机械工程测试技术3篇
- 格式:docx
- 大小:37.99 KB
- 文档页数:3
第三章:常用传感器技术 3-1 传感器主要包括哪几部分?试举例说明。
传感器一般由敏感元件、转换元件、基本转换电路三部分组成。
如图所示的气体压力传感器。
其内部的膜盒就是敏感元件,它的外部与大气压力相通,内部感受被测压力p ,当p 发生变化时,引起膜盒上半部分移动,可变线圈是传感器的转换元件,它把输入的位移量转换成电感的变化。
基本电路则是完成上述电感变化量接入基本转换电路,便可转换成电量输出。
3-2 请举例说明结构型传感器与物性型传感器的区别。
答:结构型传感器主要是通过传感器结构参量的变化实现信号变换的。
例如,电容式传感器依靠极板间距离变化引起电容量的变化;电感式传感器依靠衔铁位移引起自感或互感的变化。
物性型传感器则是利用敏感元件材料本身物理性质的变化来实现信号变换。
例如,水银温度计是利用水银的热胀冷缩性质;压电式传感器是利用石英晶体的压电效应等。
3-3 金属电阻应变片与半导体应变片在工作原理上有何区别?答:(1)金属电阻应变片是基于金属导体的“电阻应变效应”, 即电阻材料在外力作用下发生机械变形时,其电阻值发生变化的现象,其电阻的相对变化为()12dR Rμε=+; (2)半导体应变片是基于半导体材料的“压阻效应”,即电阻材料受到载荷作用而产生应力时,其电阻率发生变化的现象,其电阻的相对变化为dR d E R ρλερ== 。
3-4 有一电阻应变片(见图3-105),其灵敏度S 0=2,R =120Ω,设工作时其应变为1000με,问ΔR =?设将此应变片接成图中所示的电路,试求:1)无应变时电流指示值;2)有应变时电流指示值;3)试分析这个变量能否从表中读出?解:根据应变效应表达式?R /R =S g ?得?R =S g ? R =2?1000?10-6?120=?1)I 1=R =120=0.0125A=2)I 2=(R +?R )=(120+?0.012475A=3)电流变化量太小,很难从电流表中读出。
机械工程测试技术教案第一章绪论一、教学目的及要求使学生掌握测试系统的基本概念。
学生应了解测试系统的功能结构,静、动态测试的概念等。
二、主要内容测试技术的在机械工程中的意义;测试系统的组成;课程性质;基本内容及学习方法四、教学重点:静态测试与动态测试的概念。
测试系统的组成。
五、教学难点:动态测试概念的建立六、教学过程:(见讲义)八、思考题:根据日常观察,是建立一套结构应力测试系统,要求画出框图即可。
九、作业:静态测试与动态测试系统的构成有何不同十、教学参考书:黄长艺,严普强. 机械工程测试技术基础. 机械工业出版社. 1994年11第二章信号分析一、教学目的及要求使学生掌握确定性信号分析的基本理论和方法;二、主要内容信号的分类;信号的时域和频域描述;周期信号与离散频谱;瞬变非周期信号与连续频谱;脉冲信号及其频谱;正弦函数和余弦函数的频谱四、教学重点:周期信号的时域定义、傅立叶级数表达及其离散频谱λ瞬变非周期信号的傅立叶变换及其连续频谱λ傅里叶变换的主要性质λ五、教学难点:信号时域分析与频域表达的概念、方法及其相互关系六、教学过程:(见讲义)八、思考题与作业:1、什么是信号的频域描述2、周期信号的时域定义及其判断方法3、确定任意一个谐波的三个要素是什么4、周期信号频谱特点是什么5、周期信号双边频谱与单边频谱间的幅值、相位关系6、傅立叶变换的六个主要性质7、单位脉冲函数的描述(函数值、强度);t0),及A,t0的意义-(tδ8、一般脉冲函数的表示方法,即A9、叙述脉冲函数的采样性质、卷积性质、频谱10、写出正弦函数、余弦函数的傅立叶变换习题2-1~2-4第三章测量系统分析一、教学目的及要求使学生们掌握测试系统的静、动态特性分析基本概念、表达方法。
二、主要内容测试系统的误差表达方式,静态特性曲线与静态特性参数λ测试系统的动态特性:线性系统的时域描述、频域描述λ理想频向函数—测试系统实现不失真测试的条件λ四、教学重点:线性系统的时域描述、频域描述,二阶系统的频率特性五、教学难点:线性系统的频率保持特性及其应用;系统时域、频域响应的计算六、教学过程:(见讲义)八、思考题与作业:1、绝对误差、相对误差的表达式2、灵敏度、非线性度、回程误差的定义3、叙述线性系统的5个性质4、什么是系统的脉冲响应函数、频率响应函数,两者的关系是什么5、测试系统在时域和频域分别用什么描述6、输入信号、输出信号、测试装置三者关系的时域描述和频域描述7、测试装置实现不失真测试的时域条件和频域条件8、写出线性定常系统微分方程的一般形式(式3.8)9、根据已知二阶系统的微分方程,推导频率响应函数以及系统的固有频率及阻尼比第四章信号的获取一、教学目的及要求使学生们掌握常用传感器的转换原理、评价以及选用原则。
机械工程毕业论文范文(通用3篇)1目前机械专业教学中存在的问题教学内容创新性不足,理论与实践相脱节机械专业的课程包括机械制造、机械绘图、机械设计、电工与电子、模具制造、数控车床、PLC编程等,这些课程都需要在实践中学习和掌握,如果单纯采用传统的课堂教学方式,学生只能盲目地学习书本中的理论,而不能融入先进的案例,就会使学生的创新与实践应用能力逐步下降。
而目前很多机械专业教师依然采用这种以教为主的教学模式,未能够结合项目教学法、实践教学方法、实验教学法等多种教学方式,通过增加教学内容的创新性来培养学生的实践创新能力,出现严重的理论教学与学生实践操作间的脱节情况,导致学生学习兴趣下降,教学效果不理想。
教学方法落后,缺乏实践性目前很多高校依然采用传统的教学模式,单纯注重理论知识的传授,而忽视了学生实践操作能力的培养,造成学生在学习过程中盲目追求理论分数高低,最终不能用其所学理论去指导实践的情况,更无从谈及实践中的创新能力培养。
因此,作为一项以培养学生实践操作能力为主的课程,应当加大课程教学中的实践环节比重,改变传统以课堂理论知识传授为主的教学方式,发展创新教育,为学生在实践中培养创新能力提供有力条件。
“工学结合”教学策略与模式有待进一步完善目前,部分高校依然墨守成规,忽视教学在校园教育发展中的重要作用。
尤其是在人才培养的过程中,未能够与企业及社会发展需求相适应,对机械专业“工学结合”的教学模式与实习实训的重视程度较低,让学生不能够在实践实习中进一步巩固所学理论知识,从而激发起创新灵感。
2机械专业创新教育相关意见培养适合当今企业及社会需要的机械专业应用型、创新型人才,一方面要求高校教育能够充分重视学生专业知识的掌握情况,另一方面也要求高校教育能够与人才实际需求紧密结合,培养一批具有扎实基础知识与较强实践创新能力的机械专业人才。
针对于此,笔者对机械专业教育创新提出几点意见。
创新实践教学体系机械专业以培养技能型人才为主,实践是其人才培养过程的关键环节,要求高校教育能够加强学生理论知识学习与实践应用的结合。
第二章 信号描述及其分析【2-1】 描述周期信号的频率结构可采用什么数学工具? 如何进行描述? 周期信号是否可以进行傅里叶变换? 为什么?参考答案:一般采用傅里叶级数展开式。
根据具体情况可选择采用傅里叶级数三角函数展开式和傅里叶级数复指数函数展开式两种形式。
不考虑周期信号的奇偶性,周期信号通过傅里叶级数三角函数展开可表示为:001()sin()(1,2,3,)n n n x t a A n n ωϕ∞==++=∑2021()T T a x t dt T-=⎰n A =(2022()cos T n T a x t n tdt T ω-=⎰ 202()sin T n T b x t n tdt Tω-=⎰ )tan n n n b a ϕ=式中,T 为信号周期, 0ω为信号角频率, 02T ωπ=。
n A ω-图为信号的幅频图, n ϕω-图为信号的相频图。
周期信号通过傅里叶级数复指数函数展开式可表示为:0()(0,1,2,)jn tnn x t C e n ω∞=-∞==±±∑0221()T jn t n T C x t e dt Tω--=⎰n C 是一个复数,可表示为:n j n nR nI n C C jC C e ϕ=+=n C = arctan n nI nR C ϕ=n C ω-图为信号的幅频图, n ϕω-图称为信号的相频图。
▲ 不可直接进行傅里叶变换,因为周期信号不具备绝对可积条件。
但可间接进行傅里叶变换。
参见书中第25页“正弦和余弦信号的频谱”。
【2-2】 求指数函数()(0,0)at x t Ae a t -=>≥的频谱。
参考答案:由非周期信号的傅里叶变换,()()j t X x t e dt ωω∞--∞=⎰,得22()()j tA a j X x t edt A a j a ωωωωω∞--===++⎰由此得到,幅频谱为:()X ω=相频谱为: ()arctan()a ϕωω=-【2-3】 求周期三角波(图2-5a )的傅里叶级数(复指数函数形式)参考答案:周期三角波为: (2)20()(2)02A A T tT t x t A A T tt T +-≤<⎧=⎨-≤≤⎩则0221()T jn t n T C x t e dt T ω--=⎰积分得 02222204(1cos )(1cos )2n A T AC n n n T n ωπωπ=-=- 即 22()1,3,5,00,2,4,n A n n C n π⎧=±±±=⎨=±±⎩又因为周期三角波为偶函数,则0n b =,所以arctan 0n nI nR C C ϕ==所以,周期三角波傅里叶级数复指数形式展开式为:00(21)222()(0,1,2)(21)jn tj k tnn n A x t C ee k k ωωπ∞∞+=-∞=-∞===±±+∑∑【2-4】 求图2-15所示有限长余弦信号()x t 的频谱。
机械工程测试技术
第一篇:机械工程测试技术
机械工程测试技术是机械工程领域中的一个重要领域,
它主要涉及到机械制造及其发展的各个方面。
在机械制造领域,质量、效率和成本等方面是一个永恒的话题,现代工程技术也致力于解决这些问题。
测试技术在机械工程中起到了不可或缺的作用,以确保产品质量、制造效率和成本控制,进而提高整个机械工程行业的水平和声誉。
机械工程测试技术包括很多方面,其中最基本的就是精
确的测量和检验。
在机械制造领域中,各种零部件的尺寸、形状和其他特性必须满足特定的要求。
这些要求通常来自于图纸和规范要求。
因此,需要使用各种测量工具,如千分尺、量具和坐标测量机等,来进行精确测量和检验。
此外,机械工程测试技术还包括机械性能测试。
这些测
试通常涉及到机械强度、刚度、耐久性和疲劳等方面。
机械性能测试可以使用各种测试工具,如材料试验机、扭转试验机和振动试验机等来进行测试。
机械工程测试技术还包括模拟测试,如有限元分析等。
在机械设计的早期阶段,通过模拟测试可以预测机械部件或系统的性能和响应。
这样可以在机械制造之前评估设计的可行性,避免制造出低品质的产品。
总的来说,机械工程测试技术的发展和应用,对于提高
机械制造行业的技术水平、产品质量和市场竞争力具有重要作用。
它不仅可以确保产品的质量,还可以为生产过程中的优化
提供有力支持,同时也为机械工程师打开了更加广阔、具有挑战性的道路。
第二篇:机械工程测试技术的应用
机械工程测试技术在生产过程中的应用非常广泛。
它可
以确保生产流程的质量,并大大提高生产效率。
同时,在机械设备、零部件的研发、制造和维护方面,测试技术也发挥了关键作用。
在机械制造过程中,各种测量和检验技术对于生产过程
的质量控制至关重要。
通过使用各种工具和仪器,我们可以及时检测和发现生产中出现的问题,以确保产品达到最高的标准。
促进了流程的优化和改进,提高了工艺水平。
在研发和制造机械零部件方面,测试技术也是极为重要的。
我们需要通过一系列的测试和试验来确认设计的可行性,并确定材料的性能,以保证生产出满足需求的产品。
同时,通过对材料、结构、形状进行有限元分析等模拟测试,可以减少制造成本和时间。
机械设备的维护和故障排除也离不开测试技术。
通过对
设备的定期检查和测试,可以发现尚未发生故障的隐患,并及时排除设备的故障,保障设备长时间稳定运行,同时也提高设备的使用寿命。
机械工程测试技术还应用于可靠性测试。
通过对机械零
部件进行可靠性测试,我们可以确定机械零部件在使用过程中的可靠性,预测故障和失效的概率,并提高机械设备的可靠性和安全性。
综上所述,机械工程测试技术在机械制造及其发展的各
个方面都扮演着至关重要的角色。
它不仅可以提高产品的安全
性、可靠性和耐久性,还可以大大减少制造成本和时间,提高生产效率,为机械工程行业的发展做出重要贡献。
第三篇:机械工程测试技术的未来
随着科技的不断发展和机械工程的不断进步,机械工程
测试技术也将继续不断地发展和创新。
预计未来,机械工程测试技术将朝以下几个方向发展:
①快速测试技术:随着电子计算机技术和自动化技术的
不断发展,快速测试技术将会越来越成熟,测量困难问题将会逐步得到解决。
这对于机械制造工程师和技术人员可以更加高效地进行检测和测试,提高生产效率和质量水平。
②智能化测试技术:随着人工智能、物联网等技术的发展,智能化测试技术将会逐渐成熟。
可以向人工智能领域迈进,开发更加人性化、智能化的测试软件和工具。
同时,人工智能还可以应用于各种机器设备的故障检测和预测,从而提高机械设备的可靠性和使用寿命。
③绿色环保测试技术:随着全球环境污染问题的日益严重,绿色环保测试技术将会变得越发重要。
机械制造工程师和技术人员需要使用环保材料,并注意节能减排,努力减少对环境的影响。
总之,未来机械工程测试技术将会朝着更加智能、高效、环保等方向发展,以满足经济的发展、环境保护和人们的生活需要。
这需要从各个方面加强研究和创新,提高整个机械工程行业的水平和竞争力。