离心式压缩机的防喘振控制详细版
- 格式:docx
- 大小:105.85 KB
- 文档页数:11
浅谈离心式压缩机的防喘振控制摘要:受到大环境的影响,流量大幅度下降,压缩机排量逐渐减小,并对出口造成压力波动,导致机组整体发生强烈振动,同时会产生低吼声,就像人咳嗽一般,这种现象叫喘振,其会对离心式压缩机造成一定的危害,轻则导致离心式压缩机无法正常运行,而重则会引发爆炸甚至火灾等灾害,严重危害附近工作人员的生命安全,而造成离心式压缩机喘振的故障原因多半是由于扩压器腐蚀或磨损,进气温度过高,叶轮扩压器等中间存在缝隙,叶轮磨损或存在附着物,都会导致离心式压缩机出现喘振现象,而通过对离心式压缩机展开防喘振控制并加强故障诊断系统的有效应用,可以有效对喘振故障进行预防并展开科学治理。
关键词:离心式压缩机;防喘振;控制引言在离心式压缩机应用范围不断扩大的情况下,离心式压缩机已经成为空分行业制氧、制氮的主要设备,一旦离心式压缩机在应用过程中发生喘振现象,将会影响制氧、制氮的正常产量,也会降低压缩机使用寿命。
因此相关工作应该重点分析导致离心式压缩机出现喘振问题的基本原因,有针对性地设计一些问题预防措施,能够在提高离心式压缩机运行质量的基础上,有助于提升离心式压缩机的运行安全性。
1离心式压缩机出现的喘振问题1.1扩压器腐蚀或磨损而造成离心式压缩机出现喘振的原因具有多种因素,而扩压器受到腐蚀或磨损就是其中一种,离心式压缩机体积较小,结果相对来说比较简单,但同时排放量极大,效率较高,且不受润滑油污染,在我国生产活动当中得以广泛使用,并取得了显著的应用效果,但扩压机内部磨损或腐蚀一直没有得到很好地解决,而且由于磨损与腐蚀是扩压器运行的必然现象,无法做到彻底杜绝,扩压器是离心式压缩机内部的重要组成部分,所以在一定程度上降低叶轮压出气体的流速,提高气体压力,而扩压器一旦发生磨损和腐蚀,就无法正确地发挥效用提高气体压力,从而引发离心式压缩机产生喘振故障。
在面对这项原因时需要工作人员定期对扩压器进行检修,对扩压器腐蚀或磨损部位进行及时更换或修复并做好一系列的防腐措施。
离心式压缩机的防喘振控制离心式压缩机是一种常见的工业设备,广泛应用于制冷、空调、石化、化工和能源等领域。
但离心式压缩机在高速旋转过程中,易发生喘振现象,严重影响设备的可靠性和运行效率。
因此,实现离心式压缩机的防喘振控制,成为压缩机研发领域的热门话题。
喘振的概念和机理喘振是指机械系统在一定运行工况下,出现自激振动和自我放大的现象。
具体表现为设备发出高频噪声、振幅剧烈震动、设备受到损坏等。
离心式压缩机的喘振主要由两种类型引起,分别是稳定喘振和非稳定喘振。
稳定喘振是指设备在一定工况下,由于颤振力和阻尼力平衡不稳定而发生振动。
非稳定喘振则是指由于系统参数的变化而导致的振动,如流量、压力、转速等。
喘振的机理比较复杂,通常是由流体特性、机械特性和控制策略等多个因素综合作用形成。
针对离心式压缩机,具体原因如下:•离心式压缩机转子和静子间的流体动力学作用•离心式压缩机转子的惯性力和弹力•离心式压缩机流量的变化导致的系统不稳定防喘振的控制为了防止离心式压缩机的喘振,降低因喘振而引起的振动、噪声、能耗和设备损坏等问题,可以采用以下控制策略:转子动平衡离心式压缩机转子的动平衡是减少振动和噪声的有效措施。
动平衡可以通过加装质量均匀化转子重量分布,减少旋转惯量差异,使转子自身的振动减少。
减弱单元耦合离心式压缩机中存在转子和静子的相互作用,转子运转时的振动会将振动传递到静子中,同时静子的反作用力也会反过来影响转子。
因此,为了减小单元之间的耦合作用,需要采用合适的材料和合理的结构设计。
控制喘振频率喘振频率是指转子和压气机系统之间的谐振频率。
为了控制喘振,可以借助传感器、控制系统和信号处理技术,实时检测喘振频率,调节系统工况,减小喘振频率。
同时还可以采用创建额外的泄放卡止或捆绑物来改变系统频率。
控制驱动力离心式压缩机喘振的发生和发展与外界激励力有关。
为了降低驱动力,需要在系统中加入有阻尼的弹簧,将外部力矩转换为电信号或机械压力信号,并将信号传输到控制系统中,调节工况,实现防喘振。
1 概述1.1压缩机喘振及其危害压缩机运行中一个特殊现象就是喘振。
防止喘振是压缩机运行中极其重要的问题。
许多事实证明,压缩机大量事故都与喘振有关。
喘振所以能造成极大的危害,是因为在喘振时气流产生强烈的往复脉冲,来回冲击压缩机转子及其他部件;气流强烈的无规律的震荡引起机组强烈振动,从而造成各种严重后果。
喘振会造成转子大轴弯曲;密封损坏,造成严重的漏气,漏油;喘振的出现轻则使压缩机停机,中断生产过程造成经济损失,重则造成压缩机叶片损坏,造成人员伤害;喘振使轴向推力增大,烧坏止推轴瓦;破坏对中与安装质量,使振动加剧;强烈的振动可造成仪表失灵;严重持久的喘振可使转子与静止部分相撞,主轴和隔板断裂,甚至整个压缩机报废。
1.2喘振的工作原理及防治压缩机在运行中,当管路系统阻力升高时,流量将随之减小,有可能降低到允许值以下。
防喘振系统的任务就是在流量降到某一安全下限时,自动地将通大气的放空阀或回流到进口的旁通阀打开,增大经过空压机的流量,防止进入喘振区。
取流量安全下限作为调节器的规定值。
当流量测量值高于规定值时,放空阀全关:当测量值低于规定值时,调节器输出信号,将放空阀开启,使流量增加。
压缩机工作效率高,在正常工况条件下运行平稳,压缩气流无脉动,对其所输送介质的压力、流量、温度变化的敏感性相对较大,容易发生喘振造成严重事故。
所以应尽力防止压缩机进入喘振工况。
喘振现象是完全可以得到有效控制的,如图(1)所示,根据离心压缩机在不同工况条件下的性能曲线,只要我们把压缩机的最小流量控制在工作区(控制线内),压缩机即可正常工作。
喘振的标志是一最小流量点,低于这个流量即出现喘振。
因此需要有一个防止压缩机发生喘振的控制系统,限制压缩机的流量不会降低到这种工况下的最低允许值。
即不会使压缩机进入喘振工况区域内。
图1压缩机性能曲线与防喘振控制原理图压缩机的防喘振条件为:△P≥a(p2±bp1)式中:△p——进口管路内测量流量的孔板前后压差p1——进口处压力p2——出口处压力a、b——与压比、温度、孔板流量计的孔板系数有关的参数,可通过热工计算机和实验取得。
4.2 离心压缩机防喘振控制4.2.1 离心压缩机的喘振1.离心压缩机喘振现象及原因离心式压缩机在运行过程中,可能会出现这样一种现象,即当负荷低于某一定值时,气体的正常输送遭到破坏,气体的排出量时多时少,忽进忽出,发生强烈震荡,并发出如同哮喘病人“喘气”的噪声。
此时可看到气体出口压力表、流量表的指示大幅波动。
随之,机身也会剧烈震动,并带动出口管道、厂房震动,压缩机会发出周期性间断的吼响声。
如不及时采取措施,将使压缩机遭到严重破坏。
例如压缩机部件、密封环、轴承、叶轮、管线等设备和部件的损坏,这种现象就是离心式压缩机的喘振,或称飞动。
下面以图4.2-1 所示为离心压缩机的特性曲线来说明喘振现象的原因。
离心压缩机的特性曲线显示压缩机压缩比与进口容积流量间的关系。
当转速一定时,曲线上点有最大压缩比,对应流量设n c 为,该点称为喘振点。
如果工作点为点,要P Q B 求压缩机流量继续下降,则压缩机吸入流量,工作点从点突跳到点,压缩机出P Q Q <C D 口压力从突然下降到,而出口管网压力仍为C PD P ,因此气体回流,表现为流量为零 同时管网压力 图4.2-1 离心压缩机的特性曲线C P 也下降到,一旦管网压力与压缩机出口压力相等,压缩机由输送气体到管网,流量达到D P 。
因流量大于点的流量,因此压力憋高到,而流量的继续下降,又使压缩机A Q A Q B B P 重复上述过程,出现工作点从的反复循环,由于这种循环过程极B A D C B →→→→迅速,因此也称为“飞动”。
由于飞动时机体的震动发出类似哮喘病人的喘气吼声,因此,将这种由于飞动而造成离心压缩机流量呈现脉动的现象,称为离心压缩机的防喘振现象。
2.喘振线方程喘振是离心压缩机的固有特性。
离心压缩机的喘振点与被压缩机介质的特性、转速等有关。
将不同转速下的喘振点连接,组成该压缩机的喘振线。
实际应用时,需要考虑安全余量。
喘振线方程可近似用抛物线方程描述为:(4.2-θ2121Q b a p p +=1)式中,下标1表示入口参数;、、分别表示压力、流p Q θ量和温度;是压缩机系数,由压缩机厂商提供。
离心式压缩机防喘振控制简析发布时间:2022-09-03T11:26:53.508Z 来源:《科技新时代》2022年第2月第3期作者:武秋蒙[导读] 离心式压缩机的体积量较小武秋蒙东莞巨正源科技有限公司广东东莞 523000【摘要】离心式压缩机的体积量较小,但运行效率比较可观,而且流量大,其维护保养也比较简单,操作性强。
目前,该机型已经被广泛地应用于天然气和石油等工业当中,其应用帮助企业有效解决了生产效率低下、传统压缩机故障多等问题。
离心式压缩机的缺点在于对气体压力、温度以及流量变化比较敏感,从而会导致喘振问题的出现,阻碍机械的运行。
故此,文章分析了喘振产生的原因和危害,并提出了对应的控制措施,内容整理如下。
【关键词】离心式压缩机;喘振;原因;控制措施离心式压缩机的属性为速度式的压缩机,排气量非常大,而且工作效率高。
但机械的内部结构比较简单,整体占地面积小,而且不会受到油污的污染,故此机械的运行一般比较稳定,同时压缩气流无脉动。
但是受温度、气体压力变化等因素的影响,在使用过程中常见喘振问题的发生。
为了更好地确保机械地平稳运行,必须结合实践与理论,了解这一问题发生的原理和原理,采取有效的控制措施,从根本层面消除导致问题的原因,确保机型可以长期稳定的运行。
1、离心式压缩机喘振成因1.1 系统压力过高若是系统压力过高,会导致压缩机发生紧急停机,气体则会出现回流或是放空现象。
虽然机械在出口管路上安装了单向逆止阀门,但是阀门的实际事情情况并不灵活,一些阀门和压缩机出口之间的距离较长,对于阀前气体容积较大的情况,系统会突然减量,那么也就无法起到有效的调节作用,最终引起了喘振。
1.2 吸入流量不足吸入的流量不够也是导致喘振发生的一个常见原因。
压缩机的入口位置受滤器阻塞。
会出现较大的阻力,严重情况下影响机械运行,从而导致喘振。
在机械的实际运行中,若是没有及时有效的清洁滤芯,或是寒冷季节出现结冰,致使吸入流量不足,会引起喘振。
【专业知识】离心式制冷压缩机防喘振措施【学员问题】离心式制冷压缩机防喘振措施?【解答】1、喘振产生的机理离心压缩机的基本工作原理是利用高速回转的叶轮对气体做功,将机械能加给气体,负气体压力升高,速度增大,气体获得压力能和速度能。
在叶轮后面设置有通流面积逐渐扩大的扩压元件,高压气体从叶轮流出后,再流经扩压器进行降速扩压,负气体流速降低,压力继续升高,即把气体的一部分速度能转变为压力能,完成了压缩过程。
扩压器流道内的边界层分离现象:扩压器流道内气流的活动,来自叶轮对气流所做功转变成的动能,边界层内气流活动,主要靠主流中传递来的动能,边界层内气流活动时,要克服壁面的摩擦力,由于沿流道方向速度降低,压力增大,主流的动能也不断减小。
当主流传递给边界层的动能不足以使之克服压力差继续前进时,终极边界层的气流停滞下来,进而发生旋涡和倒流,负气流边界层分离。
气体在叶轮中的活动也是一种扩压活动,当流量减小或压差增大时也会出现这种边界层分离现象。
当流道内气体流量减少到某一值后,叶道进口气流的方向就和叶片进口角很不一致,冲角α大大增加,在非工作面引起流道中气流边界层严重分离,使流道进出口出现强烈的气流脉动。
当流量大大减小时,由于气流活动的不均匀性及流道型线的不均匀性,假定在B流道发生气流分离的现象,这样B流道的有效通流面积减小,使原来要流过B流道的气流有一部分要流向相邻的A流道和C流道,这样就改变了A流道,C流道原来气流的方向,它使C流道的冲角有所减小,A流道的冲角更加增大,从而使A流道中的气流分离,反过来使B流道冲角减小而消除了分离现象,于是分离现象由B流道转移到A流道。
这样分离区就以和叶轮旋转方向相反的方向旋转移动,这种现象称为旋转脱离。
扩压器同样存在旋转脱离。
在压缩机的运转过程中,流量不断减小到Qmin值时,在压缩机流道中出现如上所述严重的旋转脱离,活动严重恶化,使压缩机出口压力忽然大大下降,低于冷凝器的压力,气流就倒流向压缩机,一直到冷凝压力低于压缩机出口压力为止,这时倒流停止,压缩机的排量增加,压缩机恢复正常工作。
离心式压缩机防喘振措施离心式压缩机是工业生产中常用的一种压缩机,其工作原理是通过离心力将气体压缩。
然而,在使用离心式压缩机的过程中,有时会出现喘振现象,严重影响设备的正常运行和使用寿命。
为了解决离心式压缩机的喘振问题,我们需要采取一系列的防喘振措施。
我们需要对压缩机的系统进行合理的设计和优化。
在设计过程中,应根据实际工况和使用要求,选择合适的压缩机型号和规格。
同时,要合理安排压缩机的进出口管道,保证气流的顺畅和均匀。
此外,还应考虑到系统的冷却和排放问题,避免过热和堵塞导致喘振。
我们需要对离心式压缩机进行定期的维护和保养。
定期检查压缩机的各个部件和连接件,确保其处于良好的工作状态。
特别要注意清洁压缩机的滤芯和冷却器,避免因积尘和杂质堆积导致系统阻塞和喘振。
我们还可以采取一些降低压缩机喘振的技术手段。
例如,可以通过在系统中增加减振器来吸收和分散喘振产生的冲击力。
减振器的选择应根据系统的工作条件和压力来确定,以提高系统的稳定性和可靠性。
还可以采用自动控制系统来监测和调节压缩机的运行状态。
通过实时监测和分析压缩机的振动和压力数据,及时发现和预防喘振现象的发生。
同时,可以通过调整系统的工作参数和控制策略,降低压缩机的负荷和运行压力,减少喘振的可能性。
还需培养和提高操作人员的技术水平和安全意识。
操作人员应具备一定的机械和压缩机知识,能够正确操作和维护离心式压缩机。
同时,要加强安全教育和培训,提高操作人员对喘振危害的认识,遵守安全操作规程,减少人为因素导致的喘振事故。
离心式压缩机的喘振问题是一个需要重视和解决的技术难题。
通过合理设计和优化系统、定期维护保养、采用技术手段和加强人员培训等一系列措施,可以有效预防和降低喘振的发生率,提高离心式压缩机的工作效率和安全性。
文件编号:RHD-QB-K6485 (安全管理范本系列)编辑:XXXXXX查核:XXXXXX时间:XXXXXX离心式压缩机的防喘振控制示范文本离心式压缩机的防喘振控制示范文本操作指导:该安全管理文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。
,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。
一、离心式压缩机的特性曲线与喘振离心式压缩机的特性曲线通常指:出口绝对压力户2与人口绝对压力p1之比(或称压缩比)和入口体积流量的关系曲线;效率和流量或功率和流量之间的关系曲线。
对于控制系统的设计而言,则主要用到压缩比和入口体积流量的特性曲线,见图6—20中实线。
离心式压缩机在运行过程中,有可能会出现这样一种现象,即当负荷降低到一定程度时,气体的排出量会出现强烈振荡,同时机身也会剧烈振动,并发出“哮喘”或吼叫声,这种现象就叫做离心式压缩机的“喘振”。
喘振是离心式压缩机的固有特性,而事实上少数离心泵也可能喘振。
离心泵工作中产生不稳定工况需要两个条件:一是泵的玎—Q特性曲线呈驼峰状;二是管路系统中要有能自由升降的液位或其他能贮存和放出能量的部分。
因此,对离心泵的情况,当遇到具有这种特点的管路装置时,则应避免选用具有驼峰型特性的泵。
对离心压缩机,由于它的性能曲线大多呈驼峰型,并且输送的介质是可压缩的气体,因此,只要串联着的管路容积较大,就能起到贮放能量的作用,故发生不稳定跳动的工作情况便更为容易。
连接离心式压缩机不同转速下的特性曲线的最高点,所得曲线称喘振极限线,其左侧部分称为喘振区,如图6—20中阴影部分。
喘振情况与管网特性有关。
管网容量越大,喘振的振幅越大,而频率越低;管网容量越小,则相反。
二、引起喘振的因素如上所述,当离心式压缩机的负荷减小到一定程度时,会造成压缩机的喘振,这是引起喘振的最常见因素。
除此之外,被压缩气体的吸入状态,如分子量、温度、压力等的变化,也是造成压缩机喘振的因素。
离心式压缩机的喘振原因与预防措施分析摘要:喘振是气流沿压气机轴线方向发生的低频率、高振幅的振荡现象,并且,故障的引发原因较多,很容易影响整体的生产效率,在我国目前的生产发展当中离心式压缩机起到了至关重要的作用,可以在一定程度上提高整体的生产效率,而由于喘振现象的出现导致离心式压缩机不能够正确的发挥作用,甚至是引发爆炸或者是火灾等灾害,不仅严重影响了整体的生产效率,还会对工作人员造成严重的人身伤害,甚至是不可挽回的恶劣后果,所以需要相关工作人员对离心式压缩机喘振现象加以重视,深度挖掘喘振现象的产生原因,并结合喘振现象的发生原因制定相应的解决对策,同时,利用信息技术实现故障诊断系统的有效应用,通过远程监测功能与智能故障预警等功能实现离心式压缩机喘振现象的智能化控制,做到科学预防、合理治理离心式压缩机喘振故障。
关键词:离心式压缩机;喘振原因;预防措施引言离心式压缩机又叫透平式压缩机,整个压缩机没有中间罐等装置,也没有巨大且笨重的基础元件,整体结构十分紧凑,总体尺寸小,分量轻。
机器内部耗油量很少,只有轴承部分需要润滑,减少了压缩空气被污染的可能性。
压缩机运行过程中振动小,出口排气连续,易于调节,维修简单。
因此广泛应用在石油化工行业的多种装置上。
1离心式压缩机喘振的故障原因1.1叶轮磨损或有附着物叶轮磨损或表面存在附着物,也是造成离心式压缩机存在喘振故障的主要原因,在离心式压缩机的运行过程当中,叶轮通过自身结构形成高速旋转为气体提供速度及其压力,从而保证离心式压缩机能够正常运行,如果叶轮出现磨损或表面存在附着物等现象就会在一定程度上改变叶轮的自身结构,降低叶轮的旋转速度,导致不能够为气体具体提供正确的速度以及压力,从而导致离心式压缩机出现喘振故障,而且叶轮在日常的运行过程当中势必会造成一定的磨损,这是无法避免的必然现象,只能通过工作人员人为检修更换来避免这一现象发生。
1.2内因离心式压缩机喘振的内因就是由叶轮以及介质所导致的,当进口的流量低于标准值时,压缩机的气流方向就会和叶片进口的安装角产生偏差,如果偏差较大,还会导致脱离,此时气体就会滞留在叶轮的流道中,进而造成压缩机的压力减小,不过由于工程管路有一定的背压,出口压力并不会变小,这样就会使气体发生回流,补充流量,使其恢复正常。
离心压缩机的防喘振控制摘要:本文以离心压缩机设备的性能调节为研究核心,说明防喘振控制工作的重要性,并对发生喘振的主要原因进行深入分析,再从控制方案角度讨论空压机性能曲线参数,因为该参数大多是由进出口参数压比(或出口压力)、流量参数比(或差压)多重参数进行最终控制,所以,在参数联动控制状态下,压缩机的启动、运行调节过程中,如果无法有效控制机组发生的喘振问题,则会导致机组由此受到一定程度的损坏。
基于此,为进一步保证机组的运行安全和可靠性,需要为不同调节控制操作提供必要的保护,此时防喘振控制线具有十分重要的作用。
关键词:离心压缩机;使用性能;防喘振控制前言:目前,离心式空压机设备在仪表风、动力站、空分系统以及冶金吹炼等众多装置中有着十分广泛的应用,在供风、升压等类型的原动设备中发挥着重要作用。
因其具有流量范围更宽、压力范围更宽、构造更加简单、工作效率更高、使用寿命更长的特点,备受使用者好评。
基于此,为保证离心压缩机设备的机组性能控制效果,达到防喘振控制目标,需对压缩机设备的运行参数进行调节,主要包括流量、压力、压比和温度等参数进行调节和控制。
1喘振的分析讨论在压缩机处于工作运行状态时,会在某一个特定压力值、特定转速下,存在一个最小流量点,在量值低于流量标准时,此时的压缩机设备使用性能将会变得不稳定,并发生喘振现象[1]。
在喘振状态下,压缩机系统自身的气流会呈现出周期性波动特点,此时压力和流量会出现大幅度波动,进而导致整个压缩机组的工作振动出现加大发展的趋势,情况严重时,甚至会造成压缩机设备出现损坏。
所以,需设定一个可以防止压缩机出现喘振现象的控制系统,形成一定的限制作用,确保压缩机实际流量不会出现大幅度下降,保证参数处于工况最低允许值以上,这样即不会造成压缩机设备进入喘振工况区域内,同时的也可以为压缩机设备的安全运行状态提供必要的保障作用。
在离心式空压机组处于运行状态时,容易出现喘振故障问题,这种喘振问题的原因大多在于空压机本身的气体流量过度下降,导致空压机叶片出现旋转失速的情况。
离心式压缩机防喘振控制方案教案资料离心式压缩机的喘振问题是指在运行过程中出现压比过大或出现流量脉动等现象,导致振荡、噪音和设备损坏。
离心式压缩机的喘振问题是由于压缩机与系统间动态过程的不协调而引起的。
为了防止离心式压缩机的喘振问题,可以采取以下控制方案。
1.增加系统阻尼增加系统阻尼是防止压缩机喘振的一种常用方法。
可以通过增加系统的阻尼器或减震器来利用机械的阻尼效应来消除或减小振动。
通过增加系统的阻尼,可以降低系统中的共振频率,从而减小振动的幅值。
2.优化压比控制策略合理的压比控制策略也可以有效地防止压缩机的喘振问题。
一种常用的方法是在压比过大的情况下,采取相应的控制策略来限制流量以降低压比,从而避免喘振的发生。
可以根据实际情况,合理设置压比限制或控制机组内压力的变化范围。
3.合理设计压缩机系统合理的设计压缩机系统也是防止喘振问题的重要措施。
首先,需要合理选择压缩机的型号和参数,确保其操作范围内能够稳定工作。
其次,需要合理设计系统的布局和管道连接,避免过长或过短的管道。
此外,还需要对系统进行严格的工程检验和调试,确保设计要求的达成。
4.定期维护检查定期维护检查对于防止离心式压缩机的喘振问题也非常重要。
通过定期检查压缩机的工作状态、阀门的操作情况以及管道的泄漏等问题,及时发现并解决潜在的问题,可以有效地减小喘振的风险。
总之,离心式压缩机的喘振问题是一个需要注意的技术问题,需要从系统阻尼、压比控制、系统设计和定期维护等多个方面进行综合考虑和控制。
通过合理的控制措施和工作维护,可以有效地消除离心式压缩机的喘振问题,确保系统的稳定和安全运行。
离心式压缩机组防喘振控制及应用摘要:本文以揭阳石化空压站压缩机为例阐述了离心式压缩机喘振控制原理、操作点算法、防喘振控制功能及防喘振系统的调试与应用,对今后进行机组调试有着借鉴意义。
关键字:防喘振控制.操作点.性能曲线.压缩机是石油化工装置的核心设备,其安全平稳运行对安全生产起着至关重要的作用,防止喘振是压缩机运行中极其重要的问题,许多事实证明,压缩机的大量事故都与喘振有关。
-:喘振发生的条件:①压缩机特性决定了转速一定的条件下,流量对应于出口压力或升压比,并且在一定的转速下存在一个喘振流量。
当压缩机运行中实际流量低于这个喘振流量时压缩机便发生喘振。
这些流量、出口压力、转速和喘振流量的综合关系构成压缩机的特性线,也叫性能曲线。
在一定转速下使流量大于喘振流量就不会发生喘振。
②如果压缩机与系统管网联合运行,当系统压力大大高出压缩机在该转速下运行对应的极限压力时,系统内高压气体便在压缩机出口形成很高的“背压”,使压缩机出口阻塞,流量减少,甚至管网气体倒流;入口气源减少或切断,压缩机都可能发生喘振。
③机械部件损坏或者部件安装不全,安装位置不准或者脱落,会形成各级之间或各段之间串气,可能引起喘振;过滤器阻力太大,逆止阀失效或破坏,也都会引起喘振。
④实际操作中升速升压过快,降速之前未首先降压可能导致喘振。
升速、升压要缓慢均匀,降速之前应先采取卸压措施,⑤工况改变,运行点落入喘振区。
如改变转速、流量、压力之前,未查看特性曲线,使压缩机运行点落入喘振区。
⑥正常运行时,防喘系统未投自动。
当外界因素变化时,如蒸汽压力下降或汽量波动;汽轮机转速下降而防喘系统来不及手动调节;或来气中断等;由于未用自动防喘装置可能造成喘振。
⑦介质状态变化。
因为气体的状态影响流量,从而也影响喘振流量,当然影响喘振,比如进气温度、压力、气体成分即分子量等对喘振都有影响。
二、压缩机防喘振控制性能曲线:压缩机防喘振性能曲线(如图1)。
图中描绘了压缩机的操作极限(即喘振控制线),喘振线(即喘振区)和喘振裕度。
离心式压缩机喘振及控制一、什么是喘振?离心式压缩机产生喘振的原因?当离心机压缩机的负荷降低,排气量小于某一定值时,气体的正常输送遭到破坏,气体的排出量时多时少,忽进忽出,产生强烈的震荡,并发出如哮喘病人的喘气的噪声,此时可看到气体出口压力表、流量表的指示发生大幅度的波动,随之,机身也会发生剧烈的震动,并带动出口管道,厂房振动,压缩机将会发生周期性、间断的吼响声。
如不及时采取措施,压缩机将会产生严重的破坏,这种现象就叫做压缩机的喘振,也称飞动。
喘振是因为离心式压缩机的特性曲线程驼峰状引起的,离心式压缩机是其压缩比(出口绝压P2与入口绝压P1之比)与进口气体的体积流量之间的关系曲线,具体图如下(其中n 为压缩机的转速):从上图可以看出每种转速下都有一个P2/P1的最高点,这个点称之为驼峰,将各个驼峰点连接起来就可以得到一条喘振边界线,如图中虚线所示,边界线左侧的阴影部分为不稳定的喘振区,边界线右侧部分则为安全运行区,在安全运行区压缩比P2/P1随流量Q的增大而减小,而在喘振区P2/P1随流量的增大而增大举例说明:假设压缩机在n2转速下工作在A点,对应的流量为QA,如果此时有某个干扰使流量减,小,但仍在安全区内,这时压缩比会增大,即P2增大,这时就会使压缩机的排出压力增大并恢复到稳定时的流量QA。
但如果流量继续下降到小于n2转速下的驼峰值QB,这时压缩比不但不会增大,反而会下降,即出口压力P2会下降,这时就会出现恶性循环,压缩机的排出量会继续小,P2会继续下降,当P2下降到低于管网压力时瞬间将会出现气体的倒流,随着倒流的产生,管网压力下降,当管网压力降到与压缩机出口压力相等时倒流停止,然而压缩机仍处于运转状态,于是压缩机又将倒流回来的气体又重新压缩出去,此时又会引起P2/P1下降,被压出的气体又重新倒流回来,这种现象将反复的出现,气体反复进出,产生强烈的整理,这就是所谓的喘振。
二、防喘振控制的方案(两种)固定极限流量防喘振控制:把压缩机最大转速下的喘振点的流量作为极限值,是压缩运行时流量始终大于该极限值。
转子和静态部分相撞,对压缩机正常运行,带来非常大的威胁,甚至导致压缩机报废,需要在压缩机实际运行的过程中,认真做好相关应对工作。
2 离心式压缩机性能曲线离心压缩机喘振的产生与流体机械和管道特性有着非常密切的关系,在离心压缩机运行的过程中,若压缩机的排气量与进气量二者之间相等,并且压缩形成的排气压力与管网压力相等,说明压缩机与管网性能之间具有良好的协调性,在实际操作中,应该及时查看离心压缩机的性能曲线,关注压缩机的运行状况,避免压缩机进入喘振区域,为压缩机的安全稳定运行奠定基础。
3 离心式压缩机发生喘振的原因3.1 流量因素离心压缩机在运行过程中,当压缩机流量降低,压缩机出口压力增大,当达到这一转速时的最高出口压力时,机组就会进入喘振区,此时压缩机出口压力下降,导致压缩机出现喘振[2]。
同时,在流量一定的情况下,压缩机转速越高越容易出现喘振现象。
离心压缩机之所以出现喘振,其根本原因是流量小所造成的,所以在压缩机的运行中,增加压缩机的流量,是离心压缩机预防喘振的重要条件。
3.2 入口压力压缩机入口压力降低,压缩机就越接近喘振区域,这是由于入口过滤器的压差增加,造成进入压缩机气体流量减少,从而导致压缩机出现了喘振,在离心压缩机操作的过程中需要及0 引言离心压缩机是通过叶轮高速旋转,在离心力的作用下将叶轮中心的气体甩向叶轮的边缘,气体的动能增加,被甩出后的气体,进入扩压器之中,通过这一过程降低气体速度,使得动能与静压能之间转化,压力得到提升。
而在叶轮的中心区域就会成为低压真空地带,此时外界新鲜气体被吸入,之后又会随着叶轮旋转,在不断吸入和甩出气体的过程中,使得气体得以持续流动。
喘振的发生使压缩机不能正常工作,压缩机性能恶化,效率降低,对压缩机组造成严重损伤,离心式压缩机不可以在喘振时运行,所以做好喘振预防,能够进一步提升离心压缩机的安全运行效果。
1 离心式压缩机喘振现象在离心式压缩机运行的过程中,当压缩机入口流量不断降低,就会在压缩机流道中产生严重的旋转脱离现象,堵塞流道,造成压缩机出口压力大幅下降,难以保证管网的输气压力,此时管网中的气体会倒流入压缩机中,直到管网压力下降到与压缩机出口压力相等时倒流停止。
离心式压缩机的喘振原因与预防措施分析摘要:离心式压缩机是通过叶轮带动气流,增大气流的速度,把气流中的能量转换成气压,从而提高气体的压强。
其优点是单级流量大,压力比高,气体介质密封效果好。
离心式压缩机具有较强的压力、流量相关性,其稳态工作区间较小,且极易产生喘振现象,为了保证离心式压缩机的安全、稳定工作,需要对喘振现象进行有效的控制。
通过对压缩机特性曲线的测试,可以得到满足特定工况的压缩机抗喘振特性曲线,该防喘振系统控制下的机组应是最安全和经济的。
关键词:预防喘振;离心式压缩机;故障分析1.离心式压缩机喘振原理离心式压缩机是一种利用叶轮高速转动来持续提高气压的转动设备。
气体压力主要是通过扩散阀和推进器来提高的。
当压缩机内的气体速度下降到一定程度时,将引起压缩机内叶轮的转动、分离,并在叶轮内产生大量的气体漩涡。
在这种情况下,由于阻塞严重,会使压缩机出口的压力大大下降。
因为管网的容积很大,所以出现在管网上的气体压力快速降低的可能性很小。
一般情况下,管网内的气压比压缩机出口气压高的多,造成管网内气压回流。
直到压缩机出口的气压和管道内的气压相同,这种回流现象才会发生。
此后,在人工转动叶轮的作用下,气压逐渐上升。
在管网内气压快速升高后,气压又会逐步下降,使系统内再一次发生回流,导致系统内出现大幅的气体喘振及周期的低频现象。
这就是压缩机的喘振现象。
2.离心式压缩机喘振的影响因素2.1内部因素离心式压缩机产生喘振的内在原因有两个:一个是叶轮,另一个是介质。
如果进气体速小于规定的数值,则会使压缩机的风向发生偏移。
如果有非常大的偏离,也可能造成分离。
这时,气体将滞留于叶轮流道内,使压缩机内压下降。
但是,在工程管道中,由于背压的存在,出口的压力不会下降,从而引起气体的回流,从而补充气体的流动,最终达到正常水平。
若持续降低且补给不充分,仍然存在回流现象。
长此以往,设备内的空气将产生喘振,这就是造成离心式压缩机喘振的内部因素。
2020年03月度的解决。
为了精确掌握柴油机的负载,及时进行调和,共轨技术应运而生。
共轨技术是由高压油泵、压力传感器和ECU (控制单元)组成的闭环系统。
高压油泵把高压燃油输送到公共供油管,通过对公共供油管内的油压实现精确控制,可以大幅度减小柴油机供油压力随发动机转速的变化。
此种技术能够对发动机轴承受到的压力进行实时监控,一旦发现部分轴承受力不均或负载过重,压力传感器会即时发出信号,通过ECU 进行手动或自动方式,及时调整公共供油管内剩余油量产生的压力,从而有效保护钻井柴油机,使之时刻处于正常运转的状态[2]。
3.2根据运转情况适当添加润滑油钻井柴油机在运转过程中,需要根据运转状况适当添加润滑油。
而润滑油滤清器是不可或缺的重要装置。
钻井柴油机经常应用在石油、煤炭开采基地,自然环境相对较差,因此应该选择苛刻程度较高的品牌。
润滑油的添加不是一劳永逸、用完为止的,而是必须根据使用周期进行更换。
除此之外,在添加润滑油时,切记不能将水分、杂质以及柴油带入,否则会造成柴油机喷油泵的供油量失衡,导致柴油无法得到充分燃烧。
由于柴油发动机引擎控制使用多个后喷射的情况增多,经由活塞环掺入机油而稀释机油的燃料量不断增加,这样很容易降低机油的润滑性和粘度。
为了解决这一问题,美国德尔福公司开发出了能够准确检测机油状态的专供柴油发动机使用的机油传感器,根据发动机的使用时间,大幅度延长机油和润滑油过滤器的更换时间,从而使润滑油和机油的添加更加科学。
3.3对冷却水温进行合理控制冷却系统是保护钻井柴油机正常运转的重要装置。
通过对冷却水温进行科学的控制,能够有效降低发动机运转产生的热量,从而使运转环境处于稳定的状态。
此举还可以降低柴油的消耗,提升燃油效率,进而提高钻井柴油机的使用寿命。
在现有技术下,需要将冷却系统的水温长时间保持在80℃左右。
如果水温较低,在冷热的对抗下,会使产生的热能大量流失,导致柴油消耗量大幅度增加;而且过低的水温还会使缸内的整体温度降低,在压力不足的情况下,柴油无法燃烧充分。
文件编号:GD/FS-4241
(安全管理范本系列)
离心式压缩机的防喘振控
制详细版
In Order To Simplify The Management Process And Improve The Management Efficiency, It Is Necessary To Make Effective Use Of Production Resources And Carry Out Production Activities.
编辑:_________________
单位:_________________
日期:_________________
离心式压缩机的防喘振控制详细版
提示语:本安全管理文件适合使用于平时合理组织的生产过程中,有效利用生产资源,经济合理地进行生产活动,以达到实现简化管理过程,提高管理效率,实现预期的生产目标。
,文档所展示内容即为所得,可在下载完成后直接进行编辑。
一、离心式压缩机的特性曲线与喘振
离心式压缩机的特性曲线通常指:出口绝对压力户2与人口绝对压力p1之比(或称压缩比)和入口体积流量的关系曲线;效率和流量或功率和流量之间的关系曲线。
对于控制系统的设计而言,则主要用到压缩比和入口体积流量的特性曲线,见图6—20中实线。
离心式压缩机在运行过程中,有可能会出现这样一种现象,即当负荷降低到一定程度时,气体的排出量会出现强烈振荡,同时机身也会剧烈振动,并发出“哮喘”或吼叫声,这种现象就叫做离心式压缩机的“喘振”。
喘振是离心式压缩机的固有特性,而事实上少数离心泵也可能喘振。
离心泵工作中产生不稳定工况需要两个条件:一是泵的玎—Q特性曲线呈驼峰状;二是管路系统中要有能自由升降的液位或其他能贮存和放出能量的部分。
因此,对离心泵的情况,当遇到具有这种特点的管路装置时,则应避免选用具有驼峰型特性的泵。
对离心压缩机,由于它的性能曲线大多呈驼峰型,并且输送的介质是可压缩的气体,因此,只要串联着的管路容积较大,就能起到贮放能量的作用,故发生不稳定跳动的工作情况便更为容易。
连接离心式压缩机不同转速下的特性曲线的最高点,所得曲线称喘振极限线,其左侧部分称为喘振区,如图6—20中阴影部分。
喘振情况与管网特性有关。
管网容量越
大,喘振的振幅越大,而频率越低;管网容量越小,则相反。
二、引起喘振的因素
如上所述,当离心式压缩机的负荷减小到一定程度时,会造成压缩机的喘振,这是引起喘振的最常见因素。
除此之外,被压缩气体的吸入状态,如分子量、温度、压力等的变化,也是造成压缩机喘振的因素。
吸入压力的变化,会影响压缩机的实际压缩比。
当吸人压力》l降低,所需压缩比增大,压缩机易进入喘振区。
对于吸人气体的分子量变化,压缩机特性曲线的改变情况如图6—21所示。
图中清楚地表明,在同样的吸入气体流量QA下,分子量大,压缩机易进入喘振区。
当吸人气体温度变化时,它的特性曲线将如图6—22所示。
显然,当温度降低,压缩机易出现喘振。
在实际生产过程中,被压缩的气体往往来自上一工序,该工序的操作情况会影响分子量和温度的变化,从而可能引起压缩机的喘振。
鉴于目前的防喘振控制系统一般只是为了防止负荷的减小,且分子量的变化也无法进行在线测量,所以,在上述情况下,防喘振控制系统会“失灵”。
对此需要特别加以重视。
三、喘振的极限方程及安全操作线
(1)经验公式将在不同转速下的压缩机特性曲线最高点连接起来所得的一条曲线,称为压缩机喘振的极限线,如图6—23所示。
对于喘振极限线,可以通过理论推导获得数学表达式。
在工程上,为了安全上的原因,在喘振极限线右边,建立一条“安全操作线”,作为压缩机允许工作的界限。
这条安全操作线可与一个抛物线方向近似,其经验公式为
式中,Q1为吸人口气体的体积流量;丁l为吸人口气体的绝对温度;p1、p2分别为吸入口、排出口的绝对压力;K,a均为常数,一般由压缩机制造厂家给出,a有等于0、大于0和小于0三种情况。
由于式(6—7)中的吸入口气体的体积流量Ql、绝对压力》p1和绝对温度T1有一定关系,而且还可以依照不同的测量方法和仪表,将经验公式表达成更加实用的公式。
(2)用差压计测量流量时的安全操作线表达式假
如在压缩机人口处用差压计测量流量Ql,测得的差压为p1d,由标准节流装置流量测量公式
式中,o为常数;c为气体压缩系数;ρ1为人口处气体的密度。
根据气体方程
式中,z为气体压缩修正系数;及为气体常数;M为气体分子量。
将式(6—9)代入式(6—8)并简化后,得
式(6—13)和式(6—14)就是用差压计测量入口处气体流量时喘振安全操作线的表达式。
四、防喘振控制系统
由前述可知,在通常情况下,压缩机的喘振主要
是负荷减少所致,而负荷的升降则是由工艺所决定的。
为使压缩机不出现喘振,需要确保任何转速下,通过压缩机的实际流量都不小于喘振极限线所对应的最小流量QB。
根据这一思路,可采取如图6—24所示的循环流量法,来设计固定极限流量法和可变极限流量法等两种防喘振控制系统。
(1)固定极限流量法采用部分循环法,始终使压缩机流量保持大于某一定值流量,从而避免进入喘振区运行,这种方法叫做固定极限流量防喘振控制。
图6—25中Qn即为固定极限流量值。
显然,压缩机不论运行在哪一档转速下,只要满足Q≥QB的条件,压缩机就不会出现喘振。
用固定极限法所设计的控制方案结构简单,如图6—26所示。
图中的流量控制器,即以Qu值作为其固定设定值的防喘振控制器。
QB的取值应以现场压缩机能达到的最高转速所对应的喘振极限流量
为好。
压缩机正常运行时,控制器的测量值恒大于设定值,而旁路控制阀是气关阀,此时控制器具有正向作用和PI特性,输出达最大值时使阀关闭。
当压缩机吸气量小于设定值时,旁路阀打开,压缩机出口气体经旁路返回至压缩机人口,气量又增大到大于Qu 值。
这时虽然压缩机向外供气量减少了,但防止了喘振的发生。
这种固定极限流量法不足之处在于当压缩机低速运行时(如图6—25中的n₁,n₂转速情况下),压缩机的能耗过大,这对压缩机负荷需经常改变的生产装置就不够经济;但从另一方面讲,则有控制方案简单、系统可靠性高、投资少等优点。
(2)可变极限流量法为了减少压缩机的能量消耗,在压缩机负荷有可能经常波动的场合,可以采用
调节转速的办法来保证压缩机的负荷满足工艺上的要求。
因为在不同转速下,其喘振极限流量是一个变数,它随转速的下降而变小。
所以最合理的防喘振控制方案应是在整个压缩机负荷变化范围内,使它的工作点沿着如图6—23所示的喘振安全操作线而变化,根据这一思路设计的防喘振控制系统,就称为可变极限流量法防喘振控制系统,它的原理如图6—27所示。
在设计防喘振控制系统时,尚需注意如下几点。
①旁路控制阀在压缩机正常运行的整个过程中,测量值始终大于设定值,因此必须考虑防喘振控制器的防积分饱和问题。
否则就会造成防喘振控制系统的动作不及时而引起事故。
②在实际的工业设备上,有时不能在压缩机入口
专业生产运营/ Sample Professional Contract 文件编码:GD/FS-4241处测量流量,而必须改为在出口处,但压缩机制造厂所给的特性曲线往往是规定测量人口流量的,这时就需要将喘振安全操作线方程进行改写。
可以从人口、出口质量流量相等这一等式出发,写出pld与出口流量的差压值p2d之间的关系式,然后把安全操作线方程式中p1d替换掉,再以此方程进行防喘振控制系统的设计。
③喘振安全操作线方程式中的压缩机出、人口处的压力p₁、p₂均指绝对压九因此,若所用的压力变送器不是绝压变送器,则必须考虑相对压力和绝对压力的转换问题。
可在这里输入个人/品牌名/地点
Personal / Brand Name / Location Can Be Entered Here
-第11页-。