2007-2015昆明数学中考压轴题
- 格式:doc
- 大小:249.00 KB
- 文档页数:5
2007年全国各地中考试题压轴题精选全解之五82.(四川省德阳市)25.如图,已知与x 轴交于点(10)A ,和(50)B ,的抛物线1l 的顶点为(34)C ,,抛物线2l 与1l 关于x 轴对称,顶点为C '.(1)求抛物线2l 的函数关系式;(2)已知原点O ,定点(04)D ,,2l 上的点P 与1l 上的点P '始终关于x 轴对称,则当点P 运4OD = ,22654m m ∴-+=,即2652m m -+=±.当2652m m -+=时,解得3m = 当2652m m -+=-时,解得3m =.∴当点P 运动到(3或(3或(32)-或(32)-时,P P OD '∥,以点D O P P ',,,为顶点的四边形是平行四边形.(3)满足条件的点M 不存在.理由如下:若存在满足条件的点M 在2l 上,则90AMB ∠= ,30BAM ∠= (或30ABM ∠= ), 114222BM AB ∴==⨯=. 过点M 作ME AB ⊥于点E ,可得30BME BAM ∠=∠=.1121EB BM ∴==⨯=,EM =,4OE =.点,经过A 、B 、C 三点的圆的圆心M (1,m )恰好在此抛物线的对称轴上,⊙M 的半径为5.设⊙M 与y 轴交于D ,抛物线的顶点为E . (1)求m 的值及抛物线的解析式;(2)设∠DBC = α,∠CBE = β,求sin (α-β)的值;(3)探究坐标轴上是否存在点P ,使得以P 、A 、C 为顶点的三角形与△BCE 相似?若存在,请指出点P 的位置,并直接写出点P 的坐标;若不存在,请说明理由.x解:(1)由题意可知C (0,-3),12=-ab, ∴ 抛物线的解析式为y = ax 2-2ax -3(a >0), 过M 作MN ⊥y 轴于N ,连结CM ,则MN = 1,5=CM ,∴ CN = 2,于是m =-1.、C84.(南充市)25.如图,点M (4,0),以点M 为圆心、2为半径的圆与x 轴交于点A 、B .已知抛物线216y x bx c =++过点A 和B ,与y 轴交于点C . (1)求点C 的坐标,并画出抛物线的大致图象. (2)点Q (8,m )在抛物线216y x bx c =++上,点P 为此抛物线对称轴上一个动点,求PQ +PB 的最小值.3∵Q (8,m )抛物线上,∴m =2.过点Q 作QK ⊥x 轴于点K ,则K (8,0),QK =2,AK =6, ∴AQ =又∵B (6,0)与A (2,0)关于对称轴l 对称, ∴PQ +PB 的最小值=AQ =.行于x 轴,B C D ,,三点在抛物线2425y x =上,DC 交y 轴于N 点,一条直线OE 与AB 交于E 点,与DC 交于F 点,如果E 点的横坐标为a ,四边形ADFE 的面积为1352.(1)求出B D ,两点的坐标; (2)求a 的值;(3)作ADN △的内切圆P ,切点分别为M K H ,,,求tan PFM ∠的值.设⊙P 的半径为r ,则12521)13125(21⨯⨯=++=∆r S AND ,r =2 在正方形PMNK 中,PM =MN =2∴413452=+=+=NF MN MF 在Rt △PMF 中,tan ∠PMF =1384132==MF PM图(13)A m 又∵ 抛物线P 过(2,0)、(-2,-4),则由抛物线的对称性可知, 点A 、B 、C 的坐标分别为 A(2,0),B(-4,0),C(0,-4) . (2)由题意,AD DGAO OC=,而AO=2,OC=4,AD=2-m ,故DG=4-2m , ···· 又BE EFBO OC=,EF=DG ,得BE=4-2m ,∴ DE=3m , ∴SDEFG=DG·DE=(4-2m) 3m=12m-6m 2(0<m <2) .注:也可通过解Rt△BOC 及Rt △AOC ,或依据△BOC 是等腰直角三角形建立关系求解. (3)∵SDEFG=12m-6m 2(0<m <2),∴m=1时,矩形的面积最大,且最大面积是6 . 当矩形面积最大时,其顶点为D(1,0),G(1,-2),F(-2,-2),E(-2,0), 设直线DF 的解析式为y=kx+b ,易知,k=23,b=-23,∴2233y x =-, 又可求得抛物线P 的解析式为:2142y x x =+-,61b 三角形MND (D 为抛物线的顶点)是等腰直角三角形?如能,请求出这组值;如不能,请说明理由.解:(1)证明:∵抛物线y =x 2-2ax +b 2经过点(0)M a c +,∴22()2()0a c a a c b +-++= ∴22222220a ac c a ac b ++--+=∴222b c a +=由勾股定理的逆定理得: ABC △为直角三角形(2)解:①如图所示; ∵3MNP NOP S S =△△∴3MN ON = 即4MO ON =∴2c c = 又c >0,∴c =1由于c =53a b =54a ∴a =35b =34∴当a =35,b =34,c =1时,MNP △为等腰直角三角形。
2007年云南省昆明市中考数学试卷一、选择题(共9小题,每小题3分,满分27分)1.(3分)2的倒数是()A.B.﹣C.2D.﹣22.(3分)我省大力开展节能增产活动,开发利用煤矿安全“杀手”煤层瓦斯发电.经测算,我省深层煤层瓦斯资源量可发电1400亿千瓦时以上,1400亿千瓦时用科学记数法表示为()A.1.4×1012千瓦时B.1.4×1011千瓦时C.1.4×1010千瓦时D.14×1010千瓦时3.(3分)如图,△ABC中,点D、E分别在AB、BC边上,DE∥AC,∠B=50°,∠C=70°,那么∠1的度数是()A.70°B.60°C.50°D.40°4.(3分)下列运算中,正确的是()A.a3•a2=a6B.(﹣3a)2=6a2C.D.(a﹣3b)(a+3b)=a2﹣9b2 5.(3分)下图是由几个小正方体组成的一个几何体,这个几何体的左视图是()A.B.C.D.6.(3分)点A(2,m)在反比例函数的图象上,则m的值为()A.24B.﹣24C.6D.﹣67.(3分)初三某班10名男同学“引体向上”的测试成绩(单位:次数)分别是:9,14,10,15,7,9,16,10,11,9,这组数据的众数,中位数,平均数依次是()A.9,10,11B.10,11,9C.9,11,10D.10,9,11 8.(3分)如果只用一种正多边形进行镶嵌,那么在下面的正多边形中,不能镶嵌成一个平面的是()A.正三角形B.正方形C.正五边形D.正六边形9.(3分)如图,在钝角三角形ABC中,AB=6cm,AC=12cm,动点D从A点出发到B点止,动点E从C点出发到A点止.点D运动的速度为1cm/秒,点E 运动的速度为2cm/秒.如果两点同时运动,那么当以点A、D、E为顶点的三角形与△ABC相似时,运动的时间是()A.3秒或4.8秒B.3秒C.4.5秒D.4.5秒或4.8秒二、填空题(共6小题,每小题3分,满分18分)10.(3分)=.11.(3分)晚上,身高1.6米的小华站在D处(如图),测得他的影长DE=1.5米,BD=4.5米,那么灯到地面的距离AB=米.12.(3分)化简:=.13.(3分)如图,AB是⊙O的弦,OC是⊙O的半径,OC⊥AB于点D,AB=16cm,OD=6cm,那么⊙O的半径是cm.14.(3分)在直角坐标系中,已知点P(﹣3,2),点Q是点P关于x轴的对称点,将点Q向右平移4个单位得到点R,则点R的坐标是.15.(3分)如图,把半径为4cm的半圆围成一个圆锥的侧面,使半圆圆心为圆锥的顶点,那么这个圆锥的高是cm.(结果保留根号)三、解答题(共10小题,满分75分)16.(5分)计算:.17.(5分)解不等式组:<<18.(8分)我省某地区结合本地自然条件,大力发展茶叶、蔗糖、水果、药材等产业,取得良好的经济效益,经过多年发展,茶叶、蔗糖、水果、药材成了该地区四大产业.图1,图2是根据该地区2006年各项产业统计资料绘制的两幅不完整统计图,请你根据统计图提供的信息解答:(1)该地区2006年各项产业总产值共万元;(2)图1中蔗糖所占的百分数是,2006年该地区蔗糖业的产值有万元;(3)将图2中“蔗糖”部分的图形补充完整.19.(8分)已知:如图,四边形ABCD中,AC与BD相交于点O,OB=OD,∠BAO=∠DCO.(1)求证:四边形ABCD是平行四边形;(2)把线段AC绕O点顺时针旋转,使AC⊥BD,这时四边形ABCD是什么四边形?简要说明理由;(3)在(2)中,当AC⊥BD后,又分别延长OA、OC到点A1,C1,使OA1=OC1=OD,这时四边形A1BC1D是什么四边形?简要说明理由.20.(7分)如图,AB和CD是同一地面上的两座相距36米的楼房,在楼AB的楼顶A点测得楼CD的楼顶C的仰角为45°,楼底D的俯角为30度.求楼CD 的高(结果保留根号).21.(8分)某工厂有甲、乙两个相等的长方体的水池,甲池的水均匀地流入乙池;如图,是甲、乙两个水池水的深度y(米)与水流时间x(小时)的函数关系的图象.(1)分别求两个水池水的深度y(米)与水流时间x(小时)的函数关系式,并指出自变量x的取值范围;(2)水流动几小时,两个水池的水的深度相同?22.(8分)小昆和小明相约玩一种“造数”游戏.游戏规则如下:同时抛掷一枚均匀的硬币和一枚均匀的骰子,硬币的正、反面分别表示“新数”的性质符号(约定硬币正面向上记为“+”号,反面向上记为“﹣”号),与骰子投出面朝上的数字组合成一个“新数”;如抛掷结果为“硬币反面向上,骰子面朝上的数字是4”,记为“﹣4”.(1)利用树状图或列表的方法(只选其中一种)表示出游戏可能出现的所有结果;(2)写出组合成的所有“新数”;(3)若约定投掷一次的结果所组合成的“新数”是3的倍数,则小昆获胜;若是4或5的倍数,则小明获胜.你觉得他们的约定公平吗?为什么?23.(7分)节日期间,文具店的一种笔记本8折优惠出售.某同学发现,同样花12元钱购买这种笔记本,节日期间正好可比节日前多买一本.这种笔记本节日期间每本的售价是多少元?24.(7分)已知:如图,AB是⊙O的直径,AB=6,延长AB到点C,使BC=AB,D是⊙O上一点,DC=.求证:(1)△CDB∽△CAD;(2)CD是⊙O的切线.25.(12分)如图,在直角坐标系中,点A的坐标为(﹣2,0),连接OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.(注意:本题中的结果均保留根号).2007年云南省昆明市中考数学试卷参考答案与试题解析一、选择题(共9小题,每小题3分,满分27分)1.(3分)2的倒数是()A.B.﹣C.2D.﹣2【解答】解:2的倒数是.故选:A.2.(3分)我省大力开展节能增产活动,开发利用煤矿安全“杀手”煤层瓦斯发电.经测算,我省深层煤层瓦斯资源量可发电1400亿千瓦时以上,1400亿千瓦时用科学记数法表示为()A.1.4×1012千瓦时B.1.4×1011千瓦时C.1.4×1010千瓦时D.14×1010千瓦时【解答】解:1 400亿千瓦时用科学记数法表示为1.4×1011千瓦时.故选:B.3.(3分)如图,△ABC中,点D、E分别在AB、BC边上,DE∥AC,∠B=50°,∠C=70°,那么∠1的度数是()A.70°B.60°C.50°D.40°【解答】解:∵△ABC中,∠B=50°,∠C=70°,∴∠A=180°﹣∠B﹣∠C=180°﹣50°﹣70°=60°.∵DE∥AC,∴∠1=∠A=60°.故选:B.4.(3分)下列运算中,正确的是()A.a3•a2=a6B.(﹣3a)2=6a2C.D.(a﹣3b)(a+3b)=a2﹣9b2【解答】解:A、应为a3•a2=a5,故本选项错误;B、应为(﹣3a)2=9a2,故本选项错误;C、应为a+a=(+)a,故本选项错误;D、(a﹣3b)(a+3b)=a2﹣9b2,正确.故选:D.5.(3分)下图是由几个小正方体组成的一个几何体,这个几何体的左视图是()A.B.C.D.【解答】解:从左边看去,左边是两个正方形,中间和右边都是一个正方形,故选C.6.(3分)点A(2,m)在反比例函数的图象上,则m的值为()A.24B.﹣24C.6D.﹣6【解答】解:∵A(2,m)在反比例函数的图象上,∴﹣12=2m,m=﹣6.故选:D.7.(3分)初三某班10名男同学“引体向上”的测试成绩(单位:次数)分别是:9,14,10,15,7,9,16,10,11,9,这组数据的众数,中位数,平均数依次是()A.9,10,11B.10,11,9C.9,11,10D.10,9,11【解答】解:从小到大排列此数据为:7,9,9,9,10,10,11,14,15,16.数据9出现了三次最多为众数;处在第5位、第6位的均为10,所以10为中位数;平均数为:(7+9+9+9+10+10+11+14+15+16)÷10=11.故选:A.8.(3分)如果只用一种正多边形进行镶嵌,那么在下面的正多边形中,不能镶嵌成一个平面的是()A.正三角形B.正方形C.正五边形D.正六边形【解答】解:正三角形的每个内角是60°,能整除360°,能密铺;正方形的每个内角是90°,4个能密铺;正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能密铺;正六边形的每个内角是120°,3个能密铺.故选:C.9.(3分)如图,在钝角三角形ABC中,AB=6cm,AC=12cm,动点D从A点出发到B点止,动点E从C点出发到A点止.点D运动的速度为1cm/秒,点E 运动的速度为2cm/秒.如果两点同时运动,那么当以点A、D、E为顶点的三角形与△ABC相似时,运动的时间是()A.3秒或4.8秒B.3秒C.4.5秒D.4.5秒或4.8秒【解答】解:根据题意得:设当以点A、D、E为顶点的三角形与△ABC相似时,运动的时间是x秒,①若△ADE∽△ABC,则,∴,解得:x=3;②若△ADE∽△ACB,则,∴,解得:x=4.8.∴当以点A、D、E为顶点的三角形与△ABC相似时,运动的时间是3秒或4.8秒.故选:A.二、填空题(共6小题,每小题3分,满分18分)10.(3分)=2.【解答】解:∵22=4,∴=2.故答案为:211.(3分)晚上,身高1.6米的小华站在D处(如图),测得他的影长DE=1.5米,BD=4.5米,那么灯到地面的距离AB= 6.4米.【解答】解:根据题意画出图形,列方程.设灯到地面的高度为h,根据相似三角形的性质可得到=,即=,解得h=6.4米.12.(3分)化简:=.【解答】解:==.13.(3分)如图,AB是⊙O的弦,OC是⊙O的半径,OC⊥AB于点D,AB=16cm,OD=6cm,那么⊙O的半径是10cm.【解答】解:∵AB是⊙O的弦,OC是⊙O的半径,OC⊥AB于点D,AB=16cm,OD=6cm,∴AD=8cm,在Rt△AOD中,AD=8cm,OD=6cm,∴OA===10cm.14.(3分)在直角坐标系中,已知点P(﹣3,2),点Q是点P关于x轴的对称点,将点Q向右平移4个单位得到点R,则点R的坐标是(1,﹣2).【解答】解:P(﹣3,2)关于x轴对称点Q的坐标是(﹣3,﹣2),将Q向右平移4个单位得到点R的坐标为(1,﹣2).故答案是(1,﹣2).15.(3分)如图,把半径为4cm的半圆围成一个圆锥的侧面,使半圆圆心为圆锥的顶点,那么这个圆锥的高是cm.(结果保留根号)【解答】解:半圆的弧长即圆锥的底面周长是4πcm,因而圆锥的底面半径是2cm,∴圆锥的高是cm.三、解答题(共10小题,满分75分)16.(5分)计算:.【解答】解:原式==2.17.(5分)解不等式组:<<【解答】解:由不等式<得:x<3,由不等式x﹣2(x﹣1)<4得:x>﹣2,∴原不等式组得解集为:﹣2<x<3.18.(8分)我省某地区结合本地自然条件,大力发展茶叶、蔗糖、水果、药材等产业,取得良好的经济效益,经过多年发展,茶叶、蔗糖、水果、药材成了该地区四大产业.图1,图2是根据该地区2006年各项产业统计资料绘制的两幅不完整统计图,请你根据统计图提供的信息解答:(1)该地区2006年各项产业总产值共5000万元;(2)图1中蔗糖所占的百分数是21%,2006年该地区蔗糖业的产值有1050万元;(3)将图2中“蔗糖”部分的图形补充完整.【解答】解:(1)该地区2006年各项产业总产值共1200÷24%=5000万元;(2)蔗糖所占的百分数是1﹣30%﹣24%﹣10.6%﹣14.46%=21%,2006年该地区蔗糖业的产值有5000×21%=1050万元.(3)图2中“蔗糖”部分的图形补充如图:19.(8分)已知:如图,四边形ABCD中,AC与BD相交于点O,OB=OD,∠BAO=∠DCO.(1)求证:四边形ABCD是平行四边形;(2)把线段AC绕O点顺时针旋转,使AC⊥BD,这时四边形ABCD是什么四边形?简要说明理由;(3)在(2)中,当AC⊥BD后,又分别延长OA、OC到点A1,C1,使OA1=OC1=OD,这时四边形A1BC1D是什么四边形?简要说明理由.【解答】(1)证明:∵AC与BD相交于点O,∴∠AOB=∠COD,(1分)在△AOB和△COD中,∴△AOB≌△COD,(2分)∴OA=OC,(3分)∵OA=OC,OB=OD,∴四边形ABCD为平行四边形(4分)(2)解:四边形ABCD是菱形.(5分)因为对角线互相垂直平分的四边形是菱形.(6分)(或对角线互相垂直的平行四边形是菱形)(3)解:四边形A1BC1D是正方形(7分)因为对角线互相垂直平分且相等的四边形是正方形.(8分)(或对角线相等的菱形是正方形)20.(7分)如图,AB和CD是同一地面上的两座相距36米的楼房,在楼AB的楼顶A点测得楼CD的楼顶C的仰角为45°,楼底D的俯角为30度.求楼CD 的高(结果保留根号).【解答】解:延长过点A的水平线交CD于点E则有AE⊥CD,四边形ABDE是矩形,AE=BD=36∵∠CAE=45°∴△AEC是等腰直角三角形∴CE=AE=36在Rt△AED中,tan∠EAD=∴ED=36×tan30°=∴CD=CE+ED=36+12答:楼CD的高是(36+12)米.21.(8分)某工厂有甲、乙两个相等的长方体的水池,甲池的水均匀地流入乙池;如图,是甲、乙两个水池水的深度y(米)与水流时间x(小时)的函数关系的图象.(1)分别求两个水池水的深度y(米)与水流时间x(小时)的函数关系式,并指出自变量x的取值范围;(2)水流动几小时,两个水池的水的深度相同?=k1x+b1,y乙=k2x+b2,由已知可得:,(1)设y【解答】解:甲解得:,;,∴所求函数关系式分别是:y甲=﹣x+4(0≤x≤6)y乙=x+2(0≤x≤6);(2)由﹣x+4=x+2得:x=2.∴当水流动2小时时,两个水池水得深度相同.22.(8分)小昆和小明相约玩一种“造数”游戏.游戏规则如下:同时抛掷一枚均匀的硬币和一枚均匀的骰子,硬币的正、反面分别表示“新数”的性质符号(约定硬币正面向上记为“+”号,反面向上记为“﹣”号),与骰子投出面朝上的数字组合成一个“新数”;如抛掷结果为“硬币反面向上,骰子面朝上的数字是4”,记为“﹣4”.(1)利用树状图或列表的方法(只选其中一种)表示出游戏可能出现的所有结果;(2)写出组合成的所有“新数”;(3)若约定投掷一次的结果所组合成的“新数”是3的倍数,则小昆获胜;若是4或5的倍数,则小明获胜.你觉得他们的约定公平吗?为什么?【解答】解:(1)列表如下:(2)组合成的“新数”为1,2,3,4,5,6,﹣1,﹣2,﹣3,﹣4,﹣5,﹣6(5分)(3)所有组合成的“新数”中,是3的倍数的数有:3,6,﹣3,﹣6,共4个∴P(3的倍数)=(6分)是4或5的倍数的数有:4,5,﹣4,﹣5,共4个∴P(4或5的倍数)=(7分)∵两个概率相等,∴他们的约定公平.(8分)23.(7分)节日期间,文具店的一种笔记本8折优惠出售.某同学发现,同样花12元钱购买这种笔记本,节日期间正好可比节日前多买一本.这种笔记本节日期间每本的售价是多少元?【解答】解:设这种笔记本节日前每本的售价是x元.根据题意得:.(3分)解得:x=3.经检验,x=3是原方程的解.(4分)∴0.8x=0.8×3=2.4(元).(5分)答:这种笔记本节日期间每本的售价是2.4元.24.(7分)已知:如图,AB是⊙O的直径,AB=6,延长AB到点C,使BC=AB,D是⊙O上一点,DC=(1)△CDB∽△CAD;(2)CD是⊙O的切线.【解答】证明:(1)∵AB=6,BC=AB,DC=,∴AC=12,BC=6.∴.∵∠C=∠C,∴△CDB∽△CAD.(2)(证法一):连接OD,则有OD=3,∵OC=9,DC=,∵DC2+OD2=(6)2+32=81=92∴DC2+OD2=OC2∴∠ODC=90°,∴CD⊥OD.又∵OD是半径,∴CD是⊙O的切线.(证法二):连接OD,则有OD=OA,∴∠A=∠ADO.∵△CDB∽△CAD,∴∠CDB=∠A.∴∠CDB=∠ADO.∵AB是⊙O的直径,∴∠ADB=90°.即∠ADO+∠ODB=90°.∴∠CDB+∠ODB=90°.即∠ODC=90°.∴CD⊥OD.∵OD是半径,∴CD是⊙O的切线.25.(12分)如图,在直角坐标系中,点A的坐标为(﹣2,0),连接OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.(注意:本题中的结果均保留根号).【解答】解:(1)过点B作BD⊥x轴于点D,由已知可得:OB=OA=2,∠BOD=60°,在Rt△OBD中,∠ODB=90°,∠OBD=30°∴OD=1,DB=∴点B的坐标是(1,).(2)设所求抛物线的解析式为y=ax2+bx+c(a≠0),由已知可得:,解得:a=,b=,c=0,∴所求抛物线解析式为y=x2+x.(3)存在,由y=x2+x配方后得:y=(x+1)2﹣∴抛物线的对称轴为x=﹣1(也可用顶点坐标公式求出)∵点C在对称轴x=﹣1上,△BOC的周长=OB+BC+CO;∵OB=2,要使△BOC的周长最小,必须BC+CO最小,∵点O与点A关于直线x=﹣1对称,有CO=CA△BOC的周长=OB+BC+CO=OB+BC+CA∴当A、C、B三点共线,即点C为直线AB与抛物线对称轴的交点时,BC+CA最小,此时△BOC的周长最小.设直线AB的解析式为y=kx+b,则有:,解得:k=,b=,∴直线AB的解析式为y=x+,当x=﹣1时,y=,∴所求点C的坐标为(﹣1,),(4)设P(x,y)(﹣2<x<0,y<0),则y=x2+x①过点P作PQ⊥y轴于点Q,PG⊥x轴于点G,过点A作AF⊥PQ轴于点F,过点B 作BE⊥PQ轴于点E,则PQ=﹣x,PG=﹣y,=S梯形AFEB﹣S△AFP﹣S△BEP由题意可得:S△PAB=(AF+BE)•FE﹣AF•FP﹣PE•BE=(﹣y+﹣y)(1+2)﹣(﹣y)(x+2)﹣(1﹣x)(﹣y)=②将①代入②,=﹣x2﹣x+化简得:S△PAB=(x+)2+∴当时,△PAB得面积有最大值,最大面积为.此时∴点P的坐标为,.。
题目篇(2014年昆明) 23. (本小题9分)如图,在平面直角坐标系中,抛物线)0(32≠-+=a bx ax y 与x 轴交于点A (2-,0)、B (4,0)两点,与y 轴交于点C 。
(1)求抛物线的解析式;(2)点P 从A 点出发,在线段AB 上以每秒3个单位长度的速度向B 点运动,同时点Q 从B 点出发,在线段BC 上以每秒1个单位长度向C 点运动。
其中一个点到达终点时,另一个点也停止运动。
当△PBQ 存在时,求运动多少秒使△PBQ 的面积最大,最多面积是多少?(3)当△PBQ 的面积最大时,在BC 下方的抛物线上存在点K ,使2:5S PBQ CBK =△△:S ,求K 点坐标。
(2013年昆明)23.(本小题9点A 在x 轴的正半轴上,点C 在y 在BC 边上,且抛物线经过O 、A (1)求抛物线的解析式; (2)求点D 的坐标;(3)若点M 在抛物线上,点N 在x (2012年昆明)23.(本小题9分)如图,在平面直角坐标系中,直线123y x =-+交x 轴于点P ,交y 轴于点A ,抛物线212y x bx c =-++的图象过点(1,0)E -,并与直线相交于A 、B 两点.⑴ 求抛物线的解析式(关系式);⑵ 过点A 作AC AB ⊥交x 轴于点C ,求点C 的坐标;⑶除点C外,在坐标轴上是否存在点M,使得MAB∆是直角三角形?若存在,请求出点M的坐标,若不存在,请说明理由.(2011年昆明)25、如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)求AC、BC的长;(2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围;(3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC 是否相似,请说明理由;(4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小,若存在,求出最小周长,若不存在,请说明理由.(2010年昆明)25.(12分)在平面直角坐标系中,抛物线经过O(0,0)、A(4,0)、B(3,233-)三点.(1)求此抛物线的解析式;(2)以OA的中点M为圆心,OM长为半径作⊙M,在(1)中的抛物线上是否存在这样的点P,过点P作⊙M的切线l ,且l与x轴的夹角为30°,若存在,请求出此时点P的坐标;若不存在,请说明理由.(注意:本题中的结果可保留根号)(云南省2010年)24.(本小题12分)如图,在平面直角示系中,A、B两点的坐标分别是A(-1,0)、B(4,0),点C在y轴的负半轴上,且∠ACB=90°242FPED-4-2-1A BC4y xO(1)求点C 的坐标;(2)求经过A 、B 、C 三点的抛物线的解析式;(3)直线l ⊥x 轴,若直线l 由点A 开始沿x 轴正方向以每秒1个单位的速度匀速向右平移,设运动时间为t (0≤t≤5)秒,运动过程中直线l 在△ABC 中所扫(云南省2013年)23.(9分)如图,四边形ABCD 是等腰梯形,下底AB 在x 轴上,点D 在y 轴上,直线AC 与y 轴交于点E (0,1),点C 的坐标为(2,3).(1)求A 、D 两点的坐标;(2)求经过A 、D 、C 三点的抛物线的函数关系式; (3)在y 轴上是否在点P ,使△ACP 是等腰三角形?若存在,请求出满足条件的所有点P 的坐标;若不存在,请说明理由.(云南省2014年)23.(9分)在平面直角坐标系中,点O 为坐标原点,矩形ABCO 的顶点分别为A (3,0)、B (3,4)、C (0,4),点D 在y 轴上,且点D 的坐标为(0,-5),点P 是直线AC 上的一个动点。
年全国各地中考试题压轴题精选全解之四.(长沙市). 如图,ABCD 中,4AB =,3BC =,120BAD =∠,E 为BC 上一动点(不与B 重合),作EF AB ⊥于F ,FE ,DC 的延长线交于点G ,设BE x =,DEF △的面积为S . ()求证:BEF CEG △∽△;()求用x 表示S 的函数表达式,并写出x 的取值范围; ()当E 运动到何处时,S 有最大值,最大值为多少? 解: ()证明略;()由()DG 为DEF △中EF 边上的高, 在Rt BFE △中,60B =∠,sin 2EF BE B x ==, 在Rt CEG △中,3CE x =-,3(3)cos602xCG x -=-=, 112xDG DC CG -∴=+=,2132S EF DG x x ∴==-+, 其中03x <≤. ()30a =-<,对称轴112x =,∴当03x <≤时,S 随x 的增大而增大,∴当3x =,即E 与C 重合时,S 有最大值.S =最大.(湖南省郴州) .如图,矩形中,=,=,将矩形沿对角线平移,平移后的矩形为(、、、始终在同一条直线上),当点与重合时停止移动.平移中与交于点,与的延长线交于点,与交于点,与的延长线交于点.设表示矩形的面积,S '表示矩形的面积. () 与S '相等吗?请说明理由.()设=,写出和之间的函数关系式,并求出取何值时有最大值,最大值是多少? ()如图,连结,当为何值时,ABE ∆是等腰三角形.解: ()相等理由是:因为四边形、是矩形,所以,,EGH EGF ECN ECP CGQ CGM S S S S S S ∆∆∆∆∆∆===A CB D EF GxN MQ PHGFEDCBA图Q PNM HGF EDC BA 图所以,EGH ECP CGM EGF ECN CGQ S S S S S S ∆∆∆∆∆∆--=-- 即:S S '= ()=,=,=,设=,则=-,34(5),,55PC x MC x =-=所以12(5)25S PC MC x x ==-,即21212(05)255S x x x =-+≤≤ 配方得:2125()3252S x =--+,所以当52x =时, 有最大值()当==或==52或=时,ABE ∆是等腰三角形.(湖南省怀化市). 两个直角边为的全等的等腰直角三角形Rt AOB △和Rt CED △按图所示的位置放置A 与C 重合,O 与E 重合. ()求图中,A B D ,,三点的坐标.()Rt AOB △固定不动,Rt CED △沿x 轴以每秒个单位长的速度向右运动,当D 点运动到与B 点重合时停止,设运动x 秒后Rt CED △和Rt AOB △重叠部分面积为y ,求y 与x 之间的函数关系式.()当Rt CED △以()中的速度和方向运动,运动时间4x =秒时Rt CED △运动到如图所示的位置,求经过A G C ,,三点的抛物线的解析式.()现有一半径为,圆心P 在()中的抛物线上运动的动圆,试问P 在运动过程中是否存在P 与x 轴或y 轴相切的情况,若存在请求出P 的坐标,若不存在请说明理由.解:()(06)A ,,(60)B ,,(60)D -, ()当03x <≤时,位置如图A所示,作GH DB ⊥,垂足为H ,可知:2OE x =,EH x =, 62DO x =-,6DH x =-,22()GHD IOD IOHG y S S S ∴==-△△梯形22112(6)(62)22x x⎡⎤=---⎢⎥⎣⎦图图223263122x x x x ⎛⎫=-+=-+ ⎪⎝⎭当36x ≤≤时,位置如图B所示. 可知:122DB x =-2122DGBy S DB ⎛⎫∴== ⎪ ⎪⎝⎭△221(122)123622x x x ⎤=-=-+⎥⎣⎦(求梯形IOHG 的面积及DGB △的面积时只要所用方法适当,所得结论正确均可给分)y ∴与x 的函数关系式为:22312(03)1236(36)x x x y x x x ⎧-+<⎪=⎨-+⎪⎩≤≤≤ ()图中,作GH OE ⊥,垂足为H ,当4x =时,28OE x ==,1224DB x =-=122GH DH DB ∴===,1666242OH HB DB =-=-=-= ∴可知:(06)A ,,(42)G ,,(86)C ,∴经过A G C ,,三点的抛物线的解析式为:221(4)22644x y x x =-+=-+ ()当P 在运动过程中,存在P 与坐标轴相切的情况,设P 点坐标为00()x y ,当P 与y 轴相切时,有02x =,02x =±,由02x =-得:011y =,1(211)P ∴-,由02x =,得03y =,2(23)P ∴,当P 与x 轴相切时,有02y = 21(4)204y x =-+>02y ∴=,得:04x =,3(42)P ∴,综上所述,符合条件的圆心P 有三个,其坐标分别是:1(211)P -,,2(23)P ,,3(42)P ,.(湖南省永州市) 、在梯形A B C D 中,A B C D ∥,90ABC ∠=°,5AB =,10BC =,tan 2ADC ∠=.()求DC 的长;()E 为梯形内一点,F 为梯形外一点,若BF DE=,FBC CDE ∠=∠,试判断图BECF △的形状,并说明理由.()在()的条件下,若BE EC ⊥,:4:3BE EC =,求DE 的长.解()过A 点作AG DC ⊥,垂足为G90AB CD BCD ABC ∴∠=∠=∥,∴四边形ABCG 为矩形510CG AB AG BC ∴====,tan 2AGADG DG∠==510DG DC DG CG ∴=∴=+=,()DE BF FBC CDE BC DC =∠=∠=,, DEC BFC ∴△≌△EC CF ECD FCB ∴=∠=∠,9090BCE ECD ECF ∠+∠=∠=,ECF ∴△是等腰直角三角形 ()过F 点作FH BE ⊥BE EC CF CE CE CF =⊥,⊥,∴四边形ECFH 是正方形,6FH EC ∴==:4:390BE EC BEC =∠=, 222BC BE EC ∴=+68EC BE ∴==, 2BH BE EH ∴=-=DE BF ∴===.(湖南省韶关市) .如图,在平面直角坐标系中,四边形是矩形,,,直线32y x =-+与坐标轴交于、。
2015年全国各地中考数学试题压轴题解析汇编解答题(1)1. (2015年广东9分)⊙O是△ABC的外接圆,AB是直径,过»BC的中点P作⊙O的直径PG交弦BC于点D,连接AG,CP,P B.(1)如题图1;若D是线段OP的中点,求∠BAC的度数;(2)如题图2,在DG上取一点k,使DK=DP,连接CK,求证:四边形AGKC是平行四边形;(3)如题图3,取CP的中点E,连接ED并延长ED交AB于点H,连接PH,求证:PH⊥A B.【答案】解:(1)∵AB为⊙O直径,点P是»BC的中点,∴PG⊥BC,即∠ODB=90°.∵D为OP的中点,∴OD=1122=OP OB.∴cos∠BOD=12=ODOB. ∴∠BOD=60°.∵AB为⊙O直径,∴∠ACB=90°. ∴∠ACB=∠ODB.∴AC∥PG. ∴∠BAC=∠BOD=60°.(2)证明:由(1)知,CD=BD,∵∠BDP=∠CDK,DK=DP,∴△PDB≌△CDK(SAS).∴CK=BP,∠OPB=∠CKD.∵∠AOG=∠BOP,∴AG=BP. ∴AG=CK.∵OP=OB,∴∠OPB=∠OBP.又∵∠G=∠OBP,∴AG∥CK.∴四边形AGCK是平行四边形.(3)证明:∵CE=PE,CD=BD,∴DE∥PB,即DH∥PB.∵∠G=∠OPB,∴PB∥AG. ∴DH∥AG. ∴∠OAG=∠OHD.∵OA=OG,∴∠OAG=∠G. ∴∠ODH=∠OHD. ∴OD=OH.又∵∠ODB=∠HOP,OB=OP,∴△OBD≌△HOP(SAS).∴∠OHP=∠ODB=90°. ∴PH⊥A B.【考点】圆的综合题;圆周角定理;垂径定理;锐角三角函数定义;特殊角的三角函数值;平行的判定和性质;全等三角形的判定和性质;等腰三角形的性质;平行四边形的判定.【分析】(1)一方面,由锐角三角函数定义和特殊角的三角函数值求出∠BOD=60°;另一方面,由证明∠ACB=∠ODB=90°得到AC∥PG,根据平行线的同位角相等的性质得到∠BAC=∠BOD=60°.(2)一方面,证明通过证明全等并等腰三角形的性质得到AG=CK;另一方面,证明AG∥CK,从而根据一组对边平行且相等的四边形是平行四边形的判定而得证.(3)通过应用SAS证明△OBD≌△HOP而得到∠OHP=∠ODB=90°,即PH⊥A B.2.(2015年广东9分)如图,在同一平面上,两块斜边相等的直角三角板Rt△ABC与Rt△ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm. (1)填空:AD= ▲ (cm),DC= ▲ (cm);(2)点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB上沿A→D,C→B的方向运动,当N点运动到B点时,M,N两点同时停止运动,连结MN,求当M,N点运动了x秒时,点N 到AD的距离(用含x的式子表示);(3)在(2)的条件下,取DC中点P,连结MP,NP,设△PMN的面积为y(cm2),在整个运动过程中,△PMN 的面积y存在最大值,请求出这个最大值.(参考数据:sin75°=624+,sin15°=624-)【答案】解:(1)26;22.(2)如答图,过点N 作NE ⊥AD 于E ,作NF ⊥DC 延长线于F ,则NE =DF .∵∠ACD =60°,∠ACB =45°,∴∠NCF =75°,∠FNC =15°.∴sin 15°=FCNC. 又∵NC =x ,sin 15°=624-,∴624-=FC x . ∴NE =DF =62224-+x . ∴点N 到AD 的距离为62224-+x cm .(3)∵NC =x ,sin 75°=FNNC,且sin 75°=624+∴624+=FN x ,∵PD =CP =2,∴PF =6224-+x . ∴16262116262(26)(22)(26)2(2)()2442244+--+=+-+--⨯-+y x x x x x x ·即22673222384---=++y x x .∴当732273224266228----=-=--⨯x 时,y 有最大值为6673102304246+---.【考点】双动点问题;锐角三角函数定义;特殊角的三角函数值;由实际问题列函数关系式;二次函数的最值;转换思想的应用.【分析】(1)∵∠ABC =90°,AB =BC =4,∴42=AC .∵∠ADC =90°,∠CAD =30°, ∴31cos 4226,sin 422222=⋅∠=⋅==⋅∠=⋅= AD AC CAD DC AC CAD . (2)作辅助线“过点N 作NE ⊥AD 于E ,作NF ⊥DC 延长线于F ”构造直角三角形CNF ,求出FC 的长,即可由NE =DF =FC +CD 求解.(3)由∆∆=--梯形PNF NDP MDFN y S S S 列式,根据二次函数的最值原理求解.3. (2015年广东深圳9分)如图1,水平放置一个三角板和一个量角器,三角板的边AB 和量角器的直径DE 在一条直线上,,3,6cm OD cm BC AB ===开始的时候BD =1cm ,现在三角板以2cm/s 的速度向右移动. (1)当B 与O 重合的时候,求三角板运动的时间; (2)如图2,当AC 与半圆相切时,求AD ;(3)如图3,当AB 和DE 重合时,求证:2CF CG CE =⋅.【答案】解:(1)∵开始时,4BO cm =,三角板以2cm/s 的速度向右移动,∴当B 与O 重合的时候,三角板运动的时间为422/cms cm s=.(2)如答图1,设AC 与半圆相切于点H ,连接OH ,则OH AC ⊥.∵0,90AB BC ABC =∠= ,∴045A ∠=.又∵3OH OD cm ==,∴232AO OH ==.∴()323AD AO DO cm =-=-. (3)如答图2,连接EF ,∵OD OF =,∴ODF OFD ∠=∠.∵DF 是直径,∴090DFE ∠=. ∴090ODF DEF ∠+∠=. 又∵090DEC DEF CEF ∠=∠+∠=.∴ODF CEF ∠=∠. ∴CFG OFD ODF CEF ∠=∠=∠=∠. 又∵FCG ECF ∠=∠,∴CFG CEF ∆∆∽. ∴CF CE CG CF=,即2CF CG CE =⋅. 【考点】面动平移问题;等腰(直角)三角形的判定和性质;圆周角定理;相似三角形的判定和性质. 【分析】(1)直接根据“=路程时间速度”计算即可. (2)作辅助线“连接O 与切点H ”,构成等腰直角三角形求出AO 的长,从而由AO DO -求出AD的长.(3)作辅助线“连接EF ”,构成相似三角形CFG CEF ∆∆∽,得比例式即可得解.4.(2015年广东深圳9分)如图1,关于x 的二次函数2y x bx c =-++经过点(3,0)A - ,点(0,3)C ,点D 为二次函数的顶点,DE 为二次函数的对称轴,E 在x 轴上. (1)求抛物线的解析式;(2)DE 上是否存在点P 到AD 的距离与到x 轴的距离相等,若存在求出点P ,若不存在请说明理由; (3)如图2,DE 的左侧抛物线上是否存在点F ,使23FBC EBC S S ∆∆=,若存在求出点F 的坐标,若不存在请说明理由.【答案】解:(1)将点(3,0)A - , (0,3)C 代入2y x bx c =-++,得9303b c c --+=⎧⎨=⎩,解得23b c =-⎧⎨=⎩. ∴抛物线的解析式为223y x x =--+. (2)存在.∵()222314y x x x =--+=-++,∴2,4,25AE DE AD === .∴25sin 525AE ADE AD ∠===. 设()1,P p - ,当点P 在DAB ∠的角平分线时,如答图1,过点P 作PM AC ⊥于点M , 则()5sin 4,5PM PD ADE p PE p =⋅∠=-= , ∵PM PE =,∴()545p p -=,解得51p =-. ∴()1,51P -- . 当点P 在DAB ∠的外角平分线时,如答图2,过点P 作PM AC ⊥于点M , 则()5sin 4,5PM PD ADE p PE p =⋅∠=-=- , ∵PM PE =,∴()545p p -=-,解得51p =--. ∴()1,51P -- -.综上所述,DE 上存在点P 到AD 的距离与到x 轴的距离相等,点P 的坐标为()1,51--或()1,51-- -.(3)存在.假设存在点F ,使23FBC EBC S S ∆∆=, 设()2,23F f f f --+∵2,3BE OC == ,∴3EBC S ∆=. ∵23FBC EBC S S ∆∆=,∴92FBC S ∆=. 设CF 的解析式为y mx n =+,则2233fm n f f n ⎧+=--+⎨=⎩,解得23m f n =--⎧⎨=⎩.∴CF 的解析式为()23y f x =--+. 令0y =,得32x f =+,即CF 与x 轴的交点坐标为3,02Q f ⎛⎫ ⎪+⎝⎭. 若点F 在x 轴上方,如答图2,则BCF BCQ BFQ S S S ∆∆∆=-, ∴()2913131312322222f f f f ⎛⎫⎛⎫=⋅-⋅-⋅-⋅--+ ⎪ ⎪++⎝⎭⎝⎭, 即290f f --=,解得1372f ±=(舍去正值).当1372f -=时,233715232f f ---+=.∴13733715,22F ⎛⎫-- ⎪ ⎪⎝⎭. 若点F 在x 轴下方,如答图3,则BCF BCQ BFQ S S S ∆∆∆=+, ∴()2913131312322222f f f f ⎛⎫⎛⎫=⋅-⋅+⋅-⋅+- ⎪ ⎪++⎝⎭⎝⎭, 即290f f --=,解得1372f ±=(舍去正值). 当1372f -=时,23371523>02f f ---+=,不符合点F 在x 轴下方,舍去. 综上所述,DE 的左侧抛物线上存在点F ,使23FBC EBC S S ∆∆=,点F 的坐标为13733715,22⎛⎫-- ⎪ ⎪⎝⎭.【考点】二次函数综合题;待定系数法的应用;曲线上点的坐标与方程的关系;锐角三角函数定义;角平分线的性质;分类思想、转换思想和方程思想的应用.【分析】(1)将点(3,0)A - , (0,3)C 代入2y x bx c =-++即可求解.(2)根据角平分线上的点到角的两边距离相等的性质,分点P 在DAB ∠的角平分线和点P 在DAB ∠的外角平分线两种情况讨论即可.(3)由已知求出92FBC S ∆=,分点F 在x 轴上方和点F 在x 轴下方两种情况讨论,当点F 在x 轴上方时,BCF BCQ BFQ S S S ∆∆∆=-;当点F 在x 轴下方时,BCF BCQ BFQ S S S ∆∆∆=+,据此列方程求解.5. (2015年广东汕尾11分)在Rt △ABC 中,∠A =90°,AC = AB = 4,D ,E 分别是边AB ,AC 的中点.若等腰Rt △ADE 绕点A 逆时针旋转,得到等腰Rt △AD 1E 1,设旋转角为α(0<α≤180°),记直线BD 1与CE 1的交点为P .(1)如图1,当α=90°时,线段BD 1的长等于 ▲ ,线段CE 1的长等于 ▲ ;(直接填写结果) (2)如图2,当α=135°时,求证:BD 1 = CE 1 ,且BD 1⊥CE 1 ; (3)求点P 到AB 所在直线的距离的最大值.(直接写出结果)【答案】解:(1)25,25.(2)证明:当α=135°时,由旋转可知∠D 1AB = E 1AC = 135°.又∵AB =AC ,AD 1=AE 1,∴△D 1AB ≌△△E 1AC (SAS ). ∴BD 1=CE 1 且 ∠D 1BA = ∠E 1CA .设直线BD 1与AC 交于点F ,有∠BF A =∠CFP . ∴∠CPF =∠F AB =90°,∴BD 1⊥CE 1. (3)13+.【考点】面动旋转问题;等腰直角三角形的性质;勾股定理;全等、相似三角形的判定和性质. 【分析】(1)如题图1,当α=90°时,线段BD 1的长等于22224225AB AE +=+=;线段CE 1的长等于222214225AC AE +=+=.(2)由SAS 证明△D 1AB ≌△△E 1AC 即可证明BD 1 = CE 1 ,且BD 1⊥CE 1 .(3)如答图2,当四边形AD 1PE 1为正方形时,点P 到AB 所在直线的距离距离最大,此时112223AD PD PB ===+,,∵1ABD PBH ∆∆∽,∴1AD ABPH PB=. ∴24223PH =+.∴13PH =+. ∴当四边形AD 1PE 1为正方形时,点P 到AB 所在直线的距离距离的最大值为13+.6.(2015年广东汕尾10分)如图,过原点的直线1y k x =和2y k x =与反比例函数1y x=的图象分别交于两点A ,C 和B ,D ,连结AB ,BC ,CD ,DA .(1)四边形ABCD 一定是 ▲ 四边形;(直接填写结果)(2)四边形ABCD 可能是矩形吗?若可能,试求此时1k 和2k 之间的关系式;若不可能,说明理由; (3)设()()()112221,,,,0P x y Q x y x x >> 是函数1y x=图象上的任意两点,12122,2y y a b x x +==+ ,试判断a ,b 的大小关系,并说明理由.【答案】解:(1)平行.(2)四边形ABCD 可能是矩形,此时121k k =,理由如下:当四边形ABCD 是矩形时,OA =OB .联立11y k x y x =⎧⎪⎨=⎪⎩,得111x k y k ⎧=±⎪⎨⎪=±⎩,∴111,A k k ⎛⎫ ⎪ ⎪⎝⎭ . 同理,221,B k k ⎛⎫⎪ ⎪⎝⎭. ∵22121211OA k OB k k k =+=+,,∴121211k k k k +=+,得()21121 10k k k k ⎛⎫--= ⎪⎝⎭. ∵210k k -≠, ∴12110k k -=. ∴121k k =. ∴四边形ABCD 可以是矩形,此时121k k =. (3)>a b .理由如下:∵()()()()2212121212121212121212124211122222x x x x x x y y a b x x x x x x x x x x x x x x +--⎛⎫+-=-=+-== ⎪++++⎝⎭. ∵x 2 > x 1 > 0,∴()212>0x x -,()12122>0x x x x +.∴()()2121212>02x x x x x x -+.∴>a b .【考点】反比例函数和一次函数综合题;平行四边形的判定;矩形的性质;代数式化简;作差法的应用. 【分析】(1)根据反比例函数的中心对称性,有,OA OC OB OD == ,所以,四边形ABCD 一定是平行四边形.(2)求出点A 、B 的坐标,根据矩形对角线互相平分且相等的性质得到OA =OB ,即22OA OB =,据此列式化简得证.(3)作差,化简,得出结论.7. (2015年广东广州14分)如图,四边形OMTN 中,OM =ON ,TM =TN ,我们把这种两组邻边分别相等的四边形叫做筝形.(1)试探究筝形对角线之间的位置关系,并证明你的结论;(2)在筝形ABCD 中,已知AB =AD =5,BC =CD ,BC >AB ,BD ,AC 为对角线,BD =8;①是否存在一个圆使得A ,B ,C ,D 四个点都在这个圆上?若存在,求出圆的半径;若不存在,请说明理由; ②过点B 作BF ⊥CD ,垂足为F ,BF 交AC 于点E ,连接DE . 当四边形ABED 为菱形时,求点F 到AB 的距离.【答案】解:(1)筝形的对角线互相垂直. 证明如下:如答图1,连接,MN OT ,在OMT ∆和ONT ∆中,∵OM ON TM TN OT OT =⎧⎪=⎨⎪=⎩,∴()OMT ONT SSS ∆∆≌.∴MOT NOT ∠=∠. 又∵OM =ON ,∴OT MN ⊥,即筝形的对角线互相垂直. (2)存在.由(1)知,AC BD ⊥,设,AC BD 相交于点M ,如答图2, ∵AB =AD =5, BD =8,∴4BM =.∴22534AM =-=. ∵A ,B ,C ,D 四点共圆,∴0180ABC ADC ∠+∠=. 又∵ABC ADC ∆∆≌,∴090ABC ADC ∠=∠=. ∴AC 即为所求圆的直径.∵090,ABC AMB BAC MAB ∠=∠=∠=∠ ,∴BAC MAB ∆∆∽.∴AB AM AC AB =,即535AC =,解得253AC =. ∴圆的半径为256.(3)∵四边形ABED 为菱形,∴5AB AD BE DE ====.∴03,4,,90AM ME BM MD BD AE BME ====⊥∠= .又∵0,90BF CD BFD ⊥∠= .∴090BME BFD ∠=∠=又∵MBE FBD ∠=∠,∴BME BFD ∆∆∽. ∴BE EM BD DF =,即538DF =,解得245DF =. 在Rt DEF ∆中,由勾股定理,得22E F D ED F=-, ∴22247555EF ⎛⎫=-= ⎪⎝⎭.∴325BF =. ∵//AB DE ,∴ABF DEF ∠=∠.如答图3,过点F 作FG AB ⊥于点G ,则FG 就是点F 到AB 的距离.∵090BGF EFD ∠=∠=,∴BGF EFD ∆∆∽.∴BF FG DE DF =,即3252455FG =,解得768125FG =. ∴点F 到AB 的距离为768125.【考点】新定义;全等三角形的判定和性质;等腰三角形的性质;勾股定理;圆内接四边形的性质;圆周角定理;相似三角形的判定和性质.【分析】(1)筝形的对角线互相垂直,利用SSS 证明OMT ONT ∆∆≌得到MOT NOT ∠=∠,从而根据等腰三角形三线合一的性质即可得出结论.(2)根据垂径定理和勾股定理求出AM 的长,证明BAC MAB ∆∆∽,由对应边成比例列式求解即可.(3)证明BME BFD ∆∆∽,求出245DF =,应用勾股定理求出75EF =,得到325BF =,作辅助线“过点F 作FG AB ⊥于点G ”构造相似三角形BGF EFD ∆∆∽,由对应边成比例列式求得FG 的长, FG 就是点F 到AB 的距离.8.(2015年广东广州10分)已知O 为坐标原点,抛物线21(0)y ax bx c a =++≠与x 轴相交于点1(,0)A x ,2(,0)B x .与y 轴交于点C ,且O ,C 两点之间的距离为3,12120,4x x x x ⋅<+= ,,点A ,C在直线23y x t =-+上.(1)求点C 的坐标;(2)当1y 随着x 的增大而增大时,求自变量x 的取值范围;(3)将抛物线1y 向左平移(0)n n >个单位,记平移后y 随着x 的增大而增大的部分为P ,直线2y 向下平移n 个单位,当平移后的直线与P 有公共点时,求225n n -的最小值. 【答案】解:(1)令0x =,得1y c =,∴()0,C c .∵O ,C 两点之间的距离为3,∴3c =,解得3c =±. ∴点C 的坐标为()0,3 或()0,3 -. (2)∵120x x ⋅<,∴12,x x 异号.①若()0,3C ,把()0,3C 代入23y x t =-+得30t =+,即3t =. ∴233y x =-+.把()1,0A x 代入233y x =-+得1033x =-+,即11x =.∴()1,0A . ∵12,x x 异号,11>0x =,∴2<0x .∵124x x +=,∴214x +=,214x -=,23x =-.∴()3,0B - .把()1,0A ,()3,0B - 代入213y ax bx =++,得309330a b a b ++=⎧⎨-+=⎩,解得12a b =-⎧⎨=-⎩.∴()2212314y x x x =--+=-++.∴当1x ≤-时,1y 随着x 的增大而增大.②若()0,3C -,把()0,3C -代入23y x t =-+得30t -=+,即3t =-. ∴233y x =--.把()1,0A x 代入233y x =--得1033x =--,即11x =-.∴()1,0A - . ∵12,x x 异号,11<0x =-,∴2>0x .∵124x x +=,∴214x -+=,214x +=,23x =.∴()3,0B .把()1,0A - ,()3,0B 代入213y ax bx =++,得309330a b a b --=⎧⎨+-=⎩,解得12a b =⎧⎨=-⎩.∴()2212314y x x x =--=--.∴当1x ≥时,1y 随着x 的增大而增大.综上所述,若()0,3C ,当1y 随着x 的增大而增大时,1x ≤-;若()0,3C -,当1y 随着x 的增大而增大时,1x ≥.(3)①若()0,3C ,则()2212314y x x x =--+=-++,233y x =-+,1y 向左平移(0)n n >个单位后的解析式为()2314y x n =-+++,则当1x n ≤--时,3y 随着x 的增大而增大.直线2y 向下平移n 个单位后的解析式为433y x n =-+-. 要使平移后直线与P 有公共点,则当1x n =--时,34y y ≥,即()()2114313n n n n ---+++≥---+-,解得1n ≤-,与>0n 不符,舍去.②若()0,3C -,则()2212314y x x x =--=--,233y x =--,1y 向左平移(0)n n >个单位后的解析式为()2314y x n =-+-,则当1x n ≥-时,3y 随着x 的增大而增大.直线2y 向下平移n 个单位后的解析式为433y x n =---. 要使平移后直线与P 有公共点,则当1x n =-时,43y y ≥, 即()()2313114n n n n ----≥---+-,解得1n ≥. 综上所述,1n ≥.∵2252525248n n n ⎛⎫-=-- ⎪⎝⎭,∴当54n =时,225n n -的最小值为258-. 【考点】二次函数综合题;线动平移问题;曲线上点的坐标与方程的关系;不等式和绝对值的性质;二次函数的最值;分类思想的应用.【分析】(1)一方面,由点C 在抛物线21(0)y ax bx c a =++≠得到()0,C c ,另一方面,由O ,C 两点之间的距离为3,得到3c =±,从而得到点C 的坐标.(2)分()0,3C 和()0,3C -两种情况讨论.(3)分()0,3C 和()0,3C -两种情况讨论得到n 的范围内1n ≥,从而根据二次函数最值原理即可求解.9. (2015年广东佛山10分)如图,一小球从斜坡O 点处抛出,球的抛出路线可以用二次函数24y x x =-+刻画,斜坡可以用一次函数12y x =刻画. (1)请用配方法求二次函数图象的最高点P 的坐标; (2)小球的落点是A ,求点A 的坐标;(3)连结抛物线的最高点P 与点O 、A 得△POA . 求△POA 的面积;(4)在OA 上方的抛物线上存在一点M (M 与P 不重合),△MOA 的面积等于△POA 的面积,请直接写出点.....M 的坐标.【答案】解:(1)∵()()222444424y x x x x x =-+=--++=--+,∴点P 的坐标为()2,4 .(2)联立2412y x x y x⎧=-+⎪⎨=⎪⎩,解得00x y =⎧⎨=⎩或7274x y ⎧=⎪⎪⎨⎪=⎪⎩. ∴点A 的坐标为77,24⎛⎫ ⎪⎝⎭.(3)如答图1,作二次函数图象的对称轴交OA 于点B ,则点B 的坐标为()2,1 ,3BP =. ∴1172132322224POA OBP BAP S S S ∆∆⎛⎫=+=⨯⨯+⨯⨯-= ⎪⎝⎭V.(4)315,24⎛⎫⎪⎝⎭ . 【考点】二次函数的应用(实际问题);二次函数的性质;曲线上点的坐标与方程的关系;等高三角形面积的应用;待定系数法、转换思想和数形结合思想的应用. 【分析】(1)化为顶点式即可得二次函数图象的顶点坐标.(2)联立24y x x =-+和12y x =即可求出点A 的坐标. (3)作辅助线“作二次函数图象的对称轴交OA 于点B ”,将POA S V 转化为OBP S ∆和BAP S ∆之和. (4)作辅助线“过点P 作//PM OA 交抛物线于另一点M ”,则△MOA 的面积等于△POA 的面积,设直线PM 的解析式为12y x m =+, 将()2,4P 代入,得14232m m =⋅+⇒=, ∴直线PM 的解析式为132y x =+.联立24132y x x y x ⎧=-+⎪⎨=+⎪⎩,解得,24x y =⎧⎨=⎩或32154x y ⎧=⎪⎪⎨⎪=⎪⎩. ∴点M 的坐标为315,24⎛⎫⎪⎝⎭ . 10.(2015年广东佛山11分)如图,在ABCD Y 中,对角线AC 、BD 相交于点O ,点E 、F 是AD 上的点,且AE EF FD ==. 连结BE 、BF ,使它们分别与AO 相交于点G 、H . (1)求 : EG BG 的值; (2)求证:AG OG =;(3)设 ,AG a GH b HO c ===,,求 : : a b c 的值.【答案】解:(1)∵AE EF FD ==,∴13AE AD =. ∵四边形ABCD 是平行四边形,∴//AD BC .∴AEG CBG ∆∆∽.∴13EG AE BG AD ==,即1: 3EG BG =. (2)证明:由(1)AEG CBG ∆∆∽,∴13AG CG =.∵四边形ABCD 是平行四边形,∴AO OC =.∴2CG AO AG =-. ∴123AG AO AG =-,即12AG AO =.∴AG OG =.(3)如答图,过点F 作//FM AC 交BD 于点M ,∵AE EF FD ==,∴13DM DF DO DA ==.∴16DM BD =,56BM BD =. ∵12BO BD =.∴35BO BM =.∵//FM AC ,∴BOH BMF ∆∆∽.∴35HO BO FM BM ==,即35HO FM =. ∵//FM AC ,∴DFM DAO ∆∆∽.∴13FM DF AO DA ==,即13FM AO =.∴33115535HO FM AO AO ==⋅=.由(2)得12AG AO =,∴1132510GH AO AG HO AO AO AO AO =--=--=.∵ ,AG a GH b HO c ===,, ∴131532: : : : : : 5 : 3 : 22105101010a b c AO AO AO ===. 【考点】平行四边形的综合题;平行四边形的性质;平行的性质;相似三角形的判定和性质;数形结合思想的应用.【分析】(1)由平行四边形对边平行的性质可得AEG CBG ∆∆∽,从而得出结果.(2)由(1)AEG CBG ∆∆∽得到13AG CG =,从而根据平行四边形对角线互相平分的性质得出结论. (3)作辅助线“过点F 作//FM AC 交BD 于点M ”,构造两组相似三角形BOH BMF ∆∆∽和BOH BMF ∆∆∽,通过相似三角形对应边成比例的性质,求出AG GH HO 、、与AO 的关系即可求得 : : a b c 的值.11. (2015年广东梅州10分)在Rt △ABC 中,∠A =90°,AC = AB = 4,D ,E 分别是边AB ,AC 的中点.若等腰Rt △ADE 绕点A 逆时针旋转,得到等腰Rt △AD 1E 1,设旋转角为α(0<α≤180°),记直线BD 1与CE 1的交点为P .(1)如图1,当α=90°时,线段BD 1的长等于 ▲ ,线段CE 1的长等于 ▲ ;(直接填写结果) (2)如图2,当α=135°时,求证:BD 1 = CE 1 ,且BD 1⊥CE 1 ; (3)求点P 到AB 所在直线的距离的最大值.(直接写出结果)【答案】解:(1)25,25.(2)证明:当α=135°时,由旋转可知∠D 1AB = E 1AC = 135°.又∵AB =AC ,AD 1=AE 1,∴△D 1AB ≌△△E 1AC (SAS ). ∴BD 1=CE 1 且 ∠D 1BA = ∠E 1CA .设直线BD 1与AC 交于点F ,有∠BF A =∠CFP . ∴∠CPF =∠F AB =90°,∴BD 1⊥CE 1. (3)13+.【考点】面动旋转问题;等腰直角三角形的性质;勾股定理;全等、相似三角形的判定和性质. 【分析】(1)如题图1,当α=90°时,线段BD 1的长等于22224225AB AE +=+=;线段CE 1的长等于222214225AC AE +=+=.(2)由SAS 证明△D 1AB ≌△△E 1AC 即可证明BD 1 = CE 1 ,且BD 1⊥CE 1 .(3)如答图2,当四边形AD 1PE 1为正方形时,点P 到AB 所在直线的距离距离最大,此时112223AD PD PB ===+,,∵1ABD PBH ∆∆∽,∴1AD ABPH PB=. ∴24223PH =+.∴13PH =+.∴当四边形AD 1PE 1为正方形时,点P 到AB 所在直线的距离距离的最大值为13+.12.(2015年广东梅州10分)如图,过原点的直线1y k x =和2y k x =与反比例函数1y x=的图象分别交于两点A ,C 和B ,D ,连结AB ,BC ,CD ,DA .(1)四边形ABCD 一定是 ▲ 四边形;(直接填写结果)(2)四边形ABCD 可能是矩形吗?若可能,试求此时1k 和2k 之间的关系式;若不可能,说明理由; (3)设()()()112221,,,,0P x y Q x y x x >> 是函数1y x=图象上的任意两点,12122,2y y a b x x +==+ ,试判断a ,b 的大小关系,并说明理由.【答案】解:(1)平行.(2)四边形ABCD 可能是矩形,此时121k k =,理由如下:当四边形ABCD 是矩形时,OA =OB .联立11y k x y x =⎧⎪⎨=⎪⎩,得111x k y k ⎧=±⎪⎨⎪=±⎩,∴111,A k k ⎛⎫ ⎪ ⎪⎝⎭ . 同理,221,B k k ⎛⎫⎪ ⎪⎝⎭. ∵22121211OA k OB k k k =+=+,, ∴121211k k k k +=+,得()21121 10k k k k ⎛⎫--= ⎪⎝⎭. ∵210k k -≠, ∴12110k k -=. ∴121k k =.∴四边形ABCD 可以是矩形,此时121k k =. (3)>a b .理由如下:∵()()()()2212121212121212121212124211122222x x x x x x y y a b x x x x x x x x x x x x x x +--⎛⎫+-=-=+-== ⎪++++⎝⎭. ∵x 2 > x 1 > 0,∴()212>0x x -,()12122>0x x x x +.∴()()2121212>02x x x x x x -+.∴>a b .【考点】反比例函数和一次函数综合题;平行四边形的判定;矩形的性质;代数式化简;作差法的应用. 【分析】(1)根据反比例函数的中心对称性,有,OA OC OB OD == ,所以,四边形ABCD 一定是平行四边形.(2)求出点A 、B 的坐标,根据矩形对角线互相平分且相等的性质得到OA =OB ,即22OA OB =,据此列式化简得证.(3)作差,化简,得出结论.13. (2015年浙江衢州10分)高铁的开通,给衢州市民出行带来了极大的方便. 五一期间,乐乐和颖颖相约到杭州市的某游乐园游玩,乐乐乘私家车从衢州出发1小时后,颖颖乘高铁从衢州出发,先到杭州火车东站,然后乘出租车去游乐园(换车时间忽略不计),两人恰好同时到达游乐园.他们离开衢州的距离y (千米)与乘车时间t (小时)的关系如下图所示.请结合图象解决下面问题: (1)高铁的平均速度是每小时多少千米?(2)当颖颖到达杭州火车东站时,乐乐距离游乐园还有多少千米?(3)若乐乐要提前18分钟到达游乐园,问私家车的速度必须达到多少千米/小时?【答案】解:(1)∵24024021=-, ∴高铁的平均速度是每小时240千米. (2)设乐乐乘私家车路线的解析式为y kt b =+,∵当1t =时,0y =;当2t =时,240y =,∴02240k b k b +=⎧⎨+=⎩,解得240240k b =⎧⎨=-⎩.∴乐乐乘私家车路线的解析式为240240y t =-.∴当 1.5t =时,120y =.设颖颖乘高铁路线的解析式为1y k t =,∴1120 1.5k =,解得180k =.∴颖颖乘高铁路线的解析式为80y t =. ∴当2t =时,160y =.∵21616056-=,∴当颖颖到达杭州火车东站时,乐乐距离游乐园还有56千米. (3)把216y =代入80y t =得 2.7t =.∵182.7 2.460-=(小时),216902.4=(千米), ∴乐乐要提前18分钟到达游乐园,私家车的速度必须达到90千米/小时.【考点】一次函数的图象和应用;待定系数法的应用;直线上点的坐标与方程的关系.. 【分析】(1)由图象提供的信息,根据“路程÷时间=速度”计算即可.(2)先求乐乐乘私家车路线的解析式,得到 1.5t =时的函数值,即可求得颖颖乘高铁路线的解析式,得到2t =时,颖颖乘高铁街的路程,从而得到当颖颖到达杭州火车东站时,乐乐距离游乐园的距离.(3)求得私家车按原速度到达游乐园的时间,得到提前18分钟的实际用时,即可得到乐乐要提前18分钟到达游乐园,私家车必须达到的速度.14. (2015年浙江衢州12分)如图,在ABC ∆中,275,9,2ABC AB AC S ∆===,动点P 从A 点出发,沿射线AB 方向以每秒5个单位的速度运动,动点Q 从C 点出发,以相同的速度在线段AC 上由C 向A 运动,当Q 点运动到A 点时, P 、Q 两点同时停止运动. 以PQ 为边作正方形PQEF (P Q E F 、、、按逆时针排序),以CQ 为边在AC 上方作正方形QCGH . (1)求tan A 的值;(2)设点P 运动时间为t ,正方形PQEF 的面积为S ,请探究S 是否存在最小值?若存在,求出这个最小值,若不存在,请说明理由;(3)当t 为何值时,正方形PQEF 的某个顶点(Q 点除外)落在正方形QCGH 的边上,请直接写出t 的值.【答案】解:(1)如答图1,过点B 作BM AC ⊥于点M ,∵279,2ABC AC S ∆== ,12ABC S AC BM ∆=⋅⋅,∴271922BM =⋅⋅,解得,3BM =. 又∵5,AB = ∴根据勾股定理,得2222534AM AB BM =-=-=.∴3tan 4BM A AM ==.(2)存在.如答图2,过点P 作PN AC ⊥于点N , 经过时间t ,5AP CQ t == ∵3tan 4A =, ∴4,3AN t PN t == .∴99QN AC AN CQ t =--=-.根据勾股定理,得,()()2222223999016281PQ PN NQ t t t t =+=+-=-+,∴22990162810<<5S PQ t t t ⎛⎫==-+ ⎪⎝⎭. ∵90>0a =,且1629229010b a --=-=⨯在t 的取值范围内, ∴2244908116281449010ac b S a -⨯⨯-===⨯最小值.∴S 存在最小值?若存在,这个最小值是8110. (3)当914t =或911或1或97秒时,正方形PQEF 的某个顶点(Q 点除外)落在正方形QCGH 的边上.【考点】双动点问题;勾股定理;锐角三角函数定义;二次函数最值的应用;分类思想的应用.【分析】(1)作辅助线“过点B 作BM AC ⊥于点M ”构造直角三角形ABM ,根据已知求出BM 和应用AM 的长,即可根据正切函数定义求出3tan 4BM A AM ==. (2)根据2S PQ =求得S 关于t 的二次函数,应用研究二次函数的最值原理求解即可.(3)分四种情况讨论:①当点E 在HG 上时,如答图3,1914t =;②当点F 在GH 上时,如答图4,2911t =;③当点P 在QH 上(或点E 在QC 上)时,如答图5,31t =;④当点F 在CG 上时,如答图6,197t =.15. (2015年浙江绍兴12分)正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A按顺时针方向旋转,记旋转角∠DAG=α,其中0°≤α≤180°,连结DF,BF,如图.(1)若α=0°,则DF=BF,请加以证明;(2)试画一个图形(即反例),说明(1)中命题的逆命题是假命题;(3)对于(1)中命题的逆命题,如果能补充一个条件后能使该逆命题为真命题,请直接写出你认为需要补充的一个条件,不必说明理由.【答案】解:(1)证明:如答图1,正方形ABCD和正方形AEFG中,∵GF=EF,AG=AE,AD=AB,∴DG=BE.又∵∠DGF=∠BEF=90°,∴△DGF≌△BEF(SAS).∴DF=BF.(2)反例图形如答图2:(3)不唯一,如点F在正方形ABCD内,或α<180°.【考点】开放型;正方形的性质;原命题和逆命题;真命题和假命题【分析】(1)由正方形的性质,通过SAS证明△DGF≌△BEF,从而得到结论.(2)(1)中命题的逆命题是:若DF=BF,则α=0°,它是假命题的反例是α=180°的情况.(3)限制点F范围或α的范围即可.16. (2015年浙江绍兴14分)在平面直角坐标系中,O为原点,四边形OABC的顶点A在x轴的正半轴上,OA=4,OC=2,点P,点Q分别是边BC,边AB上的点,连结AC,PQ,点B1是点B关于PQ的对称点. (1)若四边形OABC为矩形,如图1,①求点B的坐标;②若BQ:BP=1:2,且点B1落在OA上,求点B1的坐标;(2)若四边形OABC为平行四边形,如图2,且OC⊥AC,过点B1作B1F∥x轴,与对角线AC、边OC分别交于点E、点F. 若B1E:B1F=1:3,点B1的横坐标为m,求点B1的纵坐标,并直接写出m的取值范围.【答案】解:(1)①∵四边形OABC为矩形,OA=4,OC=2,∴点B(4,2).②如答图1,过点P作PD⊥OA于点D,∵BQ:BP=1:2,点B1是点B关于PQ的对称点,∴∠PDB1=∠PB1Q=∠B1AQ=90°.∴∠PB 1D=∠B 1QA. ∴△PB 1D ∽△B 1QA. ∴111PB PD 2AB B Q==. ∴B 1A=1.∴OB 1=3,即B 1(3,0).(2)∵四边形OABC 为平行四边形,OA=4,OC=2,且OC ⊥AC ,∴∠OAC=30°.∴点C ()13 ,. ∵B 1E :B 1F=1:3,∴点B 1不与点E 、F 重合,也不在线段EF 的延长线上.①当点B 1在线段FE 的延长线上时,如答图2,延长B 1F 与y 轴交于点G ,点B 1的横坐标为m ,B 1F ∥x 轴,∵B 1E :B 1F=1:3,∴B 1G=m . 设OG=a ,则GF=33a ,OF=233a . ∴CF=2323-a . ∴FE=4343-a ,B 1E=2323-a . ∴B 1G= B 1E+EF+FG=2343324333⎛⎫⎛⎫-+-+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭a a a m . ∴36355=-+a m , 即点B 1的纵坐标为36355-+m ,m 的取值范围为17101777≤≤+m . ②当点B 1在线段EF (点E 、F 除外)上时,如答图3,延长B 1F 与y 轴交于点G ,点B 1的横坐标为m ,B 1F ∥x 轴,∵B1E :B 1F=1:3,∴B 1G=m . 设OG=a ,则GF=33a ,OF=233a ∴CF=2323-a . ∴FE=4343-a ,B 1F=34FE=33-a . ∴B 1G= B 1F +FG=()3333-+=a a m . ∴33322=-+a m , 即点B 1的纵坐标为33322-+m ,m 的取值范围为1537≤≤m . 【考点】轴对称问题;矩形和平行四边形的性质;轴对称的性质;相似三角形的判定和性质;含30度直角三角形的性质;点的坐标;分类思想的应用.【分析】(1)①直接根据矩形的性质得到点B 的坐标.②过点P 作PD ⊥OA 于点D ,证明△PB 1D ∽△B 1QA ,得到B 1A 的长,从而得到OB 1的长,进而得到点B 1的坐标.(2)分点B 1在线段FE 的延长线上和点B 1在线段EF (点E 、F 除外)上两种情况讨论即可.17. (2015年浙江台州12分)如图,在多边形ABCDE 中,∠A=∠AED=∠D=90°,AB=5,AE=2,ED=3,过点E 作EF ∥CB 交AB 于点F ,FB=1,过AE 上的点P 作PQ ∥AB 交线段EF 于点O ,交折线BCD 于点Q ,设AP=x ,⋅PO OQ =y .(1)①延长BC 交ED 于点M ,则MD = ▲ ,DC = ▲②求y 关于x 的函数解析式; (2)当1(0)2a x a ≤≤>时,96a y b ≤≤,求a ,b 的值; (3)当13y ≤≤时,请直接写出x 的取值范围.【答案】解:(1)①2;1.②∵=AP x ,∴2=-EP x . 在V Rt AEF 中,4tan 22∠===AF AEF AE , ∴tan 2(2)24=⋅∠=⨯-=-+PO PE AEF x x ∵90∠=∠=︒A AED ,∴AB DE P . ∵PQ AB P ,∴PQ ED P . 当01<≤x 时,如答图1所示, ∵EF CB P ,PQ AB P ,∴四边形OFBQ 是平行四边形.∴1==OQ FB . ∴(24)124=⋅=-+⨯=-+y PO OQ x x . 当12<≤x 时,如答图2所示, ∵90∠=∠=︒AED D ,∴AE CD P . ∵PQ ED P ,∴四边形DEPQ 是矩形. ∴3(24)21=--+=-OQ x x .∴2(24)(21)4104=⋅=-+⋅-=-+-y PO OQ x x x x .∴()()22401410412-+<≤⎧⎪=⎨-+-<≤⎪⎩x x y x x x (2)∵当()102≤≤>a x a 时,24y x =-+,∴42yx -=.由12a x ≤≤得,4122y a -≤≤,解得342y a ≤≤-.∵当1(0)2a x a ≤≤>时,96a y b ≤≤,∴93642a b a =⎧⎨=-⎩,解得1359a b ⎧=⎪⎪⎨⎪=⎪⎩.∴15,39a b ==. (3)15524+≤≤x . 【考点】由实际问题列函数关系式(几何问题);平行四边形、矩形的判定和性质;相似三角形的判定和性质;方程组和不等式组的应用;分类思想和数形结合思想的应用. 【分析】(1)①如答图1,延长BC 交ED 于点M ,则∵∠A =∠AED =90°,∴ED ∥AB .∵EF ∥CB ,∴四边形FBM E 是平行四边形. ∴EM =FB =1. ∵ED =3,∴MD =2. ∵△AFE ∽△DEC ,且21512==-AE AF ,∴DC =1. ②分01<≤x 和12<≤x 两种情况求y 关于x 的函数解析式. (2)由(1)得到的24y x =-+,化为42yx -=代入12a x ≤≤,解出342y a ≤≤-,结合已知条件得到关于a ,b 的方程组求解即可.(3)y 关于x 的函数图象如答图3,当13y ≤≤时,15524+≤≤x.18. (2015年浙江台州14分)定义:如图1,点M ,N 把线段AB 分割成AM ,MN 和BN ,若以AM ,MN ,BN 为边的三角形是一个直角三角形,则称点M ,N 是线段AB 的勾股分割点.(1)已知点M ,N 是线段AB 的勾股分割点,若AM =2,MN =3,求BN 的长;(2)如图2,在△ABC 中,FG 是中位线,点D ,E 是线段BC 的勾股分割点,且EC >DE ≥BD ,连接AD ,AE 分别交FG 于点M ,N ,求证:点M ,N 是线段FG 的勾股分割点;(3)已知点C 是线段AB 上的一定点,其位置如图3所示,请在BC 上画一点D ,使C ,D 是线段AB 的勾股分割点(要求尺规作图,保留作图痕迹,画出一种情形即可);(4)如图4,已知点M ,N 是线段AB 的勾股分割点,MN >AM ≥BN ,△AMC ,△MND 和△NBM 均是等边三角形,AE 分别交CM ,DM ,DN 于点F ,G ,H ,若H 是DN 的中点,试探究∆AMF S ,∆BEN S 和四边形MNHG S 的数量关系,并说明理由.【答案】解:(1)∵点M ,N 是线段AB 的勾股分割点, AM =2,MN =3,∴若MN 为斜边,则222=+MN AM BN ,即22232=+BN ,解得5=BN . 若BN 为斜边,则222=+BN AM MN ,即22223=+BN ,解得13=BN . ∴BN 的长为5或13.(2)证明:∵点D ,E 是线段BC 的勾股分割点,且EC >DE ≥BD ,∴222=+EC DE BD .∵在△ABC 中,FG 是中位线,AD ,AE 分别交FG 于点M ,N , ∴F M 、MN 、NG 分别是△ABD 、△ADE 、△AEC 的中位线. ∴BD =2FM ,DE =2MN ,EC =2NG .∴()()()222222=+NG MN FM ,即222444=+NG MN FM . ∴222=+NG MN FM .∴点M ,N 是线段FG 的勾股分割点. (3)如答图1,C ,D 是线段AB 的勾股分割点.QPNM E(4)+=△△四边形AMF BEN MNHG S S S .理由如下:设=AM a ,=BN b ,=MN c , ∵H 是DN 的中点,∴12==DH HN c . ∵△MND ,△BNE 均为等边三角形,∴60∠=∠=︒D DNE .∵∠=∠DHG NHE ,∴△DGH ≌△NEH .∴==DG EN b .∴=-MG c b . ∵∥GM EN ,∴△AGM ∽△AEN . ∴-=+c b ab a c.∴22=-+c ab ac bc . ∵点M ,N 是线段AB 的勾股分割点,∴222=+c a b .∴2()()-=-a b b a c ,又∵-≠b a c .∴=a b .在△DGH 和△CAF 中,∠=∠D C ,=DG CA ,∠=∠DGH CAF , ∴△DGH ≌△CAF . ∴=△△DGH CAF S S .∵222=+c a b ,∴222333444=+c a b . ∴=+△△△DMN ACM ENB S S S .∵=+△△四边形DMN DGH MNHG S S S ,=+△△△ACM CAF AMF S S S , ∴+=△△四边形AMF BEN MNHG S S S .【考点】新定义和阅读理解型问题;开放型和探究型问题;勾股定理;三角形中位线定理;尺规作图(复杂作图);等边三角形的性质;全等、相似三角形的判定和性质;分类思想和数形结合思想的应用. 【分析】(1)根据定义,分MN 为斜边和BN 为斜边两种情况求解即可.(2)判断FM 、MN 、NG 分别是△ABD 、△ADE 、△AEC 的中位线后代入222=+EC DE BD 即可证明结论.(3)①过点C 作AB 的垂线MN ,②在MN 截取CE =CA ;③连接BE ,作BE 的垂直平分线PQ 交AB 于点D . 则点C ,D 是线段AB 的勾股分割点.(作法不唯一)(4)首先根据全等、相似三角形的判定和性质证明△AMC 和△NBM 是全等的等边三角形,再证明+=△△四边形AMF BEN MNHG S S S .19. (2015年浙江温州12分)如图,抛物线x x y 62+-=交x 轴正半轴于点A ,顶点为M ,对称轴NB 交x 轴于点B ,过点C (2,0)作射线CD 交MB 于点D (D 在x 轴上方),OE ∥CD 交MB 于点E ,EF ∥x 轴交CD 于点F ,作直线MF. (1)求点A ,M 的坐标;(2)当BD 为何值时,点F 恰好落在该抛物线上? (3)当BD=1时,①求直线MF 的解析式,并判断点A 是否落在该直线上;②延长OE 交FM 于点G ,取CF 中点P ,连结PG ,△FPG ,四边形DEGP ,四边形OCDE 的面积分别记为S 1,S 2,S 3,则S 1:S 2:S 3= ▲。
年全国各地中考试题压轴题精选全解之三.(山东省济南市). 已知:如图,在平面直角坐标系中,ABC △是直角三角形,90ACB ∠=,点A C ,的坐标分别为(30)A -,,(10)C ,,3tan 4BAC ∠=. ()求过点A B ,的直线的函数表达式;()在x 轴上找一点D ,连接DB ,使得ADB △与ABC △相似(不包括全等),并求点D 的坐标;()在()的条件下,如P Q ,分别是AB 和AD 上的动点,连接PQ ,设A P D Q m==,问是否存在这样的m 使得APQ △与ADB △相似,如存在,请求出m 的值;如不存在,请说明理由.解:()点(30)A -,,(10)C ,4AC ∴=,3tan 434BC BAC AC =⨯=⨯=∠,B 点坐标为(13),设过点A B ,的直线的函数表达式为y kx b =+,由0(3)3k b k b=⨯-+⎧⎨=+⎩ 得34k =,94b =∴直线AB 的函数表达式为3944y x =+ ()如图,过点B 作BD AB ⊥,交x 轴于点D , 在Rt ABC △和Rt ADB △中,BAC DAB =∠∠ Rt Rt ABC ADB ∴△∽△, D ∴点为所求又4tan tan 3ADB ABC ==∠∠,49tan 334CD BC ADB ∴=÷=÷=∠134OD OC CD ∴=+=,1304D ⎛⎫∴ ⎪⎝⎭, ()这样的m 存在在Rt ABC △中,由勾股定理得5AB = 如图,当PQ BD ∥时,APQ ABD △∽△第题图第题图第题图则133413534mm +-=+,解得259m =如图,当PQ AD ⊥时,APQ ADB △∽△则133413534mm+-=+,解得12536m =.(青岛市). 已知:如图,△是边长的等边三角形,动点、同时从、两点出发,分别沿、方向匀速移动,它们的速度都是,当点到达点时,、两点停止运动.设点的运动时间为(),解答下列问题:()当为何值时,△是直角三角形?()设四边形的面积为(),求与的关系式;是否存在某一时刻,使四边形的面积是△面积的三分之二?如果存在,求出相应的值;不存在,说明理由;()设的长为(),试确定与之间的关系式. 解:⑴ 根据题意:= ,= . △中,==,∠=°, ∴=(- ) .△中,=-,=,若△是直角三角形,则∠=°或∠=°.当∠=°时,=12.即=12(- ),= (秒).当∠=°时,=12.-=12,= (秒).答:当=秒或=秒时,△是直角三角形.⑵ 过作⊥于 .△中,∠=PMPB,∴=·2(- ).M A C Q B P∴△=12·=12·2(- ).∴=△-△=12××2-12· ·2(- )2444.∴与的关系式为: 2444+.假设存在某一时刻,使得四边形的面积是△面积的23, 则四边形=23△.2444=23×122.∴ - +=.∵(-) -××<, ∴方程无解.∴无论取何值,四边形的面积都不可能是△面积的23.⑶ 在△中, =BM BQ -=()312t -.+ = .∴=[32(- ) ]+2(- ) ]=()()2293219644t t t t -++-+=()23412124t t -+=-+.∴-=()2193x -.∵=2444t -+,)234tt -()21943x-+212x .212x +..(山东省泰州市) .如图①,Rt ABC △中,90B ∠=,30CAB ∠=.它的顶点A 的坐标为(100),,顶点B的坐标为(5,10AB =,点P 从点A 出发,沿A B C →→的方向匀速运动,同时点Q 从点(02)D ,出发,沿y 轴正方向以相同速度运动,当点P 到达点C 时,两点同时停止运动,设运动的时间为t 秒.()求BAO ∠的度数.()当点P 在AB 上运动时,OPQ △的面积S (平方单位)与时间t (秒)之间的函数图象为抛物线的一部分,(如图②),求点P 的运动速度.()求()中面积S 与时间t 之间的函数关系式及面积S 取最大值时点P 的坐标. ()如果点P Q ,保持()中的速度不变,那么点P 沿AB 边运动时,OPQ ∠的大小随着时间t 的增大而增大;沿着BC 边运动时,OPQ ∠的大小随着时间t 的增大而减小,当点P 沿这两边运动时,使90OPQ ∠=的点P 有几个?请说明理由.解: ()60BAO =∠.()点P 的运动速度为个单位秒.()(10)P t -(05t ≤≤)1(22)(10)2S t t =+-2912124t ⎛⎫=--+ ⎪⎝⎭. ∴当92t =时,S 有最大值为1214, (第题图①)(第题图②)此时112P ⎛⎝⎭. ()当点P 沿这两边运动时,90OPQ =∠的点P 有个. ①当点P 与点A 重合时,90OPQ <∠,当点P 运动到与点B 重合时,OQ 的长是单位长度, 作90OPM =∠交y 轴于点M ,作PH y ⊥轴于点H ,由OPH OPM △∽△得:11.53OM ==, 所以OQ OM >,从而90OPQ >∠.所以当点P 在AB 边上运动时,90OPQ =∠的点P 有个.②同理当点P 在BC边上运动时,可算得1217.8OQ ==. 而构成直角时交y轴于03⎛⎫ ⎪ ⎪⎝⎭,,20.217.83=>, 所以90OCQ <∠,从而90OPQ =∠的点P 也有个. 所以当点P 沿这两边运动时,90OPQ =∠的点P 有个..(山东省东营市). 根据以下个乘积,回答问题:×; ×; ×; ×; ×; ×; ×; ×; ×; ×.()试将以上各乘积分别写成一个“□-○”(两数平方差)的形式,并写出其中一个的思考过程;()将以上个乘积按照从小到大的顺序排列起来;()试由⑴、⑵猜测一个一般性的结论.(不要求证明) 解:⑴×=-;×=-;×=-;×=-;×=-;×=-; ×=-;×=-;×=-; ×=-. 例如,×;假设×□-○,因为□-○(□+○)(□-○); 所以,可以令□-○=,□+○=.第题图①解得,□=,○=.故229202911-=⨯. (或×=(-)(+)- .⑵ 这个乘积按照从小到大的顺序依次是:1129122813271426⨯<⨯<⨯<⨯<152516241723⨯<⨯<⨯< 182219212020⨯<⨯<⨯.⑶ ① 若40=+b a ,,是自然数,则≤=. ② 若+=,则≤=.③ 若+=,,是自然数,则≤22m ⎛⎫⎪⎝⎭.④ 若+=,则≤22m ⎛⎫⎪⎝⎭.⑤ 若+=+=+=…=+=.且 -≥-≥-≥…≥ -, 则 ≤≤≤…≤ .⑥若+=+=+=…=+=.且 -≥-≥-≥…≥ -, 则≤≤≤…≤ ..(山东枣庄). 已知:如图,在△中,为月边上一点,∠°,,·.()试说明:△和△都是等腰三角形, ()若,求的长,()试构造一个等腰梯形,要求该梯形连同它的两条对角线所形成的个三角形中有尽可能多的等腰三角形.解:()在△中,,∠=°,∴∠∠°,∠° 在△与△中,∠∠°. ∵·,∴AC AD ADAB AC BC==. ∴△∽△. ∴∠∠°.∴∠°,∠°°°.∴△和△都是等腰三角形. ()设=,则∴×(),即+=.解得1211,22x x -+-==(舍去).∴AC =()说明:按照画出的梯形中,有个,个和个等腰三角形三种情况分类得分. ①有个等腰三角形,得分; ②有个等腰三角形,得分; ③有个等腰三角形,得分..(山东省滨州市). 如图所示,在ABC △中,2AB AC ==,90A =∠,O 为BC 的中点,动点E 在BA 边上自由移动,动点F 在AC 边上自由移动.()点E F ,的移动过程中,OEF △是否能成为45EOF =∠的等腰三角形?若能,请指出OEF △为等腰三角形时动点E F ,的位置.若不能,请说明理由.()当45EOF =∠时,设BE x =,CF y =,求y 与x 之间的函数解析式,写出x 的取值范围.()在满足()中的条件时,若以O 为圆心的圆与AB 相切(如图),试探究直线EF 与O 的位置关系,并证明你的结论.解:如图,()点E F ,移动的过程中,OEF △能成为45EOF ∠=°的等腰三角形. 此时点E F ,的位置分别是:①E 是BA 的中点,F 与A 重合.图图B(图-) (图-)②BE CF ==E 与A 重合,F 是AC 的中点()在OEB △和FOC △中,135EOB FOC ∠+∠=°,135EOB OEB ∠+∠=°, FOC OEB ∠=∠∴. 又B C ∠=∠∵,OEB FOC ∴△∽△.BE BOCO CF=∴.BE x =∵,CF y =,OB OC === 2(12)y x x=∴≤≤. ()EF 与O 相切. OEB FOC ∵△∽△, BE OECO OF =∴. BE OEBO OF =∴. 即BE BO OE OF=. 又45B EOF ∠=∠=∵°, BEO OEF ∴△∽△. BEO OEF ∠=∠∴.∴点O 到AB 和EF 的距离相等. AB ∵与O 相切,∴点O 到EF 的距离等于O 的半径. EF ∴与O 相切..(日照市). 如图,直线将矩形纸片分成面积相等的两部分,、分别与交于点,与交于点(,不与顶点重合),设.(Ⅰ)求证:;(Ⅱ)用剪刀将纸片沿直线剪开后,再将纸片沿对称翻折,然后平移拼接在梯形的下方,使一底边重合,直腰落在边的延长线上,拼接后,下方的梯形记作′′.()求出直线′分别经过原矩形的顶点和顶点时,所对应的 ︰的值;()在直线′经过原矩形的一个顶点的情形下,连接′,直线′与是否平行?你若认为平行,请给予证明;你若认为不平行,请你说明当与满足什么关系时,它们垂直?解: (Ⅰ)证明:∵,, ,梯形 梯形.∴21()21(), ∴(). 又∵=, ∴,即;(Ⅱ)()当直线′经过原矩形的顶点时,如图(一),∵∥′′, ∴B E EC ''BD DC'.由=,′′, ′′, 得aax x b 2=-, ∴︰32 ;当直线′经过原矩形的顶点时,如图(二), 在梯形′′中,∵∥′′,点是′的中点,∴21( ′′), 即=21(+),∴︰31.() 如图(一), 当直线′ 经过原矩形的顶点时,′∥. 证明:连接. ∵∥, ,∴四边形是平行四边形, ∴∥, ,又∵∥′′, 点是′的中点, ∴′, ∴∥′, ′,∴四边形′是平行四边形 ∴′∥.如图(二), 当直线′ 经过原矩形的顶点时,显然′与不平行,设直线与′交于点.过点′作′⊥于, 则′..∵︰31, ∴3131. 若′与垂直,则有∠∠°,又∵∠=∠=∠′, ∠′∠′°, ∴∠∠′.在△′中,∠′ ∠BM M E 'b a32.在△′中,∠′ M E EM 'a b 31,∴b a 32=a b 31. 又∵>,>,=ba32, ∴当=ba32时,′与垂直..(山东省聊城市). 某市为了进一步改善居民的生活环境,园林处决定增加公园A 和公园B 的绿化面积.已知公园A B ,分别有如图,图所示的阴影部分需铺设草坪,在甲、乙两地分别有同种草皮21608m 和21200m 出售,且售价一样.若园林处向甲、乙两地购买草(注:运费单价指将每平方米草皮运送千米所需的人民币)()分别求出公园A B ,需铺设草坪的面积;(结果精确到21m ) ()请设计出总运费最省的草皮运送方案,并说明理由.解:()设公园A B ,需铺设草坪的面积分别为12S S ,,根据题意,得12060图图16232622322221800S =⨯-⨯-⨯+⨯=.设图中圆的半径为R ,由图形知,圆心到矩形较长一边的距离为252, 所以25cos302R =°,有R =.于是,2212012565252π2100836022S =⨯-⨯⨯-⨯≈.所以公园A B ,需铺设草坪的面积分别为21800m 和2m .()设总运费为y 元,公园A 向甲地购买草皮x 2m ,向乙地购买草皮(1800)x -2m . 由于公园A B ,需要购买的草皮面积总数为180010082808+=(2m ), 甲、乙两地出售的草皮面积总数为2160812002808(m )+=. 所以,公园B 向甲地购买草皮2(1608)m x -, 向乙地购买草皮21200(1800)(600)(m )x x --=-.于是,有01608018001200x x ⎧⎪⎨-⎪⎩,.≤≤≤≤所以6001608x ≤≤. 又由题意,得300.25220.3(1800)320.25(1608)300.3(600)y x x x x =⨯+⨯-+⨯-+⨯-···1.919344x =+.因为函数 1.919344y x =+随x 的增大而增大,所以,当600x =时,有最小值 1.96001934420484y =⨯+=(元).因此,公园A 在甲地购买2m ,在乙地购买2180********(m )-=;公园B 在甲地购买16086001008-=(2m ). 此时,运送草皮的总运费最省..(山东省泰安市非课改区). 如图,在ABC △中,90BAC ∠=,AD 是BC 边上的高,E 是BC 边上的一个动点(不与B C ,重合),EF AB ⊥,EG AC ⊥,垂足分别为F G ,.()求证:EG CGAD CD=; ()FD 与DG 是否垂直?若垂直,请给出证明;若不垂直,请说明理由; ()当AB AC =时,FDG △为等腰直角三角形吗?并说明理由.解: ()证明:在ADC △和EGC △中Rt ADC EGC ∠=∠=∠,C C ∠=∠ADC EGC ∴△∽△EG CGAD CD∴=()FD 与DG 垂直证明如下:在四边形AFEG 中,90FAG AFE AGE ∠=∠=∠= ∴四边形AFEG 为矩形 AF EG ∴=由()知EG CGAD CD =AF CGAD CD∴=ABC △为直角三角形,AD BC ⊥ FAD C ∴∠=∠ AFD CGD ∴△∽△ ADF CDG ∴∠=∠又90CDG ADG ∠+∠=90ADF ADG ∴∠+∠=即90FDG ∠=FD DG ∴⊥()当AD AC =时,FDG △为等腰直角三角形,ED B (第题)EB (第题)理由如下:AB AC =,90BAC ∠= AD DC ∴=由()知:AFD CGD △∽△ 1FD AD GD DC ∴== FD DG ∴=又90FDG ∠=FDG ∴△FDG ∴△为等腰直角三角形.(山东省德州市). 已知:如图,在ABC △中,D 为AB 边上一点,36A ∠=,AC BC =,2AC AB AD =.()试说明:ADC △和BDC △都是等腰三角形; ()若1AB =,求AC 的值;()请你构造一个等腰梯形,使得该梯形连同它的两条对角线得到个等腰三角形.(标明各角的度数)解:()在ABC △中,AC BC =,36108B A ACB ∴∠=∠=∠=,.在ABC △与CAD △中,36A B ∠=∠=;2AC AB AD =,AC AB ABAD AC BC ∴==. ABC CAD ∴△∽△ 721083672CDB DCB ∴∠=∠=-=,.ADC ∴△和BDC △都是等腰三角形.分()设AC x =,则()211x x =⨯-,即210x x +-=.解得x x =∴=(负根舍去).D图36363636 363672 72108(有个等腰三角形).(河南省实验区) .如图,对称轴为直线72x =的抛物线经过点(,)和(,). ()求抛物线解析式及顶点坐标;()设点(x ,y )是抛物线上一动点,且位于第四象限,四边形是以为对角线的平行四边形.求平行四边形的面积与x 之间的函数关系式,并写出自变量x 的取值范围; ①当平行四边形的面积为时,请判断平行四边形是否为菱形?②是否存在点,使平行四边形为正方形?若存在,求出点的坐标;若不存在,请说明理由.解:()由抛物线的对称轴是72x =,可设解析式为2()2y a x k =-+. 把、两点坐标代入上式,得227(6)0,27(0) 4.2a k a k ⎧-+=⎪⎪⎨⎪-+=⎪⎩ 解之,得225,.36a k ==- 故抛物线解析式为22725()326y x =--,顶点为725(,).26- ()∵点(,)E x y 在抛物线上,位于第四象限,且坐标适合22725()326y x =--,∴<,即 ->,-表示点到的距离.∵是OEAF 的对角线, ∴2172264()2522OAES SOA y y ==⨯⨯⋅=-=--+.因为抛物线与x 轴的两个交点是(,)的(,),所以,自变量x 的 取值范围是<x <.① 根据题意,当 时,即274()25242x --+=.化简,得271().24x -=解之,得123, 4.x x == 故所求的点有两个,分别为(,-),(,-). 点(,-)满足 ,所以OEAF 是菱形; 点(,-)不满足 ,所以OEAF 不是菱形.② 当⊥,且 时,OEAF 是正方形,此时点的 坐标只能是(,-).而坐标为(,-)的点不在抛物线上,故不存在这样的点, 使OEAF 为正方形..(武汉市) 如图①,在平面直角坐标系中,△≌△,且(-,)、(,),抛物线=+-经过点。
中考数学专题 几何证明压轴题1、如图,在梯形ABCD 中,AB ∥CD ,∠BCD=90°,且AB=1,BC=2,tan ∠ADC=2.(1) 求证:DC=BC;(2) E 是梯形内一点,F 是梯形外一点,且∠E DC=∠F BC ,DE=BF ,试判断△E CF 的形状,并证明你的结论;(3) 在(2)的条件下,当BE :CE=1:2,∠BEC=135°时,求sin ∠BFE 的值.[解析] (1)过A 作DC 的垂线AM 交DC于M,则AM=BC=2.又tan ∠ADC=2,所以212DM ==.即DC=BC. (2)等腰三角形. 证明:因为,,DE DF EDC FBC DC BC =∠=∠=. 所以,△DEC ≌△BFC所以,,CE CF ECD BCF =∠=∠.所以,90ECF BCF BCE ECD BCE BCD ∠=∠+∠=∠+∠=∠=︒ 即△ECF 是等腰直角三角形.(3)设BE k =,则2CE CF k ==,所以EF =.因为135BEC ∠=︒,又45CEF ∠=︒,所以90∠=︒.所以3BF k ==所以1sin 33k BFE k ∠==. 2、已知:如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于G . (1)求证:△ADE ≌△CBF ;(2)若四边形 BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论.[解析] (1)∵四边形ABCD 是平行四边形,∴∠1=∠C ,AD =CB ,AB =CD .∵点E 、F 分别是AB 、CD 的中点, ∴AE =21AB ,CF =21CD . ∴AE =CF∴△ADE ≌△CBF .(2)当四边形BEDF 是菱形时, 四边形 AGBD 是矩形.∵四边形ABCD 是平行四边形, ∴AD ∥BC . ∵AG ∥BD ,∴四边形 AGBD 是平行四边形. ∵四边形 BEDF 是菱形, ∴DE =BE .∵AE =BE ,∴AE =BE =DE .∴∠1=∠2,∠3=∠4. ∵∠1+∠2+∠3+∠4=180°, ∴2∠2+2∠3=180°. ∴∠2+∠3=90°. 即∠ADB =90°. ∴四边形AGBD 是矩形3、如图13-1,一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转.(1)如图13-2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测量BM ,FN 的长度,猜想BM ,FN 满足的数量关系,并证明你的猜想;(2)若三角尺AB GF N EB FCDA F D ( F )[解析](1)BM =FN .证明:∵△GEF 是等腰直角三角形,四边形ABCD 是正方形,∴ ∠ABD =∠F =45°,OB = OF . 又∵∠BOM =∠FON , ∴ △OBM ≌△OFN . ∴ BM =FN .(2) BM =FN 仍然成立.(3) 证明:∵△GEF 是等腰直角三角形,四边形ABCD 是正方形,∴∠DBA =∠GFE =45°,OB =OF . ∴∠MBO =∠NFO =135°.又∵∠MOB =∠NOF , ∴ △OBM ≌△OFN . ∴ BM =FN .4、如图,已知⊙O 的直径AB 垂直于弦CD 于E ,连结AD 、BD 、OC 、OD ,且OD =5。
2015年云南省中考数学试卷一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,满分24分)1.(3分)(2015•云南)﹣2的相反数是( ) A.﹣2 B. 2 C.﹣ D.考点:相反数..分析:根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.解答:解:﹣2的相反数是:﹣(﹣2)=2,故选B.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(3分)(2015•云南)不等式2x﹣6>0的解集是( ) A.x>1 B. x<﹣3 C. x>3 D. x<3考点:解一元一次不等式..分析:利用不等式的基本性质:移项,系数化1来解答.解答:解:移项得,2x>6,两边同时除以2得,x>3.故选C.点评:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.3.(3分)(2015•云南)若一个几何体的主视图、左视图、俯视图都是正方形,则这个几何体是( ) A.正方体 B.圆锥 C.圆柱 D.球考点:由三视图判断几何体..分析:找到从正面、左面和上面看得到的图形是正方形的几何体即可.解答:解:∵主视图和左视图都是正方形,∴此几何体为柱体,∵俯视图是一个正方形,∴此几何体为正方体.故选A.点评:此题考查三视图,关键是根据:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.4.(3分)(2015•云南)2011年国家启动实施农村义务教育学生营养改善计划,截至2014年4月,我省开展营养改善试点中小学达17580所,17580这个数用科学记数法可表示为( ) A.17.58×103 B. 175.8×104 C. 1.758×105 D. 1.758×104考点:科学记数法—表示较大的数..分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将17580用科学记数法表示为1.758×104.故选D.点评:本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)(2015•云南)下列运算正确的是( ) A.a2•a5=a10 B.(π﹣3.14)0=0 C.﹣2=D.(a+b)2=a2+b2考点:二次根式的加减法;同底数幂的乘法;完全平方公式;零指数幂..分析:根据同底数幂的乘法、零指数幂、二次根式的加减和完全平方公式计算判断即可.解答:解:A、a2•a5=a7,错误;B、(π﹣3.14)0=1,错误;C、,正确;D、(a+b)2=a2+2ab+b2,错误;故选C.点评:此题考查同底数幂的乘法、零指数幂、二次根式的加减和完全平方公式,关键是根据法则进行计算.6.(3分)(2015•云南)下列一元二次方程中,没有实数根的是( ) A.4x2﹣5x+2=0 B. x2﹣6x+9=0 C. 5x2﹣4x﹣1=0 D. 3x2﹣4x+1=0考点:根的判别式..分析:分别计算出每个方程的判别式即可判断.解答:解:A、∵△=25﹣4×2×4=﹣7<0,∴方程没有实数根,故本选项正确;B、∵△=36﹣4×1×4=0,∴方程有两个相等的实数根,故本选项错误;C、∵△=16﹣4×5×(﹣1)=36>0,∴方程有两个相等的实数根,故本选项错误;D、∵△=16﹣4×1×3=4>0,∴方程有两个相等的实数根,故本选项错误;故选A.点评:本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.7.(3分)(2015•云南)为加快新农村试点示范建设,我省开展了“美丽乡村”的评选活动,下表是我省六个州(市)推荐候选的“美丽乡村”个数统计结果:州(市)A B C D E F推荐数(个)362731564854在上表统计的数据中,平均数和中位数分别为( ) A.42,43.5 B. 42,42 C. 31,42 D. 36,54考点:中位数;加权平均数..分析:根据平均数的公式求得上表统计的数据中的平均数,将其按从小到大的顺序排列中间的那个是中位数.解答:解:P=(36+27+31+56+48+54)=42,把这几个数据按从小到大顺序排列为:27,31,36,48,54,56,中位数W=(36+48)=42.故选B.点评:本题考查了平均数和中位数的知识,属于基础题,解答本题的关键是熟练掌握平均数和中位数的定义.8.(3分)(2015•云南)若扇形面积为3π,圆心角为60°,则该扇形的半径为( ) A.3 B. 9 C. 2 D. 3考点:扇形面积的计算..分析:已知了扇形的圆心角和面积,可直接根据扇形的面积公式求半径长.解答:解:扇形的面积==3π.解得:r=3.故选D.点评:本题主要考查了扇形的面积公式=.熟练将公式变形是解题关键.二、填空题(本大题共6小题,每小题3分,满分18分)9.(3分)(2015•云南)分解因式:3x2﹣12= 3(x﹣2)(x+2) .考点:提公因式法与公式法的综合运用..分析:原式提取3,再利用平方差公式分解即可.解答:解:原式=3(x2﹣4)=3(x+2)(x﹣2).故答案为:3(x+2)(x﹣2).点评:本题考查因式分解.因式分解的步骤为:一提公因式;二看公式.公式包括平方差公式与完全平方公式,要能用公式法分解必须有平方项,如果是平方差就用平方差公式来分解,如果是平方和需要看还有没有两数乘积的2倍,如果没有两数乘积的2倍还不能分解.解答这类题时一些学生往往因分解因式的步骤、方法掌握不熟练,对一些乘法公式的特点记不准确而误选其它选项.要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以提取公因式的要先提取公因式.10.(3分)(2015•云南)函数y=的自变量x的取值范围是 x≥7 .考点:函数自变量的取值范围..分析:函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数.解答:解:根据题意得:x﹣7≥0,解得x≥7,故答案为x≥7.点评:本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.11.(3分)(2015•云南)如图,直线l1∥l2,并且被直线l3,l4所截,则∠α= 64° .考点:平行线的性质..分析:首先根据三角形外角的性质,求出∠1的度数是多少;然后根据直线l1∥l2,可得∠α=∠1,据此求出∠α的度数是多少即可.解答:解:如图1,,∵∠1+56°=120°,∴∠1=120°﹣56°=64°,又∵直线l1∥l2,∴∠α=∠1=64°.故答案为:64°.点评:此题主要考查了平行线的性质,要熟练掌握,解答此题的关键是要明确:(1)定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.(2)定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.(3)定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.12.(3分)(2015•云南)一台电视机原价是2500元,现按原价的8折出售,则购买a台这样的电视机需要 2000a 元.考点:列代数式..分析:现在以8折出售,就是现价占原价的80%,把原价看作单位“1”,根据一个数乘百分数的意义,用乘法解答.解答:解:2500a×80%=2000a(元).故答案为2000a元.点评:本题考查了列代数式,解题的关键是理解打折问题在实际问题中的应用.13.(3分)(2015•云南)如图,点A,B,C是⊙O上的点,OA=AB,则∠C的度数为 30° .考点:圆周角定理;等边三角形的判定与性质..分析:由OA=AB,OA=OB,可得△OAB是等边三角形,即可得∠AOB=60°,又由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠C的度数.解答:解:∵OA=AB,OA=OB,∴OA=OB=AB,即△OAB是等边三角形,∴∠AOB=60°,∴∠C=∠AOB=30°.故答案为30°.点评:此题考查了圆周角定理与等边三角形的判定与性质.此题比较简单,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用.14.(3分)(2015•云南)如图,在△ABC中,BC=1,点P1,M1分别是AB,AC边的中点,点P2,M2分别是AP1,AM1的中点,点P3,M3分别是AP2,AM2的中点,按这样的规律下去,P n M n的长为 (n 为正整数).考点:三角形中位线定理..专题:规律型.分析:根据中位线的定理得出规律解答即可.解答:解:在△ABC中,BC=1,点P1,M1分别是AB,AC边的中点,点P2,M2分别是AP1,AM1的中点,点P3,M3分别是AP2,AM2的中点,可得:P1M1=,P2M2=,故P n M n=,故答案为:点评:此题考查三角形中位线定理,关键是根据中位线得出规律进行解答.三、解答题(本大题共9小题,满分58分)15.(5分)(2015•云南)化简求值:[﹣]•,其中x=+1.考点:分式的化简求值..分析:首先将中括号内的部分进行通分,然后按照同分母分式的减法法则进行计算,再按照分式的乘法法则计算、化简,最后再代数求值即可.解答:解:原式===,将x=+1代入得:原式==.点评:本题主要考查的是分式的化简以及二次根式的运算,掌握分式的通分、加减、乘除等运算法则是解题的关键.16.(5分)(2015•云南)如图,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并说明理由.考点:全等三角形的判定..专题:开放型.分析:已知这两个三角形的一个边与一个角相等,所以再添加一个对应角相等即可.解答:解:添加∠BAC=∠DAC.理由如下:在△ABC与△ADC中,,∴△ABC≌△ADC(AAS).点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角. 17.(7分)(2015•云南)为有效开展阳光体育活动,云洱中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?考点:一元一次方程的应用..分析:设胜了x场,那么负了(8﹣x)场,根据得分为13分可列方程求解.解答:解:设胜了x场,那么负了(8﹣x)场,根据题意得:2x+1•(8﹣x)=13,x=5,13﹣5=8.答:九年级一班胜、负场数分别是5和8.点评:本题考查了一元一次方程的应用,还考查了学生的理解题意能力,关键设出胜的场数,以总分数做为等量关系列方程求解.18.(5分)(2015•云南)已知A,B两地相距200千米,一辆汽车以每小时60千米的速度从A地匀速驶往B地,到达B地后不再行驶,设汽车行驶的时间为x小时,汽车与B地的距离为y千米.(1)求y与x的函数关系,并写出自变量x的取值范围;(2)当汽车行驶了2小时时,求汽车距B地有多少千米?考点:一次函数的应用..分析:(1)根据剩余的路程=两地的距离﹣行驶的距离即可得到y与x 的函数关系式,然后再求得汽车行驶200千米所需要的时间即可求得x的取值范围.(2)将x=2代入函数关系式,求得y值即可.解答:解:(1)y=200﹣60x(0≤x≤);(2)将x=2代入函数关系式得:y=200﹣60×2=80千米.答:汽车距离B地80千米.点评:本题主要考查的是列函数关系式,读懂题意,明确剩余的路程=两地的距离﹣行驶的距离是解答本题的关键.19.(6分)(2015•云南)为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥,建桥过程中需测量河的宽度(即两平行河岸AB 与MN之间的距离).在测量时,选定河对岸MN上的点C处为桥的一端,在河岸点A处,测得∠CAB=30°,沿河岸AB前行30米后到达B处,在B处测得∠CBA=60°,请你根据以上测量数据求出河的宽度.(参考数据:≈1.41,≈1.73,结果保留整数)考点:解直角三角形的应用..分析:如图,过点C作CD⊥AB于点D,通过解直角△ACD和直角△BCD来求CD的长度.解答:解:如图,过点C作CD⊥AB于点D,设CD=x.∵在直角△ACD中,∠CAD=30°,∴AD==x.同理,在直角△BCD中,BD==x.又∵AB=30米,∴AD+BD=30米,即x+x=30.解得x=13.答:河的宽度的13米.点评:本题考查了解直角三角形的应用.关键把实际问题转化为数学问题加以计算.20.(7分)(2015•云南)现有一个六面分别标有数字1,2,3,4,5,6且质地均匀的正方形骰子,另有三张正面分别标有数字1,2,3的卡片(卡片除数字外,其他都相同),先由小明投骰子一次,记下骰子向上一面出现的数字,然后由小王从三张背面朝上放置在桌面上的卡片中随机抽取一张,记下卡片上的数字.(1)请用列表或画树形图(树状图)的方法,求出骰子向上一面出现的数字与卡片上的数字之积为6的概率;(2)小明和小王做游戏,约定游戏规则如下:若骰子向上一面出现的数字与卡片上的数字之积大于7,则小明赢;若骰子向上一面出现的数字与卡片上的数字之积小于7,则小王赢,问小明和小王谁赢的可能性更大?请说明理由.考点:游戏公平性;列表法与树状图法..分析:(1)列举出所有情况,看向上一面出现的数字与卡片上的数字之积为6的情况数占总情况数的多少即可.(2)概率问题中的公平性问题,解题的关键是计算出各种情况的概率,然后比较即可.解答:解:(1)如图所示:共18种情况,数字之积为6的情况数有3种,P(数字之积为6)==.(2)由上表可知,该游戏所有可能的结果共18种,其中骰子向上一面出现的数字与卡片上的数字之积大于7的有7种,骰子向上一面出现的数字与卡片上的数字之积小于7的有11种,所以小明赢的概率=,小王赢的概率=,故小王赢的可能性更大.点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.21.(7分)(2015•云南)2015年某省为加快建设综合交通体系,对铁路、公路、机场三个重大项目加大了建设资金的投入.(1)机场建设项目中所有6个机场投入的建设资金金额统计如图1,已知机场E投入的建设资金金额是机场C,D所投入建设资金金额之和的三分之二,求机场E投入的建设资金金额是多少亿元?并补全条形统计图;(2)将铁路、公路机场三项建设所投入的资金金额绘制成了如图2扇形统计图以及统计表,根据扇形统计图及统计表中信息,求得a= 170 ,b= 30 ,c 60% ,d 122.4° ,m =500 .(请直接填写计算结果)铁路公路机场铁路、公路、机场三项投入建设资金总金额(亿元)投入资金(亿元)300a b m所占百分比c34%6%所占圆心角216°d21.6°考点:条形统计图;统计表;扇形统计图..分析:(1)由机场E投入的建设资金金额是机场C,D所投入建设资金金额之和的三分之二,即可得到结果;(2)根据扇形统计图及统计表中提供的信息,列式计算即可得到结果.解答:解:(1)(2+4)×=4,答:机场E投入的建设资金金额是4亿元,如图所示:(2)c=1﹣34%﹣6%=60%,300÷(1﹣34%﹣6%)=500(亿)a=500×34%=170(亿),b=500×6%=30(亿),d=360°﹣216°﹣21.6°=122.4°,m=300+170+30=500(亿).故答案为:170,30,60%,122.4°,500.点评:本题主要考查了条形统计图与扇形统计图的应用,根据图象得出正确的信息是解题关键.22.(7分)(2015•云南)如图,在矩形ABCD中,AB=4,AD=6,M,N分别是AB,CD的中点,P是AD上的点,且∠PNB=3∠CBN.(1)求证:∠PNM=2∠CBN;(2)求线段AP的长.考点:矩形的性质;全等三角形的判定与性质;角平分线的性质..专题:计算题.分析:(1)由MN∥BC,易得∠CBN=∠MNB,由已知∠PNB=3∠CBN,根据角的和差不难得出结论;(2)连接AN,根据矩形的轴对称性,可知∠PAN=∠CBN,由(1)知∠PNM=2∠CBN=2∠PAN,由AD∥MN,可知∠PAN=∠ANM,所以∠PAN=∠PNA,根据等角对等边得到AP=PN,再用勾股定理列方程求出AP.解答:解:(1)∵四边形ABCD是矩形,M,N分别是AB,CD的中点,∴MN∥BC,∴∠CBN=∠MNB,∵∠PNB=3∠CBN,∴∠PNM=2∠CBN;(2)连接AN,根据矩形的轴对称性,可知∠PAN=∠CBN,∵MN∥AD,∴∠PAN=∠ANM,由(1)知∠PNM=2∠CBN,∴∠PAN=∠PNA,∴AP=PN,∵AB=CD=4,M,N分别为AB,CD的中点,∴DN=2,设AP=x,则PD=6﹣x,在Rt△PDN中PD2+DN2=PN2,∴(6﹣x)2+22=x2,解得:x=所以AP=.点评:本题主要考查了矩形的性质、平行线的性质、等腰三角形的判定与性质、勾股定理的综合运用,难度不大,根据角的倍差关系得到∠PAN=∠PNA,发现AP=PN是解决问题的关键.23.(9分)(2015•云南)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴相交于A,B两点,与y轴相交于点C,直线y=kx+n(k≠0)经过B,C两点,已知A(1,0),C(0,3),且BC=5.(1)分别求直线BC和抛物线的解析式(关系式);(2)在抛物线的对称轴上是否存在点P,使得以B,C,P三点为顶点的三角形是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.考点:二次函数综合题..专题:综合题.分析:(1)由C的坐标确定出OC的长,在直角三角形BOC中,利用勾股定理求出OB的长,确定出点B坐标,把B与C坐标代入直线解析式求出k与n的值,确定出直线BC解析式,把A与B坐标代入抛物线解析式求出a的值,确定出抛物线解析式即可;(2)在抛物线的对称轴上不存在点P,使得以B,C,P三点为顶点的三角形是直角三角形,如图所示,分两种情况考虑:当PC⊥CB时,△PBC 为直角三角形;当P′B⊥BC时,△BCP′为直角三角形,分别求出P的坐标即可.解答:解:(1)∵C(0,3),即OC=3,BC=5,∴在Rt△BOC中,根据勾股定理得:OB==4,即B(4,0),把B与C坐标代入y=kx+n中,得:,解得:k=﹣,n=3,∴直线BC解析式为y=﹣x+3;由A(1,0),B(4,0),设抛物线解析式为y=a(x﹣1)(x﹣4)=ax2﹣5ax+4a,把C(0,3)代入得:a=,则抛物线解析式为y=x2﹣x+3;(2)存在.如图所示,分两种情况考虑:∵抛物线解析式为y=x2﹣x+3,∴其对称轴x=﹣=﹣=.当PC⊥CB时,△PBC为直角三角形,∵直线BC的斜率为﹣,∴直线PC斜率为,∴直线PC解析式为y﹣3=x,即y=x+3,与抛物线对称轴方程联立得,解得:,此时P(,);当P′B⊥BC时,△BCP′为直角三角形,同理得到直线P′B的斜率为,∴直线P′B方程为y=(x﹣4)=x﹣,与抛物线对称轴方程联立得:,解得:,此时P′(,﹣2).综上所示,P(,)或P′(,﹣2).点评:此题考查的是二次函数综合题,涉及的知识有:坐标与图形性质,待定系数法确定函数解析式,二次函数的性质,以及两直线垂直时斜率的关系,熟练掌握待定系数法是解本题的关键.。
A B C D E 1正面昆明市2007年高中(中专)招生统一考试数 学 试 卷一、选择题:(每小题3分,满分27分。
在每小题给出得四个选项中,只有一项是正确的;每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号的小框涂黑。
)1、2的倒数是( )A 、2B 、-2C 、12D 、12- 2、我省大力开展节能增产活动,开发利用煤矿安全“杀手”煤层瓦斯发电。
经测算,我省深层煤层瓦斯资源量可发电1400亿千瓦时以上,1400亿千瓦时用科学记数法表示为( )A 、121.410⨯千瓦时B 、111.410⨯千瓦时C 、101.410⨯千瓦时D 、101410⨯千瓦时3、如图,△ABC 中,点D 、E 分别在AB 、BC 边上,DE ∥AC ,∠B =50°,∠C =70°,那么∠1的度数是( )A 、70°B 、60°C 、50°D 、40°4、下列运算中,正确的是( )A 、326a a a ⋅=B 、22(3)6a a -=C=D 、22(3)(3)9a b a b a b -+=- 5、左下图是由几个小正方体组成的一个几何体,这个几何体的左视图是( )6、点A (2,m )在反比例函数12y x=-的图象上,则m 的值为( ) A 、24 B 、-24 C 、6 D 、-67、初三某班10名男同学“引体向上”的测试成绩(单位:次数)分别是9,14,10,15,7,9,16,10,11,9,这组数据的众数、中位数、平均数依次是( )A 、9,10,11B 、10,11,9C 、9,11,10D 、10,9,118、如果只用一种正多边形进行镶嵌,那么在下面的正多边形中,不能镶嵌成一个平面的是( )A 、正三角形B 、正方形C 、正五边形D 、正六边形9、如图,在钝角三角形ABC 中,AB =6cm ,AC =12cm ,动点D 从A 点出发到B 点为止,动点E 从C 点出发到A 点为止。
题目篇(2014年昆明) 23. (本小题9分)如图,在平面直角坐标系中,抛物线)0(32≠-+=a bx ax y 与x 轴交于点A (2-,0)、B (4,0)两点,与y 轴交于点C 。
(1)求抛物线的解析式;(2)点P 从A 点出发,在线段AB 上以每秒3个单位长度的速度向B 点运动,同时点Q 从B 点出发,在线段BC 上以每秒1个单位长度向C 点运动。
其中一个点到达终点时,另一个点也停止运动。
当△PBQ 存在时,求运动多少秒使△PBQ 的面积最大,最多面积是多少(3)当△PBQ 的面积最大时,在BC 下方的抛物线上存在点K ,使2:5S PBQ CBK =△△:S ,求K 点坐标。
|…(2013年昆明)23.(本小题9分)如图,矩形OABC在平面直角坐标系xoy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O、A两点,直线AC交抛物线于点D。
(1)求抛物线的解析式;(2)求点D的坐标;(3)若点M在抛物线上,点N在x轴上,是否存在以点A、D、M、N为顶点的四边形是平行四边形若存在,求出点N的坐标;若不存在,请说明理由。
,,"(2012年昆明)23.(本小题9分)如图,在平面直角坐标系中,直线123y x =-+交x 轴于点P ,交y 轴于点A ,抛物线212y x bx c =-++的图象过点(1,0)E -,并与直线相交于A 、B 两点.⑴ 求抛物线的解析式(关系式);—⑵ 过点A 作AC AB ⊥交x 轴于点C ,求点C 的坐标;⑶ 除点C 外,在坐标轴上是否存在点M ,使得MAB ∆是直角三角形若存在,请求出点M 的坐标,若不存在,请说明理由.)|}(2011年昆明)25、如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)求AC、BC的长;(2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围;(3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC 是否相似,请说明理由;¥(4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小,若存在,求出最小周长,若不存在,请说明理由.`$(2010年昆明)25.(12分)在平面直角坐标系中,抛物线经过O(0,0)、A(4,0)、B(3,233)三点.(1)求此抛物线的解析式;(2)以OA的中点M为圆心,OM长为半径作⊙M,在(1)中的抛物线上是否存在这样的点P,过点P作⊙M的切线l ,且l与x轴的夹角为30°,若存在,请求出此时点P的坐标;若不存在,请说明理由.(注意:本题中的结果可保留根号)([@(云南省2010年)24.(本小题12分)如图,在平面直角示系中,A、B两点的坐标分别是A(-1,0)、B(4,0),点C在y轴的负半轴上,且∠ACB=90°,(1)求点C的坐标;(2)求经过A、B、C三点的抛物线的解析式;(3)直线l⊥x轴,若直线l由点A开始沿x轴正方向以每秒1个单位的速度匀速向右平移,设运动时间为t(0≤t≤5)秒,运动过程中直线l在△ABC中所扫|>:(云南省2013年)23.(9分)如图,四边形ABCD是等腰梯形,下底AB在x 轴上,点D在y轴上,直线AC与y轴交于点E(0,1),点C的坐标为(2,3).(1)求A、D两点的坐标;(2)求经过A、D、C三点的抛物线的函数关系式;(3)在y轴上是否在点P,使△ACP是等腰三角形若存在,请求出满足条件的所有点P的坐标;若不存在,请说明理由.;^(云南省2014年)23.(9分)在平面直角坐标系中,点O 为坐标原点,矩形ABCO 的顶点分别为A (3,0)、B (3,4)、C (0,4),点D 在y 轴上,且点D 的坐标为(0,-5),点P 是直线AC 上的一个动点。
中考压轴题
1.(2007昆明)如图,在直角坐标系中,点A 的坐标为(-2,0),连接OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB .
(1)求点B 的坐标;
(2)求经过A 、O 、B 三点的抛物线的解析式;
(3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由;
(4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△P AB 是否有最大面积?若有,求出此时P 点的坐标及△P AB 的最大面积;若没有,请说明理由.
(注意:本题中的结果均保留根号)
2.(2008昆明)如图,在直角坐标系中,以点(30)M ,为圆心,以6为半径的圆分别交x 轴的正半轴于点A ,
交x 轴的负半轴于点B ,交y 轴的正半轴于点C ,过点C 的直线交x 轴的负半轴于点(90)D -,. (1)求A C ,两点的坐标;
(2)求证:直线CD 是M 的切线;
(3)若抛物线2y x bx c =++经过M A ,两点,求此抛物线的解析式;
(4)连接AC ,若(3)中抛物线的对称轴分别与直线CD 交于点E ,与AC 交于点F ,如果点P 是抛物线上的动点,是否存在这样的点P ,使得:PAM CEF S S △
△=,若存在,请求出此时点P 的坐标;若不存在,请说明理由.(注意:本题中的结果均保留根号)
3.(2009昆明)如图,在平面直角坐标系中,四边形OABC 是梯形,OA ∥BC ,点A 的坐标为(6,0),点
B 的坐标为(4,3),点
C 在y 轴的正半轴上.动点M 在OA 上运动,从O 点出发到A 点;动点N 在AB 上运动,从A 点出发到B 点.两个动点同时出发,速度都是每秒1个单位长度,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t (秒). (1)求线段AB 的长;当t 为何值时,MN ∥OC ? (2)设△CMN 的面积为S ,求S 与t 之间的函数解析式,并指出自变量t 的取值范围;S 是否有最小值?若有最小值,最小值是多少?
(3)连接AC ,那么是否存在这样的t ,使MN 与AC 互相垂直?若存在,求出这时的t 值;若不存在,
请说明理由.
4.(2010昆明)在平面直角坐标系中,抛物线经过O (0,0)、A (4,0)、B (3
,. (1)求此抛物线的解析式;
(2)以OA 的中点M 为圆心,OM 长为半径作⊙M ,在(1)中的抛物线上是否存在这样的点P ,过点
P 作⊙M 的切线l ,且l 与x 轴的夹角为30°,若存在,请求出此时点P 的坐标;若不存在,请说明理由.(注意:本题中的结果可保留根号)
5.(2011昆明)如图,在Rt △ABC 中,∠C=90°,AB=10cm ,AC :BC=4:3,点P 从点A 出发沿AB 方向向点B 运动,速度为1cm/s ,同时点Q 从点B 出发沿B→C→A 方向向点A 运动,速度为2cm/s ,当一个运动点到达终点时,另一个运动点也随之停止运动. (1)求AC 、BC 的长;
(2)设点P 的运动时间为x (秒),△PBQ 的面积为y (cm 2
),当△PBQ 存在时,求y 与x 的函数关系式,
并写出自变量x 的取值范围;
(3)当点Q 在CA 上运动,使PQ ⊥AB 时,以点B 、P 、Q 为定点的三角形与△ABC 是否相似,请说明理由;
(4)当x=5秒时,在直线PQ 上是否存在一点M ,使△BCM 得周长最小,若存在,求出最小周长,若不存在,请说明理由.
6.(2012昆明)如图,在平面直角坐标系中,直线1
23
y x =-+交x 轴于点P ,交y 轴于点A ,抛物线2
12
y x bx c =-
++的图象过点(1,0)E -,并与直线相交于A 、B 两点. ⑴ 求抛物线的解析式(关系式)
; ⑵ 过点A 作AC AB ⊥交x 轴于点C ,求点C 的坐标;
⑶ 除点C 外,在坐标轴上是否存在点M ,使得MAB ∆是直角三角形?若存在,请求出点M 的
坐标,若不存在,请说明理由.
7.(2013昆明)如图,矩形OABC 在平面直角坐标系xoy 中,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA =4,OC =3,若抛物线的顶点在边BC 上,且抛物线经过O 、A 两点,直线AC 交抛物线于点D 。
(1)求抛物线的解析式; (2)求点D 的坐标;
(3)若点M 在抛物线上,点N 在x 轴上,是否存在以A 、D 、M 、N 为顶点的四边形是平行四边形?若存在,求出点N 的坐标;若不存在,请说明理由。
8.(2014昆明)如图,在平面直角坐标系中,抛物线)0(32≠-+=a bx ax y 与x 轴交于点A (2-,
0)、B (4,0)两点,与y 轴交于点C 。
(1)求抛物线的解析式;
(2)点P 从A 点出发,在线段AB 上以每秒3个单位长度的速度向B 点运动,同时点Q 从B 点出发,在线段BC 上以每秒1个单位长度向C 点运动。
其中一个点到达终点时,另一个点也停止运动。
当△PBQ 存在时,求运动多少秒使△PBQ 的面积最大,最多面积是多少?
(3)当△PBQ 的面积最大时,在BC 下方的抛物线上存在点K ,使2:5S P B Q C B K =△△:S ,求K 点坐标。
9.(2015昆明)如图,在平面直角坐标系中,抛物线y=ax2+x+c(a≠0)与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C,点A的坐标为(4,0),抛物线的对称轴是直线x=.(1)求抛物线的解析式;
(2)M为第一象限内的抛物线上的一个点,过点M作MG⊥x轴于点G,交AC于点H,当线段CM=CH 时,求点M的坐标;
(3)在(2)的条件下,将线段MG绕点G顺时针旋转一个角α(0°<α<90°),在旋转过程中,设线段MG与抛物线交于点N,在线段GA上是否存在点P,使得以P、N、G为顶点的三角形与△ABC 相似?如果存在,请求出点P的坐标;如果不存在,请说明理由.。