实验四 线性系统的频域分析
- 格式:docx
- 大小:36.74 KB
- 文档页数:1
第五章 线性系统的频域分析频域分析法是应用频率特性研究线性系统的一种经典方法。
它以控制系统的频率特性作为数学模型,以伯德图或其他图表作为分析工具,来研究、分析控制系统的动态性能与稳态性能。
频域分析法由于使用方便,对问题的分析明确,便于掌握,因此和时域分析法一样,在自动控制系统的分析与综合中,获得了广泛的应用。
本章研究频率特性的基本概念、典型环节和控制系统的频率特性曲线、奈奎斯特稳定判据以及开环频域性能分析等内容。
§5-1 频率特性的基本概念一、频率特性的基本概念频率特性又称频率响应,它是系统(或元件)对不同频率正弦输入信号的响应特性,对于线性系统,若其输入信号为正弦量,则其稳态输出信号也将是同频率的正弦量,但其幅值和相位都不同与输入量。
下面以RC 电路为例,说明频率特性的基本概念。
图5-1所示的RC 电路,)(t u i 和)(0t u 分别为电路的输入电压和输出电压,电路的微分方程为:)()()(00t u t u dtt du Ti =+ 式中T=RC 为电路的时间常数。
RC 电路的传递函数为11)()(0+=Ts s U s U i (5-1) Rui )t图 5-1 RC 电路当输入电压为正弦函数t U t u i i ωsin )(=,则由式(5-1)可得22011)(11)(ωω+⋅+=+=s U Ts s U Ts s U i i 经拉氏反变换得电容两端的输出电压)sin(11)(122/220T tg t T U e T T U t u iT t i ωωωωω---+++=式中,第一项为输出电压的暂态分量,第二项为稳态分量,当∞→t 时,第一项趋于零,于是)sin(1|)(1220T tg t T U t u i t ωωω-∞→-+=)](sin[)(ωϕωω+=t A U i (5-2)式中:2211)(TA ωω+=,T tgωωϕ1)(--=,分别反映RC 网络在正弦信号作用下,输出稳态分量的幅值和相位的变化,二者皆是输入正弦信号频率ω的函数。
线性系统的频域分析实验心得
1·熟练掌握用 MATLA语句绘制频域曲线。
2·掌握控制系统频域范围内的分析校正方法。
3掌握用频率特性法进行串联校正设计的思路和步骤
某单位负反馈控制系统的开环传递函数4为,试设计一超前校正装置,G(s)1、' s(s 1)K. 20s 150使校正后系统的静态速度误差系数,相位裕量,增益裕量20lgK10dB
绘制伯德图程序,以及计算穿越频率,相位裕量ans =相位 Inf 9.0406频率Inf 3.1425>e=5; r=50; rO=9; >>[gm1,pm1,wcg1,wcp1]=marg in(num 0,de nO);phic=(r-rO+e)*pi/180;
[gm1,pm1,wcg1,wcp1]=margi n(num 0,de nO);>>alpha=(1+s in (phic))/(1-si n(phic))[gm1,pm1,wcg1,wcp1]=margin(num 0,de n0); alpha =6.1261 [gm1,pm1,wcg1,wcp1]=marg in(num 0,de n0);lgm1,pm1,wcg1,wcp1]
通过MATLAB寸系统进行校正,可以清晰明了的显示矫正过程,以及矫正结果,方便快捷。
这种基于MATLAB的方法对于系统的设计非常实用。
值得以后再学习过程中认真领悟学习!! ! ! !。
第五章线性系统的频域分析法5-1 什么是系统的频率响应?什么是幅频特性?什么是相频特性?什么是频率特性?答对于稳定的线性系统,当输入信号为正弦信号时,系统的稳态输出仍为同频率的正弦信号,只是幅值和相位发生了改变,如图5-1所示,称这种过程为系统的频率响应。
图5-1 问5-1图称为系统的幅频特性,它是频率的函数;称为系统的相频特性,它是频率的函数:称为系统的频率特性。
稳定系统的频率特性可通过实验的方法确定。
5-2 频率特性与传递函数的关系是什么?试证明之。
证若系统的传递函数为,则相应系统的频率特性为,即将传递函数中的s用代替。
证明如下。
假设系统传递函数为:输入时,经拉氏反变换,有:稳态后,则有:其中:将与写成指数形式:则:与输入比较得:幅频特性相频特性所以是频率特性函数。
5-3 频率特性的几何表示有几种方法?简述每种表示方法的基本含义。
答频率特性的几何表示一般有3种方法。
⑴幅相频率特性曲线(奈奎斯特曲线或极坐标图)。
它以频率为参变量,以复平面上的矢量来表示的一种方法。
由于与对称于实轴,所以一般仅画出的频率特性即可。
⑵对数频率特性曲线(伯德图)。
此方法以幅频特性和相频特性两条曲线来表示系统的频率特性。
横坐标为,但常用对数分度。
对数幅频特性的纵坐标为,单位为dB。
对数相频特性的纵坐标为,单位为“。
”(度)。
和都是线性分度。
横坐标按分度可以扩大频率的表示范围,幅频特性采用可给作图带来很大方便。
⑶对数幅相频率特性曲线(尼柯尔斯曲线)。
这种方法以为参变量,为横坐标,为纵坐标。
5-4 什么是典型环节?答将系统的开环传递函数基于根的形式进行因式分解,可划分为以下几种类型,称为典型环节。
①比例环节k(k>0) ;②积分环节;③微分环节s;④惯性环节;⑤一阶微分环节;⑥延迟环节;⑦振荡环节;⑧二阶微分环节 ;⑨不稳定环节。
典型环节频率特性曲线的绘制是系统开环频率特性绘制的基础,为了使作图简单并考虑到工程分析设计的需要,典型环节对数幅频特性曲线常用渐近线法近似求取。
系统频域分析实验报告1. 引言系统频域分析是一种用于研究线性时不变系统的方法,通过对系统的输入和输出信号在频域上的分析,可以得到系统的频率响应特性。
本实验旨在通过实际测量和分析,了解系统频域分析的基本原理和方法。
2. 实验设备和原理2.1 实验设备本实验所用设备包括: - 函数发生器 - 数字示波器 - 电阻、电容和电感等被测元件 - 电缆和连接线等连接配件2.2 实验原理系统频域分析是基于傅里叶变换的原理,通过将时域上的信号转换到频域上进行分析。
在本实验中,我们将使用函数发生器产生不同频率和幅度的正弦信号作为输入信号,通过被测系统输出的信号,使用数字示波器进行采集和分析。
3. 实验步骤3.1 连接实验设备将函数发生器的输出端与被测系统的输入端相连,将被测系统的输出端与数字示波器的输入端相连,确保连接正确可靠。
3.2 设置函数发生器调整函数发生器的频率、幅度和波形等参数,以产生不同频率和幅度的正弦信号作为输入信号。
3.3 采集数据使用数字示波器对被测系统的输出信号进行采集和记录。
可以选择适当的采样频率和采样时间,确保得到足够的数据点。
3.4 数据分析使用计算机软件或编程语言,对采集到的数据进行频域分析。
可以使用离散傅里叶变换(DFT)等方法,将时域上的信号转换到频域上,得到信号的频谱图。
3.5 分析结果根据得到的频谱图,可以分析出被测系统的频率响应特性。
可以通过找到频率响应曲线的极值点、截止频率等特征,来判断系统的性能和特点。
4. 实验结果和讨论4.1 频谱图展示根据采集到的数据和进行频域分析的结果,绘制出被测系统的频谱图。
4.2 频率响应特性分析根据频谱图的分析结果,可以得到被测系统的频率响应特性。
比如,可以观察到系统在不同频率下的增益特性、相位特性等。
4.3 讨论实验误差在实际实验中,可能存在各种误差的影响。
可以对实验误差进行分析和讨论,比如测量误差、系统本身的非线性特性等。
5. 结论通过本实验,我们了解了系统频域分析的基本原理和方法。
第4章线频域分析法频域分析方法是根据系统的频率特性来分析系统的性能,也常称为频率特性法或频率法。
频域分析法有以下特点,首先是频率特性有明确的物理意义。
系统的频率响应可以用数学模型算出,也可以通过实际的频率特性实验测出。
这一点在工程实践上价值很大,特别是对结构复杂或机理不明确的对象,频率分析法提供了一个处理这类问题的有效方法。
频率法计算简单,只用很小的计算量和很简单的运算方法,再辅以作图,便可以完成分析与综合的工作。
当前已有一套完整便捷的基于频率法的计算机辅助设计软件,可以代替人工完成绝大部分的设计工作。
频率法也有其缺点和局限性。
频率法只适合用于线性定常系统。
从原理上讲频率法不能用于非线性系统或时变系统。
虽然在研究非线性系统时也借用了频率法的一些思想,但只能在特定的条件下解决一些很有局限性的问题。
本章研究频率特性的基本概念、图示方法、控制系统的稳定性判据、系统性能的频域分析方法。
4.1 频率特性系统的频率特性描述了线性系统在正弦信号输入下其稳态输出和输入的关系。
为了说明频率特性的概念,下面分析线性系统在正弦输入信号的作用下,其输出信号和输入信号间的关系。
设线性定常系统输入信号为()r t ,输出信号为()c t ,如图4-1所示。
图中G(s)为系统的传递函数。
即 1011111()()()mm m m n n n nb s b s b s b C s G s R s s a s a s a ----++⋅⋅⋅++==++⋅⋅⋅++ (n m ≥) (4-1)若在系统输入端作用一个时间的谐波函数,即0()s i n ()r t r t ωϕ=⋅+ ,式中,0r 是振幅;ω是频率;ϕ是相角。
为简便起见,假设0ϕ=,则0()sin r t r t ω=⋅ 图4-1 一般线性定常系统由于0022()()()r r R s s s j s j ωωωωω==++- (4-2)系统输出()C s 为10110111()()()()()m m m m n n n n b s b s b s b r C s G s R s s a s a s a s j s j ωωω----++⋅⋅⋅++==⋅++⋅⋅⋅+++-1()ni i i C B Ds s s j s j ωω==++-+-∑(4-3)式中,i s 为系统特征根,即极点(设为互异);C i ,B ,D 均为相应极点处留数。
实验四线性时不变离散时间系统的频域分析一、引言离散时间系统是指输入和输出都以离散的时间点进行采样的系统。
频域分析是通过将时域信号转换到频域来研究系统的特性和性能的一种方法。
实验四旨在通过频域分析方法研究线性时不变离散时间系统的特性。
二、理论分析线性时不变离散时间系统的输入输出关系可以表示为:y[n]=H(e^(jω))*x[n]其中,H(e^(jω))表示系统的频率响应,是输入和输出的傅里叶变换之比。
线性时不变离散时间系统的频率响应可以通过离散傅里叶变换(DFT)来求得。
DFT是时域序列经过离散采样后进行离散傅里叶变换得到频域表示的方法。
DFT的定义如下:X(k) = Σ[x(n)e^(-j2πkn/N)]其中,x(n)为时域序列,X(k)为频域序列,N为采样点数。
通过DFT可以将时域序列转换为频域序列,从而得到系统的频谱特性,包括幅度和相位。
三、实验步骤1.准备实验设备和软件:计算机、MATLAB软件。
2.设置实验输入信号:生成离散时间序列x[n]。
3.进行离散傅里叶变换:使用MATLAB软件进行离散傅里叶变换,得到频域序列X(k)。
4.计算幅度谱和相位谱:根据频域序列X(k)计算幅度谱和相位谱。
5.绘制频谱图:根据幅度谱和相位谱绘制频谱图。
6.分析系统特性:根据频谱图分析系统的频率响应特性。
四、实验注意事项1.在进行离散傅里叶变换时,注意采样点数N的选择,一般应满足N>2L,其中L为时域信号的长度。
2.在绘制频谱图时,注意选择适当的频率范围,以便观察频域特性。
五、实验结果分析实验通过离散傅里叶变换将时域信号转换为频域信号,得到了系统的频谱特性。
根据频谱图可以分析系统的频率响应,包括系统的幅度响应和相位响应。
六、实验总结通过实验四的实验,我们学习了线性时不变离散时间系统的频域分析方法。
通过离散傅里叶变换,我们可以将时域序列转换为频域序列,从而得到系统的频谱特性。
通过分析频谱图,我们可以了解系统的幅度响应和相位响应,进一步了解系统的特性和性能。
实验四线性时不变离散时间系统的频域分析实验室名称:格物楼1204 实验时间:2015年11月6日姓名:xlabel('\omega /\pi');ylabel('Amplitude');subplot(2,2,4)plot(w/pi,angle(h));gridtitle('Phase Spectrum arg[H(e^{j\omega})]') xlabel('\omega /\pi');ylabel('Phase in radians');M=3M=5M=10由图可看出为低通滤波器。
Q4.2w = 0:pi/511:pi;num = [0.15 0 -0.15];den=[1 -0.5 0.7]h = freqz(num, den, w);subplot(2,1,1)plot(w/pi,abs(h));gridtitle('Magnitude Spectrum |H(e^{j\omega})|') xlabel('\omega /\pi');ylabel('Amplitude');subplot(2,1,2)plot(w/pi,angle(h));gridtitle('Phase Spectrum arg[H(e^{j\omega})]') xlabel('\omega /\pi');ylabel('Phase in radians');Q4.3修改4.2程序num = [0.15 0 -0.15];den=[0.7 -0.5 1]Q4.2和Q4.3的两个滤波器,幅度谱是一样的,相位谱Q4.3中的出现跃变,我会选择Q4.3 的滤波器。
Q4.6式4.36的零极点图。
w = 0:pi/511:pi;num = [0.15 0 -0.15];den=[1 -0.5 0.7]h = zplane(num, den);式4.37的零极点图。
实验四线性系统的频域分析
线性系统的频域分析是一种利用线性系统的响应特性来提高系统性能的有效手段,它
在系统设计中起着重要的作用。
其主要思想是将系统的响应特性根据其与频率之间的关系
进行分割,从而更好地理解该响应的物理规律。
本文的目的是介绍线性系统的频域分析方法。
线性系统的频域分析分为时域分析和频域分析两种技术。
时域分析是检测一个系统在
其他变量没有变化时,系统输出信号形状及其随时间变化趋势的一种分析方法。
时域分析中,将系统的输入和输出逐样本放入示波器进行分析及测试。
频域分析是通过将系统的输
入和输出信号进行频谱分析,将它们映射到频率轴上进行分析的一种方法。
在频域分析中,我们可以通过频谱分析仪、傅里叶变换、系统增益、阶跃响应等技术来检测系统响应的特性,得出系统的频率响应函数,从而研究系统是否属于线性系统。
线性系统的频域分析一般步骤如下:
1、定义时域函数并将其傅里叶变换,从而得到其频域函数;
2、计算系统的增益及其全频响应曲线,以便了解频率和增益之间的关系;
3、根据阶跃响应的拟合结果,利用积分和微分的技巧,确定系统的阶跃函数;
4、选择优化算法,进行系统参数优化调整,使系统达到所需要的设计目标。
以上就是线性系统的频域分析方法介绍,从分析输入输出信号,到频域拟合分析,再
到进行参数优化调整,这一系列的步骤可以帮助我们更好的理解系统的物理机理,实现系
统的最佳设计性能。