机运行过程中的能量损耗和废气排放,对环境友好。
展望固体发动机复合材料壳体成型技术未来的发展趋势随着航空航天技术的不断发展,固体发动机作为一种重要的推进系统,在航空航天领域扮演着重要角色。
而复合材料壳体成型技术作为固体发动机制造过程中的关键环节,对其性能和可靠性具有重要影响。
展望未来,固体发动机复合材料壳体成型技术将朝着以下几个方向发展。
首先,未来固体发动机复合材料壳体成型技术将追求更高的制造精度和一体化生产能力。
随着航天器的任务要求越来越高,对发动机壳体制造精度的要求也越来越高。
未来的技术发展将致力于提高复合材料壳体的制造精度和一体化生产能力,通过先进的制造工艺和加工设备,实现更高水平的制造精度和生产效率。
其次,未来固体发动机复合材料壳体成型技术将注重材料的性能和可持续发展。
在材料方面,未来的发展趋势将更注重材料的力学性能、耐热性和耐腐蚀性等特性的优化。
通过引入新型的高性能复合材料和先进材料加工技术,提高固体发动机复合材料壳体的性能,使其能够适应更加复杂和苛刻的工作环境。
第三,未来固体发动机复合材料壳体成型技术将趋向于自动化和智能化。
随着工业4.0时代的到来,智能制造技术在航空航天领域得到了广泛应用。
未来的发展趋势将是通过自动化和智能化技术,实现固体发动机复合材料壳体的自动化生产和在线监测,从而提高生产效率和质量稳定性,降低生产成本。
另外,未来固体发动机复合材料壳体成型技术还将注重环境友好型。
随着全球环境问题的日益凸显,未来的发展趋势将更加注重固体发动机复合材料壳体制造过程中的环境保护。
通过研究和应用环境友好型材料和低碳制造技术,实现固体发动机复合材料壳体的可持续发展。
最后,未来固体发动机复合材料壳体成型技术将与其他相关技术相互融合,实现全面发展。
未来的发展趋势将是与航空航天领域的其他关键技术相互融合,如仿生设计、先进制造技术、机器人技术等。
通过跨学科的合作与创新,推动固体发动机复合材料壳体成型技术的发展,提高整体推进系统的性能和可靠性。
综上所述,展望固体发动机复合材料壳体成型技术未来的发展趋势,我们可以看到其将朝着制造精度和一体化生产能力的提高、材料性能和可持续发展的优化、自动化和智能化的发展、环境友好型的应用以及与其他相关技术的融合等方面发展。
复合材料在航天航空的应用与发展复合材料是由不同种类的材料组合而成的一种新型材料,具有轻量化、高强度、耐腐蚀、耐高温等特点,因此在航天航空领域具有广泛的应用前景。
本文将从航天航空领域的需求出发,介绍复合材料在航天航空中的应用及其发展。
首先,在航天器结构中,采用复合材料可以显著降低其重量,提高载荷能力。
航天器在进入大气层时需要承受巨大的压力和温度变化,而复合材料具有较强的耐温性能和抗压能力,可以有效保护航天器内部结构及设备的完整性。
此外,复合材料还具有良好的耐腐蚀性能,可以减少航天器受到外界环境侵蚀的风险。
其次,在航空器的制造中,复合材料的应用也越来越广泛。
例如,飞机的机身、翼面和尾部等部位常采用复合材料制造,使飞机具有较低的自重、较高的刚度和较大的载荷承载能力。
此外,复合材料还可以减少空气动力学的阻力,提高飞机的空气动力性能,从而降低飞机的能耗和减少排放。
除了结构应用,复合材料还在航天航空中发挥着重要的功能性作用。
例如,航空中常见的雷达罩和机载天线罩等部件,通常采用复合材料制造,以保证其良好的电磁透明性能和超低雷达反射面积。
同时,复合材料还广泛应用于卫星、航空发动机、导弹等关键部件的制造,以提高其工作温度范围和可靠性。
随着航天航空领域的发展,复合材料的应用也在不断的创新和发展。
一方面,通过改进材料的制备工艺和技术,不断提高复合材料的力学性能、耐热性能和耐腐蚀性能,以满足航天航空领域的特殊需求。
另一方面,随着纳米技术的发展,可以将纳米材料引入到复合材料中,进一步改善其性能。
例如,通过添加纳米碳管可以提高复合材料的导电性能和电磁阻尼性能,使其在航天航空领域具备更广泛的应用前景。
总的来说,复合材料在航天航空中的应用与发展前景广阔。
随着科技的进步和技术的创新,复合材料将在航天航空领域发挥更加重要的作用,提高飞行器的性能和可靠性,推动航天航空领域的发展。
航空航天材料的研发与应用现状分析1. 引言航空航天材料是航空航天工程的重要组成部分,其性能和质量直接影响到航空航天器的安全性和可靠性。
本文将对航空航天材料的研发与应用现状进行分析,并探讨未来的发展方向。
2. 航空航天材料的分类航空航天材料可以分为结构材料和功能材料两大类。
结构材料包括金属材料、复合材料和陶瓷材料,而功能材料包括导电材料、隔热材料和防腐材料等。
3. 航空航天材料的研发动态随着航空航天技术的不断发展,对材料的需求也越来越高。
目前,航空航天材料的研发主要集中在以下几个方面:3.1 材料性能的提升航空航天器需要具备高强度、高刚度和低密度的特点,以降低飞行器的自重和提高载荷能力。
因此,研发出具有理想力学性能的材料成为当务之急。
3.2 抗腐蚀材料的研发航空航天器长时间暴露在严酷的环境中,会受到氧化、腐蚀等问题的困扰。
研发出具有良好抗腐蚀性能的材料,可以保证飞行器的寿命和可靠性。
3.3 新型材料的应用纳米材料、智能材料和生物材料等新型材料的研发和应用,为航空航天材料领域带来了新的发展机遇。
这些材料具有独特的物理化学性质,可以提高航空航天器的性能和功能。
4. 航空航天材料的应用现状航空航天材料的应用范围广泛,涉及航空器结构、发动机、燃料系统等多个领域。
目前,航空航天材料的应用主要包括以下几个方面:4.1 结构材料的应用航空器的结构材料是保证航空器安全性和可靠性的关键。
常见的航空结构材料包括航空铝合金、钛合金和复合材料等。
这些材料具备良好的强度和刚度,能够满足航空器复杂飞行环境下的要求。
4.2 导热材料的应用航空航天器需要具备优异的导热性能,以保证发动机工作的稳定性和安全性。
目前,高导热材料和散热器的应用已经成为航空发动机领域的研究热点。
4.3 防腐材料的应用航空航天器长时间暴露在高湿度、高温度和腐蚀性气体中,因此需要在表面加工或涂覆防腐材料。
这些材料可以提供有效的防腐蚀保护,延长航空航天器的使用寿命。
中国复合材料产业发展现状及趋势一、产业发展现状1.规模不断扩大:我国复合材料产业规模不断扩大,产能和产量持续增长。
根据统计数据显示,2000年我国复合材料产量为26万吨,到2024年增长至170万吨,年均增长率超过15%。
2.技术水平不断提高:我国复合材料产业在材料研发、制备工艺等方面取得了长足的进展。
在复合材料材料方面,我国已经具备了一定的研发能力和生产能力,并且在风电、航空航天、交通运输等重要领域应用不断增加。
3.市场需求不断增长:随着经济的不断发展和人民生活水平的提高,对复合材料的需求也在不断增加。
特别是在高端制造业领域,对复合材料的需求急剧增长。
比如航空航天、新能源、汽车和轨道交通等领域对复合材料的需求已经成为了推动产业发展的主要动力。
二、产业发展趋势1.高端化发展:当前,我国复合材料产业正朝着高强、高韧、高维度等高端方向发展。
复合材料的高性能和轻量化特点使其在各个领域具有广阔的应用前景,尤其是在航空航天、轨道交通等领域,对高性能复合材料的需求十分迫切。
2.绿色化发展:随着全球环境问题的不断加剧,绿色、环保的复合材料越来越受到关注。
我国复合材料产业在发展过程中应更加注重节能减排、循环利用等绿色发展理念,推动行业的可持续发展。
3.产业协同发展:复合材料产业是一个应用广泛的产业,与众多产业有着密切的关系。
产业协同发展成为未来的主流趋势,相互融合,促使产业高效发展。
我国在新能源、航空航天、汽车等领域已经有了一定的基础,可以通过与相关产业的协同发展实现优势互补,创造更大的经济效益。
三、发展策略1.加大技术研发力度:加强对复合材料的基础科学研究,提高研发能力和创新能力,掌握核心技术和关键装备,推动产业技术水平的不断提高。
2.加强标准化建设:建立健全复合材料产品的标准体系,确保产品质量和安全可靠性。
加强对复合材料产品的质量监督和检测,提高产品市场竞争力。
3.加大政策支持力度:加大政府的政策支持力度,推动复合材料产业发展。
航空复合材料行业发展规划
一、行业概况
航空复合材料的应用日益广泛,在改善航空安全、提高航空性能、降低成本、环境友好型等方面具有重要意义,是当前航空制造商和维修性能的重要研究课题。
复合材料在航空界的应用,解决了机体重量的问题,也提高了机体的稳定性,能更大程度的减少机体的耗油量,使飞机变得更节能环保,更安全稳定,更耐用,也更加具有美观性。
航空复合材料行业发展历史可以追溯到上世纪70年代末,当时的航空复合材料只能用于部件补强,而不能用于整个机体结构的支撑,直到上世纪90年代,由于技术的进步,航空复合材料之间的连接性能也有了很大的改变,使得航空复合材料应用范围大大扩展,可以用于机体重要结构支撑。
随着技术的不断进步,复合材料的应用范围也在日益扩大。
如今,航空复合材料不仅可用于机体结构,而且可以用于其他航空设备,如发动机结构、空中交通管制设备、武器系统等,以达到更高的可靠性、更低的成本和更低的环境影响。
航天动力复合材料技术发展现状及设想
增大字体 复位 著名科学家师昌绪院士在北京科技大学举办的“中国材料名师讲坛”上讲到:材料的水平决定着一个领域乃至一个国家的科技发展的整体水平;航空、航天、空天三大领域都对材料提出了极高的要求;材料科技制约着宇航事业的发展。 固体火箭发动机以其结构简单,机动、可靠、易于维护等一系列优点,广泛应用于武器系统及航天领域。而先进复合材料的应用情况是衡量固体火箭发动机总体水平的重要指标之一。在固体发动机研制及生产中尽量使用高性能复合材料已成为世界各国的重要发展目标,目前已拓展到液体动力领域。科技发达国家在新材料研制中坚持需求牵引和技术创新相结合,做到了需求牵引带动材料技术发展,同时材料技术创新又推动了发动机水平提高的良性发展。目前,航天动力领域先进复合材料技术总的发展方向是高性能、多功能、高可靠及低成本。 作为我国固体动力技术领域专业材料研究所,四十三所在固体火箭发动机各类结构、功能复合材料研究及成型技术方面具有雄厚的技术实力和研究水平,突破了我国固体火箭发动机用复合材料壳体和喷管等部件研制生产中大量的应用基础技术和工艺技术难关,为我国的固体火箭发动机事业作出了重要的贡献,同时牵引我国相关复合材料与工程专业总体水平的提高。建所以来,先后承担并完成了通讯卫星东方红二号远地点发动机,气象卫星风云二号远地点发动机,多种战略、战术导弹复合材料部件的研制及生产任务。目前,四十三所正在研制多种航天动力先进复合材料部件,研制和生产了载人航天工程的逃逸系统发动机部件。 二、国内外技术发展现状分析 1、国外技术发展现状分析 1.1结构复合材料 国外发动机壳体材料采用先进的复合材料,主要方向是采用炭纤维缠绕壳体,使发动机质量比有较大提高。如美国“侏儒”小型地地洲际弹道导弹三级发动机(SICBM-1、-2、-3)燃烧室壳体由IM-7炭纤维/HBRF-55A环氧树脂缠绕制作,IM-7炭纤维拉伸强度为5300MPa,HBRF-55A环氧树脂拉伸强度为84.6MPa,壳体容器特性系数(PV/Wc)≥39KM;美国的潜射导弹“三叉戟II(D5)”第一级采用炭纤维壳体,质量比达0.944,壳体特性系数43KM,其性能较凯芙拉/环氧提高30% 。 国外炭纤维的开发自八十年代以来,品种、性能有了较大幅度改观,主要体现在以下两个方面:①性能不断提高,七、八十年代主要以3000MPa的炭纤维为主,九十年代初普遍使用的IM7、IM8纤维强度达到5300MPa,九十年代末T1000纤维强度达到7000MPa,并已开始工程应用;②品种不断增多,以东丽公司为例,1983年生产的炭纤维品种只有4种,到1995年炭纤维品种达21种之多。不同种类、不同性能的炭纤维满足了不同的需要,为炭纤维复合材料的广泛应用提供了坚实的基础。 芳纶纤维是芳族有机纤维的总称,典型的有美国的Kevlar、俄罗斯的APMOC,均已在多个型号上得到应用,如前苏联的SS-24、SS-25洲际导弹。俄罗斯的APMOC纤维生产及其应用技术相当成熟,APMOC纤维强度比Kevlar高38%、模量高20%,纤维强度转化率已达到75%以上。PBO纤维是美国空军1970年开始作为飞机结构材料而着手研究的产品,具有刚性极强的线形伸直链结构。美国Bruswick公司用抗拉强度为5.5GPa级的PBO纤维进行缠绕容器的综合研究,内径为250mm的球形高压容器,实测平均爆破压强91MPa,纤维强度转化率86%,容器特性系数65.2KM,与抗拉强度为5.65GPa的T-40炭纤维缠绕容器相比(PV/W值为45.2KM),PBO性能要高31% 。 此外,复合材料以其质轻的优势替代传统的金属材料获得广泛应用,典型的有复合材料发射筒、网格结构及各种压力容器。 国外复合材料导弹发射筒在战略、战术型号上广泛采用,如美国的战略导弹MX导弹、俄罗斯的战略导弹“白杨M”导弹均采用复合材料发射筒。由于复合材料发射筒相对于金属材料而言,结构重量大幅度减轻,使战略导弹的机动灵活成为可能。在战术导弹领域,复合材料导弹发射筒的应用更加普遍。 网格结构的研究早在20世纪70年代就已开始,目前已有多种类型网格结构在航空航天领域用作战略导弹级间段,空间飞行器舱体、箭与卫星的对接框等不同部件,如1997年美国空军菲利普实验室以自动化缠绕技术制作网格结构承力部件应用于飞机改制,加州复合材料中心将复合材料网格应用于航空喷气发动机,日本研制的碳/环氧复合材料网格结构作为第三级发动机与旋转平台的级间段结构成功地应用在H1火箭上。 从20世纪60年代末开始,航天领域中以S玻璃和凯夫拉-49纤维复合的金属内衬轻质压力容器逐渐取代传统的全金属压力容器。美国在1975年开始了轻质复合材料气瓶研制,采用S-玻纤/环氧、Kevlar/环氧缠绕复合材料气瓶。随着炭纤维性能提高及成本大幅度下降,炭纤维与低成本铝内衬制造技术相结合,使得费用低、质量轻、性能高、可靠性好的高压容器的生产变为现实。 1.2结构/功能一体化材料 在国外动力系统喷管部件已趋向全炭/炭化,入口段与喉衬采用整体式多维炭/炭编织物,出口锥用炭/炭材料或碳布带缠绕制成,延伸喷管技术相当成熟。喉衬材料方面,国外高性能惯性顶级固体发动机、星系固体发动机、战略导弹固体发动机,几乎全部采用3D、4D炭/炭复合材料喉衬。炭/炭扩张段主要应用于宇航发动机及战略导弹上面级发动机。如美国研制的Star系列宇航发动机炭/炭扩张段,及MX导弹第三级采用炭/炭扩张段和二维延伸的炭/炭延伸锥,三叉戟D5潜地战略固体导弹第二级采用了可延伸的炭/炭延伸锥。法国研制的炭/炭扩张段应用于西欧远地点助推发动机MageII号。俄罗斯炭/炭扩张段出口直径达1.5m,出口厚度2.8mm,已应用于“起点一号”运载火箭上面级等众多型号发动机。八十年代中期,法国SEP公司开发了厚度方向有炭纤维增强的在Novoltex 炭/炭扩张段、延伸锥技术。美国侏儒导弹第三级的炭/炭扩张段和延伸锥、雅典娜(Athena) 运载火箭惯性顶级发动机Orbus 21 HP、波音公司运载火箭Delta-III的第二级(RL10B-2)和Ariane 4运载火箭上面级液氢/液氧发动机HM7使用了SiC涂层的Novoltex 炭/炭扩张段。 2、国内技术发展现状分析 2.1结构复合材料 国内固体发动机壳体已成功采用玻璃纤维及芳纶纤维。航天四十三所还配合有关部门进行了国产芳纶纤维初步性能研究,有待于进一步加强工艺应用研究。四十三所在炭纤维复合材料壳体研究方面进行了大量的预先研究工作,进行了φ1400mm、φ2000mm炭纤维壳体研制。与国外相比,主要差距有:APMOC纤维依赖进口,应用中纤维强度转化率较低;高性能炭纤维未实现国产化,应用受到限制;壳体工艺控制手段不先进;目前尚没有型号应用炭纤维缠绕的固体发动机壳体。 在PBO纤维应用研究方面,航天四十三所进行了初步的探索性研究,在PBO纤维表面处理、PBO纤维适应的树脂配方研究等工作都已取得了较大的进展。但与国外相比,存在着基础应用研究不多、原材料依赖进口的缺点。 国内在轻质复合材料应用上也开展了相关研究。在复合材料发射筒研究方面,航天四十三所及哈尔滨玻璃钢制品研究所进行了XX系列导弹发射筒的研制,已成功地进行了多种地面试验和实弹发射考核。在飞航导弹复合材料发射筒研制方面,航天科工集团三院研制了长5.45m,内径502mm的导弹贮运发射筒。航天四十三所、哈尔滨玻璃钢制品研究所等单位进行了网格结构材料初步应用研究,43所同时针对网格结构缠绕成型的特点开发了缠绕软件。上述工作为大型主承力网格结构实际应用奠定了良好的基础。总体说来,目前国内对网格结构的研究主要集中于理论方面,需加强复合材料主承力网格结构应用技术研究,以提高我国空间飞行器的性能,缩短在该技术上与国外的差距。 四十三所多年来一直从事复合材料压力容器研究工作,从早期的玻璃纤维压力容器,Kevlar-49压力容器到F-12芳纶纤维及炭纤维压力容器,性能一直处于国内先进水平,S-Ⅱ玻璃纤维压力容器的PV/W值达到20km, F12芳纶纤维PV/W为38km,T700炭纤维PV/W为40km。在金属内胆压力容器研制方面,成功地进行了DFH-4卫星平台用50L炭纤维高压复合材料气瓶缠绕研制工作,已进入正样阶段。此外,航天四十三所还成功研制了宇航员生命保障系统用容器和多种环形及异形容器,在上述研究的基础上,将相关产品已应用到卫星、运载火箭和军用飞机上,具有十分重要的意义。 2.2结构/功能一体化材料 喉衬材料一直是固体火箭发动机材料应用研究的重点和关键。近20年来,炭/炭复合材料喉衬的研制和应用取得了很大的进展,航天四十三所于70年代末期建立起了Φ650mm的毡基炭/炭喉衬研制生产线,80年代初又掌握了4D 炭/炭喉衬研制工艺技术,通过工艺攻关,基本具备了大型战略导弹SRM各级发动机喉衬预成型体编织,CVD均热法、热梯度法,高压浸渍炭化,高温石墨化工艺的研制条件。四十三所研制了与国际水平同步发展的各种类型炭/炭喉衬材料,其中4种炭/炭喉衬材料性能已达到同类材料的国际先进水平。 喷管扩张段、防热环技术是我国SRM技术中与国外差距最大的项目,大约落后20年左右,严重制约着我国战略、战术导弹武器的技术水平。国内大型喷管扩张段/延伸段结构件材料目前主要采用采用炭/酚醛、高硅氧/酚醛复合缠绕绝热层及玻璃纤维/环氧缠绕结构层,耐温性与刚度比较低,限制了喷管热防护材料的进一步发展,研制耐高温轻质的喷管结构材料成为必要。航天四十三所已开展多项轻质炭/炭扩张段预先研究,先后成功通过固体及液体发动机地面热试车,承担的“863项目”研制的不同规格的炭/炭延伸段已先后多次成功通过液体发动机地面热试车,为航天动力系统的轻质化奠定了一定的技术基础。 三、问题及建议 1、原材料研究滞后阻碍了高性能复合材料研制的步伐 如我国在“九•五”期间开发的国产芳纶纤维,尽管其抗拉强度已达到4470MPa,但该纤维存在工艺性较差、制作的复合材料层间剪切强度较低等缺点。目前航天动力用炭纤维复合材料均为进口炭纤维,多为日本东丽公司的炭纤维,国产炭纤维原丝质量不稳定,纤维强度较低且离散性较大。PBO增强复合材料是未来先进复合材料主要发展方向之一,可我国的PBO纤维至今完全依赖进口。制备C/SiC复合材料的先驱体树脂陶瓷产率低。 从长远考虑,建议国家投入经费,应加强高性能原材料工业化力度,大幅提高性能,扩大规模,降低成本。从而降低军用复合材料成