数学七年级下人教新课标9.3不等式应用题专项练习
- 格式:doc
- 大小:74.00 KB
- 文档页数:6
1.不等式组⎪⎩⎪⎨⎧>+≤-053021x x 的解集为( )A .-53<x ≤-12 B .x >-53C .x ≥0D .x ≥-2 2.不等式组⎩⎨⎧+≤->-7472023x x x 的非负整数解的个数为( ) A .2个 B .1个 C .0个 D .无数多个3.解集是如图所示的不等式组为( )A .⎩⎨⎧>-≥+0302x xB .⎩⎨⎧<-<+0302x xC .⎪⎩⎪⎨⎧<-≤-013142x xD .⎪⎩⎪⎨⎧<-≥-013142x x 4.下列不等式组中,无解的是( )A .⎩⎨⎧<+<-0402x xB .⎩⎨⎧>+<-0402x xC .⎩⎨⎧<+>-0402x xD .⎩⎨⎧>+>-0402x x 5.不等式组⎩⎨⎧->-≥)7(3211x x x 的整数解的和是( ) A .9 B .10 C .231 D .66.若方程组⎩⎨⎧+-=-=+a y x y x 323的解满足⎩⎨⎧>>00y x ,则a 的取值范围是( ) A .a >-3 B .-6<a <3 C .-3<a <6 D .不同于以上答案7.用120根火柴,首尾相接围成一个三条边互不相等的三角形,已知最大边是最小边的3倍,则最小边用了( )A .20根火柴B .19根火柴C .18或19根火柴D .19或20根火柴 答案:1.C2.A3.C4.C5.B6.C7.C7C学科网,最大最全的中小学教育资源网站,教学资料详细分类下载!【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】。
人教版数学七年级下册 第九章 不等式与不等式组 9.3 一元一次不等式组课后巩固练习试题(含解析)一、单选题1.下列选项中是一元一次不等式组的是( )A .00x y y z ->⎧⎨+>⎩B .2010x x x ⎧->⎨+<⎩C .200y x y +>⎧⎨+<⎩D .2300x x +>⎧⎨>⎩ 2.不等式组2030x x -≤⎧⎨+>⎩的解集是( ) A .-32x <≤B .-32x ≤<C .2x ≥D .3x <- 3.不等式组26,14x x <⎧⎨+≥-⎩的解集是( ) A .-5≤x<3 B .-5<x≤3C .x≥-5D .x <3 4.不不不不5511x x x m +<+⎧⎨->⎩不不不不x 不1不不m 不不不不不不不 不 A .m ≥1 B .m ≤1 C .m ≥0 D .m ≤0 5.若不等式组-00x b x a <⎧⎨+>⎩的解集为2<x<3,则a,b 的值分别为( ) A .-2,3B .2,-3C .3,-2D .-3,2 6.已知不等式组{x ≻2x ≺a的解集中共有5个整数,则a 的取值范围为( ) A .7<a≤8 B .6<a≤7 C .7≤a <8 D .7≤a≤8 7.某旅行社某天有空房10间,当天接待了一个旅行团,当每个房间只住3人时,有一个房间住宿情况是不满也不空.若旅行团的人数为偶数,求旅行团共有多少人( )8.为庆祝“六·一”国际儿童节,龙沙区某小学组织师生共360人参加公园游园活动,有A、B两种型号客车可供租用,两种客车载客量分别为45人、30人,要求每辆车必须满载,则师生一次性全部到达公园的租车方案有A.3种B.4种C.5种D.6种9.如图,天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为()A.B.C.D.10.如图是测量一物体体积的过程:步骤一:将180 mL的水装进一个容量为300 mL的杯子中;步骤二:将三个相同的玻璃球放入水中,结果水没有满;步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm3)( ). A.10 cm3以上,20 cm3以下B.20 cm3以上,30 cm3以下C.30 cm3以上,40 cm3以下D.40 cm3以上,50 cm3以下二、填空题11.不等式组219351xx+≤⎧⎨->⎩的解集是______.12.不等式组112(3)33xx x+⎧⎨+->⎩的解集是_____.13.如果不等式组841x xx m+<-⎧⎨>⎩的解集是3x>,那么m的取值范围是______.14.如果关于x的不等式组232x ax a>+⎧⎨<-⎩无解,则a的取值范围是_____.15.某车间经过技术改造每天生产的汽车配件比原来多10个,因而8天生产的配件超过200个,第二次技术改造后,每天又比第一次技术改造后多做配件27个,这样只做了4天,所做配件个数就超过了第一次改造后8天所做配件的个数.则这个车间原来每天生产配件________个.16.某校六年级的80名同学与2名老师共82人去公园春游,学校只准备了180瓶汽水.总务主任向老师交待,每人供应3瓶汽水(包括老师),不足部分可到公园里购买,回校后报销.到了公园,商店贴有告示:每5个空瓶可换一瓶汽水.于是要求大家喝完汽水后空瓶由老师统一退瓶.那么用最佳的方法筹划,至少还要购买______瓶汽水回学校报销.三、解答题17.解不等式组:20512(1)xx x-<⎧⎨+>-⎩①②.18.解不等式组:()41710853x xxx⎧+≤+⎪⎨--<⎪⎩,并写出它的所有非负整数解.19.某车间有3个小组计划在10天内生产500件产品(每天每个小组生产量相同),按原先的生产速度,不能完成任务,如果每个小组每天比原先多生产1件产品,就能提前完成任务,请问每个小组原先每天生产多少件产品.(结果取整数)20.已知关于x,y的方程组2521x y kx y k+=⎧⎨-=-⎩(1)当1x=时,求y的值;(2)若x y>,求k的取值范围.21.某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金.22.我市南县大力发展农村旅游事业,全力打造“洞庭之心湿地公园”,其中罗文村的“花海、涂鸦、美食”特色游享誉三湘,游人如织.去年村民罗南洲抓住机遇,返乡创业,投入20万元创办农家乐(餐饮+住宿),一年时间就收回投资的80%,其中餐饮利润是住宿利润的2倍还多1万元.(1)求去年该农家乐餐饮和住宿的利润各为多少万元?(2)今年罗南洲把去年的餐饮利润全部用于继续投资,增设了土特产的实体店销售和网上销售项目.他在接受记者采访时说:“我预计今年餐饮和住宿的利润比去年会有10%的增长,加上土特产销售的利润,到年底除收回所有投资外,还将获得不少于10万元的纯利润.”请问今年土特产销售至少有多少万元的利润?参考答案1.D【解析】解:A、含有两个未知数,错误;B、未知数的次数是2,错误;C、含有两个未知数,错误;D、符合一元一次不等式组的定义,正确;故选D.2.A【解析】解:2030 xx-≤⎧⎨+>⎩①②解不等式①得:x ⩽ 2,解不等式②得:x>−3,∴不等式组的解集为:−3<x⩽2,故选:A.3.A【解析】解:2614xx<⎧⎨+≥-⎩①②不由①得,x<3不由②得,5x≥-,故不等式组的解集为:5 3.x -≤<故选:A.4.D【解析】解:不等式整理得:11x x m >⎧⎨>+⎩,由不等式组的解集为x不1,得到m+1≤1,解得:m≤0. 故选D.5.A【解析】00x b x a -⎧⎨+⎩<①>② , ∵解不等式①得:x不b不解不等式②得:x不-a不∴不等式组的解集是:-a不x不b不∵不等式组0,0x b x a -<⎧⎨+>⎩的解集为2<x <3, 不-a=2不b=3不即a=-2不故选A不6.A【解析】根据不等式组的解集有5个整数,则5个整数为3、4、5、6、7,则a 的取值范围为7<a≤8.7.B设旅行团共有x人,由题意,得0<x-3×9<3,解得27<x<30,不x为偶数,不x=28.即旅行团共有28人.故选B8.C【解析】设租用A型号客车x辆,B型号客车y辆,则45x+30y=360,即3y12x2=-.不x,y为非负整数,不x0{3y12x02≥=-≥且x为偶数,解得0≤x≤8(x为偶数).不x=0,2,4,6,8,对应的y=12,9,6,3,0.不师生一次性全部到达公园的租车方案有5种.故选C.9.A【解析】∵由图可知,1g<m<2g不∴在数轴上表示为:不10.C【解析】设玻璃球的体积为x ,则有33001804300180x x -⎧⎨-⎩<> 解得30不x不40不故一颗玻璃球的体积在30cm 3以上,40cm 3以下.故选C不11.2<x≤4【解析】解:219351x x +≤⎧⎨->⎩①②,由①得,x≤4,由②得,x >2, 故不等式组的解集为:2<x≤4.故答案为:2<x≤4.12.0≤x<3【解析】()112333x x x ①②+≥⎧⎪⎨+->⎪⎩,解①得0x ≥;解②得3x <;∴不等式组的解集是03x ≤<.故答案为0≤x<3.13.3m ≤.【解析】在841x x x m +<-⎧⎨>⎩中, 由(1)得,3x >,由(2)得,x m >,根据已知条件,不等式组解集是3x >.根据“同大取大”原则3m ≤.故答案为:3m ≤.14.a ≤2.【解析】解不21322x a x a >+⋯⋯=⎧⎨<-⋯⋯=⎩①② ∴不等式组的解集是a 2x 3a 2+<<-∵不等式组无解,即a 23a 2+≥-,解得不a 2≤15.16【解析】解:设原来每天生产配件x 个,根据题意,得2008(10)4(1027)<+<++x x , 解得1517x <<. x 是整数,x 的值为16.故答案为:16.16.17【解析】设还要购买x瓶,则180+x+1804x+≥82×3,解得x≥16.8,不x必须是整数,不x≥17,不至少还要购买17瓶汽水回学校报销.故答案为17.17.-1<x<2【解析】解不等式①,得x<2,解不等式②,得x>-1,∴不等式的解集为-1<x<2.18.不等式组的所有非负整数解为:0不1不2不3不【解析】解:4(1)710 {853x xxx+≤+--<①②由不等式①得:x≥-2,由不等式②得:,72x<,∴不等式组的解集为:722x-<≤,∴x的非负整数解为:0,1,2,3.19.16件【解析】解:设每个小组原先每天生产x 件产品,310500310(1)500x x ⨯⋅<⎧⎨⨯+>⎩, 解得475033x <<, 因为x 整数,所以x=16.20.(1)x=1,y=2;(2)12k <【解析】 解:2521x y k x y k +=⎧⎨-=-⎩(1)①+②可得:71x y -=∵1x =∴7116y =⨯-=(2)方法一 由方程组解得:19729k x k y +⎧=⎪⎪⎨-⎪=⎪⎩∵x y >∴17299k k +-> ∴12k < 方法二②-①可得:3312x y k =--∵x y >∴0x y ->∴1 2 3()0k x y --=> ∴12k < 21.(1)175人;(2)1440元【解析】解:(1)设单独租用35座客车需x 辆,由题意得:3555(1)45x x =--,解得:5x =.∴35355175x =⨯=(人).答:该校八年级参加社会实践活动的人数为175人.(2)设租35座客车y 辆,则租55座客车(4y -)辆,由题意得:3555(4)175{320400(4)1500y y y y +-≥+-≤, 解这个不等式组,得11144y ≤≤2. ∵y 取正整数,∴y = 2.∴4-y = 4-2 = 2.∴320×2+400×2 = 1440(元).所以本次社会实践活动所需车辆的租金为1440元.22.(1)去年餐饮利润11万元,住宿利润5万元(2)今年土特产销售至少有7.4万元的利润【解析】(1)设去年餐饮利润x万元,住宿利润y万元,依题意得:,解得:,答:去年餐饮利润11万元,住宿利润5万元;(2)设今年土特产利润m万元,依题意得:16+16×(1+10%)+m﹣20﹣11≥10,解之得,m≥7.4,答:今年土特产销售至少有7.4万元的利润.。
人教版七年级下册数学不等式与不等式组应用题训练1.列方程组或不等式解决问题:2022年北京冬奥会、冬残奥会已圆满结束,活泼敦厚的“冰墩墩”,喜庆祥和的“雪容融”引起广大民众的喜爱.王老师想要购买两种吉祥物作为本次冬奥会的纪念品,已知购买2件“冰墩墩”和1件“雪容融”共需150元,购买3件“冰墩墩”和2件“雪容融”共需245元.(1)求“冰墩墩”和“雪容融”的单价;(2)学校现需一次性购买上述型号的“冰墩墩”和“雪容融”纪念品共100个,要求购买的总费用不超过5000元,则最多可以购买多少个“冰墩墩”?2.为支援上海抗击新冠肺炎,甲地捐赠多批救援物资并联系了一家快递公司进行运送.快递公司准备安排A、B两种车型把这批物资从甲地快速送到上海.其中,从甲地到上海,A型货车1辆、B型货车1辆,一共需补贴油费1000元;A型货车10辆、B 型货车6辆,一共需补贴油费8400元.(1)从甲地到上海,A、B两种型号的货车,每辆车需补贴的油费分别是多少元?(2)如果需派出20辆车,并且预算油费补贴不超过9600元,那么该快递公司至多能派出几辆A型货车?3.开学前夕,某书店计划购进A、B两种笔记本共350 本.已知A种笔记本的进价为12 元/本,B种笔记本的进价为15 元/本,共计4800 元.(1)请问购进了A种笔记本多少本?(2)在销售过程中,A、B两种笔记本的标价分别为20元/本、25元/本.受疫情影响,两种笔记本按标价各卖出m本以后,该店进行促销活动,剩余的A种笔记本按标价的七折全部售出,剩余的B种笔记本按成本价清货,若两种笔记本的总利润不少于2348元,请求出m的最小值.4.抗击新型冠状肺炎疫情期间,84消毒液和酒精都是重要的防护物资.某药房根据实际需要采购了一批84消毒液和酒精,共花费11000元,84消毒液和酒精的进价和售价如下:(1)该药房销售完这批84消毒液和酒精后共获利5400元,则84消毒液和酒精各销售了多少瓶?(2)随着疫情的发展,结合药房实际,该药房打算用不超过6600元钱再次采购84消毒液和酒精共300瓶,已知84消毒液和酒精价格不变,则第二批最多采购84消毒液多少瓶?5.小玉计划购买A、B两种饮料,若购买8瓶A种饮料和5瓶B种饮料需用220元;若购买4瓶A种饮料和6瓶B种饮料需用152元.(1)求每瓶A种饮料和B种饮料各多少元;(2)小玉决定购买A种饮料和B种饮料共15瓶,总费用不超过260元,那么最多可以购买多少瓶A种饮料?6.小明家新买了一套住房,打算装修一下,春节前住进去.现有甲、乙两家装修公司可供选择,这两家装修公司提供的信息如下表所示:若设需要x天装修完毕,请解答下列问题:(1)请分别用含x的代数式,写出甲、乙两家公司的装修总费用;(2)当装修天数为多少时,两家公司的装修总费用一样多?(3)根据装修天数x讨论选择哪家装修公司更合算(提示:结合(2)中的结论进行分类解决问题).7.每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.(1)求甲、乙两种型号设备的价格;(2)公司决定购买甲、乙两种型号的设备共10台,且该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司甲种型号的设备至多购买几台?8.为庆祝“元旦”,光明学校统一组织合唱比赛,七、八年级共92人(其中七年级的人数多于八年级的人数,且七年级的人数不足90人)准备统一购买服装参加比赛.如表是某服装厂给出服装的价格表:(1)如果两个年级分别单独购买服装一共应付5000元,求七、八年级各有多少学生参加合唱比赛;(2)如果七年级参加合唱比赛的学生中,有10名同学抽调去参加绘画比赛,不能参加合唱比赛,请你为两个年级设计一种最省钱的购买服装方案.9.某电器超市销售每台进价分别为140元、100元的A、B两种型号的电风扇,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入一进货成本)(1)求A、B两种型号的电风扇的销售单价.(2)若超市准备用不多于6500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过2850元的目标?若能,请给出相应的采购方案:若不能,请说明理由.10.某商店欲购进A、B两种商品,若购进A种商品5件和B种商品4件需300元;购进A种商品6件和B种商品8件需440元.(1)A、B两种商品每件的进价分别为多少元?(2)若该商店A种商品每件的售价为48元,B种商品每件的售价为31元,该商店准备购进A、B两种商品共50件,且这两种商品全部售出后总获利不低于344元,则至少购进多少件A种商品?11.学校近期举办了一年一度的经典诵读比赛.某班级因节目需要,须购买A、B两种道具.已知购买1件A道具比购买1件B道具多10元,购买2件A道具和3件B道具共需要45元.(1)购买一件A道具和一件B道具各需要多少元?(2)根据班级情况,需要这两种道具共60件,且购买两种道具的总费用不超过620元.求道具A最多购买多少件?12.对于企业来说:科学技术永远是第一生产力,在长沙市里程最长、站点最多的地铁6号线建设过程中,某知名运输集团承包了地铁6号线多标段的土方运输任务,该集团为了出色完成承接任务,拟派出该集团自主研发的A、B两种新型运输车运输土方.已知4辆A型运输车与3辆B型运输车一次共运输土方64吨,2辆A型运输车与4辆B型运输车一次共运输土方52吨.(1)请问一辆A型运输车和一辆B型运输车一次各运输土方多少吨?(2)该运输集团决定派出A、B两种型号新型运输车共18辆参与运输土方,若每次运输土方总量不小于169吨,且B型运输车至少派出4辆,则有哪几种派车方案?13.某商店欲购进A、B两种商品,若购进A种商品5件和B种商品4件需300元;若购进A种商品6件和B种商品8件需440元.(1)求A、B两种商品每件的进价分别为多少元?(2)商店准备用不超过1615元购进50件这两种商品,求购进A种商品最多是多少件?14.某超市共用24000元同时购进甲、乙两种型号书包各200个,购进甲型号书包40个比购进乙型书包30个少用100元.(1)求甲、乙两种型号书包的进价各为多少元?(2)若超市把甲、乙两种型号书包均按每个90元定价进行零售,同时为扩大销售,拿出一部分书包按零售价的8折进行优惠销售.商场在这批背包全部售完后,若总获利不低于10200元,则超市用于优惠销售的书包数量最多为多少个?15.某工艺品店购进A,B两种工艺品,已知这两种工艺品的单价之和为200元,购进2个A种工艺品和3个B种工艺品需花费520元.(1)求A,B两种工艺品的单价;(2)该店主欲用9600元用于进货,且最多购进A种工艺品36个,B种工艺品的数量不超过A种工艺品的2倍,则共有几种进货方案?16.每年的4月22日是世界地球日.某校为响应“携手为保护地球投资”的号召计划购入,A B两种规格的分类垃圾桶,用于垃圾分类.若购买A种垃圾桶30个和B种垃圾桶20个共需1020元;若购买A种垃圾桶50个和B种垃圾桶40个共需1860元.(1),A B两种垃圾桶的单价分别是多少元?(2)若该校最多有4360元用于购买这两种规格的垃圾桶共200个,则B种垃圾桶最多可以买________个.17.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B 商品共用了880元.(1)A,B两种商品的单价分别是多少元?(2)已知该商店购买A,B两种商品共30件,要求购买B商品的数量不高于A商品数量的2倍,且该商店购买的A,B两种商品的总费用不超过276元,那么该商店有几种购买方案?18.每年一度的中考牵动着数万家长的心,为了给考生一个良好的环境,某市教委规定每个考场安排考生数是固定的人数,该市A 区的9000 名考生安排的考场数比B 区3000人安排的考场数多200个.(1)求每个考场安排固定考生的人数;(2)该市C区共有可作为考场的大小教室共300 间,由于今年疫情影响,该市教委要求大教室按原固定人数的80%安排考生,小教室按原固定人数的50%安排考生,若该市C 区共有考生6300 人,则至少需要有多少间大教室.19.2022年北京冬奥会吉祥物冰墩墩和雪容融在一开售时,就深受大家的喜欢.某供应商今年2月购进一批冰墩墩和雪容融,已知一个冰墩墩的进价比一个雪容融的进价多40元,并且购买20个冰墩墩和30个雪容融的价格相同.(1)问每个冰墩墩和雪容融的进价分别是多少元?(2)根据市场实际,供应商计划用20000元购进这两种吉祥物200个,则他本次采购时最多可以购进多少个冰墩墩?20.某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料.生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克.经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.已知工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B产品要超过38件,问有哪几种符合条件的生产方案?参考答案:1.(1)“冰墩墩”和“雪容融”的单价分别为55元,40元(2)最多可以购买66个“冰墩墩”2.(1)每辆A型货车补贴油费600元,每辆B型货车补贴油费400元.(2)该快递公司至多能派出8辆A型货车.3.(1)购进了A种笔记本150本;(2)m的最小值128.4.(1)84消毒液销售了200瓶,酒精销售了300瓶;(2)120瓶5.(1)每瓶A种饮料20元,每瓶B种饮料12元(2)10瓶6.(1)甲公司的总费用为(900x+2700)元,乙公司的总费用为(960x+1500)元;(2)当装修天数为20天时,两家公司的装修总费用一样多;(3)当x<20时,乙装修公司更合算;当x=20时,两家装修公司一样;当x>20时,甲装修公司更合算.7.(1)甲、乙两种型号设备每台的价格分别为12万元和10万元(2)至多购买5台8.(1)七年级52人,八年级40人;(2)两个年级一起买91套时最省钱;9.(1)A、B两种型号的电风扇的销售单价分别为200元和150元(2)A种型号的电风扇最多能采购37台(3)能实现利润超过2850元的目标,相应方案有两种:方案一:购买A种型号的电风扇36台,购买B种型号的电风扇14台;方案二:购买A种型号的电风扇37台,购买B种型号的电风扇13台10.(1)A种商品每件的进价为40元,B种商品每件的进价为25元(2)至少购进22件A种商品11.(1)购买1件A道具需要15元,1件B道具需要5元(2)道具A最多购买32件12.(1)一辆A型运输车一次运土10吨,一辆B型运输车一次运土8吨(2)有两种派送方案,方案一:派出A型号的新型运输车13辆,B型号的新型运输车5辆;方案二:派出A型号的新型运输车14辆,B型号的新型运输车4辆.13.(1)A种商品每件进价40元,B种商品每件进价25元(2)24件14.(1)A、B两种型号书包的进货单价各为50元、70元;(2)商场用于优惠销售的书包数量为100个.15.(1)A种工艺品的单价为80元,B种工艺品的单价为120元(2)共有3种进货方案16.(1)A种垃圾桶的单价熟练掌握18元,B种垃圾桶的单价是24元.(2)12617.(1)A种商品的单价为16元、B种商品的单价为4元(2)有四种方案,方案一:购买A商品的件数为10件,购买B商品的件数为20件;方案二:购买A商品的件数为11件,购买B商品的件数为19件;方案三:购买A商品的件数为12件,购买B商品的件数为18件;方案四:购买A商品的件数为13件,购买B商品的件数为17件.18.(1)每个考场安排固定考生的人数为30人;(2)至少需要有200间大教室.19.(1)今年2月第一周每个冰墩墩的进价为120元,每个雪容融的进价为80元(2)最多可以购进100个冰墩墩20.共有如下四种方案:A种21件,B种39件;A种20件,B种40件;A种19件,B种41件;A种18件,B种42件。
9.3一元一次不等式组(1)
1、下列不等式组中无解的是().
A. B. C. D.
2、不等式组的解集为
3.解不等式组解不等式得_____,解不等式得_____,所以不等式组的解集是_____.
4、已知不等式组的解集为,则( )
5、关于不等式组的解集是( )
A.任意的有理数
B.无解
C.x=m
D.x= -m
6.从彬彬家到家校的路程是米,如果彬彬时离家,要在时分至分间到达学校,问步行的速度的范围是_____.
7、解下列不等式组
(1)(2) (3)
8、“六一”儿童节前夕,某消防队官兵了解到汶川地震灾区一帐篷小学的小朋友喜欢奥运福娃,就特意购买了一些送给这个小学的小朋友作为节日礼物.如果每班分10套,那么余5套;如果前面的班级每个班分13套,那么最后一个班级虽然分有福娃,但不足4套.问:该小学有多少个班级?奥运福娃共有多少套?。
9.3 一元一次不等式组同步习题一、选择题1.不等式组2+6058xx x⎧⎨≤+⎩>的解集在下列数轴上表示正确的是( )A.B.C.D.2.已知关于x的不等式组无解,则a的取值范围是( ) A.a≤-1 B.a≥2 C.-1<a<2 D.a<-1,或a>23.若点A(m-3,1-3m)在第三象限,则m的取值范围是( )A.13m> B.m<3 C.m>3 D.133m<<4.不等式组4324xx+⎧⎨≤⎩>的解集是()A.1<x≤2B.﹣1<x≤2 C.x>﹣1 D.﹣1<x≤45.使不等式x﹣1≥2与3x﹣7<8同时成立的x的整数值是()A.3,4 B.4,5 C.3,4,5 D.不存在6.不等式组2390xx⎧⎨-+≥⎩>-1的所有整数解的和是()A.2 B.3 C.5 D.67.若不等式组223241xax x-⎧⎪⎨⎪+-⎩>>的解集为﹣2<x<3,则a的取值范围是()A.a=﹣2 B.a=C.a≥﹣2 D.a≤一1二、填空题8.关于x的不等式组20820xx-≥⎧⎨-⎩<的解集是_____.9.已知关于x、y的方程组+2524x y kx y k=-⎧⎨-=-+⎩的解是一对异号的数,则k的取值范围是_____.10.不等式1020xx+⎧⎨-⎩><的解集是_____.11.若不等式组2x ax x-≥⎧⎨-⎩1-2>有解,则a的取值范围是.三、解答题12.解不等式组()10223xx x-≥⎧⎪⎨+⎪⎩>并把解集在数轴上表示出来.13.解不等式组2115xx+≥-⎧⎨-⎩3<并将解集在数轴上表示出来.14.求不等式组1(1)1212xx⎧-≤⎪⎨⎪-⎩<的解集,并求它的整数解15.解不等式组240312xxx+≥⎧⎪⎨-+⎪⎩+3>,并写出该不等式组的最大整数解.参考答案 一、选择题 1.B 2.A 3.D 4.B 5.A 6.D 7.A二、填空题8.x >4 9.-2<k<1 10.-1<x <2 11.a <1三、解答题12.答案:1≤x <4.解析:【解答】()10223x x x -≥⎧⎪⎨+⎪⎩>①②,由①得,x ≥1,由②得,x <4, 故此不等式组的解集为:1≤x <4.在数轴上表示为:.13.答案:﹣3≤x <2.解析:【解答】2115x x +≥-⎧⎨-⎩3<①②,解①得:x ≥﹣3,解②得:x <2.不等式组的解集是:﹣3≤x <2.14.答案:整数解是:0,1,2,3.解析:【解答】1(1)1212x x ⎧-≤⎪⎨⎪-⎩<①②,解①得:x ≤3,解②得:x >﹣1.则不等式组的解集是:﹣1<x ≤3.则整数解是:0,1,2,3.15.答案:最大整数解为0.解析:【解答】∵解不等式2x +4≥0得:x ≥﹣2,解不等式3312xx-++>得:x<1,∴不等式组的解集是﹣2≤x<1,∴该不等式组的最大整数解为0.。
人教新版七年级下学期《9.3 一元一次不等式组》同步练习卷一.选择题(共20小题)1.下列不等式组:①,②,③,④,⑤.其中一元一次不等组的个数是()A.2个B.3个C.4个D.5个2.下列各式不是一元一次不等式组的是()A.B.C.D.3.下列选项中是一元一次不等式组的是()A.B.C.D.4.下列各式中是一元一次不等式组的是()A.B.C.D.5.不等式组的解集为()A.x>﹣1B.x<2C.x<﹣1或x>2D.﹣1<x<26.不等式组的解集()A.x≥﹣2B.﹣2<x<3C.x>3D.﹣2≤x<37.不等式组的解集是()A.无解B.x<﹣1C.x≥D.﹣1<x≤8.若关于x的一元一次不等式组无解,则a的取值范围是()A.a≥3B.a>3C.a≤3D.a<39.已知关于x的方程9x﹣3=kx+14有整数解,且关于x的不等式组有且只有4个整数解,则满足条件的整数k有()个.A.1B.2C.3D.010.已知关于x的不等式组的整数解共有5个,则a的取值范围是()A.﹣4<a<﹣3B.﹣4≤a<﹣3C.a<﹣3D.﹣4<a<11.关于x的不等式组的所有整数解的积为2,则m的取值范围为()A.m>﹣3B.m<﹣2C.﹣3≤m<﹣2D.﹣3<m≤﹣2 12.若关于x的不等式组的整数解有3个,则a的取值范围是()A.3<a≤4B.2<a≤3C.2≤a<3D.3≤a<413.若干个苹果分给x个小孩,如果每人分3个,那么余7个;如果每人分5个,那么最后一人分到的苹果不足5个,则x满足的不等式组为()A.0<(3x+7)﹣5(x﹣1)≤5B.0<(3x+7)﹣5(x﹣1)<5C.0≤(3x+7)﹣5(x﹣1)<5D.0≤(3x+7)﹣5(x﹣1)≤514.7x+1是不小于﹣3的负数,表示为()A.﹣3≤7x+1≤0B.﹣3<7x+1<0C.﹣3≤7x+1<0D.﹣3<7x+1≤0 15.将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有一个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x人,则可列不等式为()A.8(x﹣1)<5x+12<8B.0<5x+12<8xC.0<5x+12﹣8(x﹣1)<8D.8x<5x+12<816.现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,若设宿舍间数为x,则可以列得不等式组为()A.B.C.D.17.按如图的程序进行操作,规定:程序运行从“输入一个值x”到“结果是否>365”为一次操作.如果必须进行3次操作才能得到输出值,那么输入值x必须满足()A.x<50B.x<95C.50<x<95D.50<x≤95 18.已知某程序如图所示,规定:从“输入实数x”到“结果是否大于95”为一次操作.如果该程序进行了两次操作停止,那么实数x的取值范围是()A.x>23B.11≤x≤23C.23<x≤47D.x≤4719.如图,一个运算程序,若需要经过两次运算才能输出结果,则x的取值范围为()A.x>1B.1<x≤7C.1≤x<7D.1≤x≤720.把一些图书分给几名同学,如果每人分3本,那么余8本;如果前面的每名同学分5本,那么最后一人就分不到3本(且至少有一本).这些图书有()A.23本B.24本C.25本D.26本二.填空题(共15小题)21.写出一个无解的一元一次不等式组为.22.对于三个数a,b,c,用M{a,b,c}表示这三个数的中位数,用max{a,b,c}表示这三个数中最大的数.例如:M{﹣2,﹣1,0}=﹣1;max{﹣2,﹣1,0}=0,max{﹣2,﹣1,a}=根据以上材料,解决下列问题:若max{3,5﹣3x,2x﹣6}=M{1,5,3},则x的取值范围为.23.不等式组的解集是.24.如果关于x的不等式组无解,则a的取值范围是.25.不等式组的解集为x<3a+2,则a的取值范围是.26.若不等式组无解,则m的取值范围是.27.不等式组的整数解是.28.关于x的不等式组只有5个整数解,则a的取值范围是.29.不等式组有3个整数解,则a的取值范围是.30.武汉东湖高新开发区某企业新增了一个项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共8台,具体情况如下表:经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨.设购买A种型号的污水处理设备x台,可列不等式组.31.列不等式组:x与3的和小于4,且x与6的差是负数.32.把43个苹果分给若干个学生,除一名学生分得的苹果不足3个外,其余每人分得6个,求学生人数.若设学生为x人,则可以列出不等式组为.33.安排学生住宿,若每间住4人,则还有15人无房可住;若每间住6人,则还有一间不空也不满,则宿舍的房间数量可能为.34.下面是一个运算程序图,若需要经过两次运算才能输出结果y,则输入的x的取值范围是.35.初三的几位同学拍了一张合影作为留念,已知拍一张底片需要5元,洗一张相片需要0.5元.拍一张照片,在每位同学得到一张相片的前提下,平均每人分摊的钱不足1.5元,那么参加合影的同学人数为.三.解答题(共10小题)36.解不等式组:并将解集在数轴上表示.37.解不等式组,并在数轴上表示其解集.38.解不等式组,并在数轴上表示其解集.39.解下列方程组或者不等式组(1)解方程组:(2)解不等式组:40.解不等式组并写出它的整数解.41.求不等式组的整数解.42.已知关于x、y的方程组的解满足,求整数k的值.43.是否存在整数k,使方程组的解中,x大于1,y不大于1,若存在,求出k的值,若不存在,说明理由.44.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.45.2018年1月25日正式开通运营的重庆﹣贵阳铁路(渝贵铁路),使得重庆、贵阳之间最快列车运行时间缩短至2小时.高速铁路建设中,某渣土运输公司承包了某标段的土方运输任务,拟派出大、小两种型号的渣土运输车运输土方.已知2辆大型渣土运输车与3辆小型渣土运输车一次共运输土方31吨,5辆大型渣土运输车与6辆小型渣土运输车一次共运输土方70吨.(1)一辆大型渣土运输车和一辆小型渣土运输车一次各运输土方多少吨?(2)该渣土运输公司决定派出大、小两种型号渣土运输车共20辆参与运输土方,若每次运输土方总量不小于148吨,且小型渣土运输车至少派出2辆,则有哪几种派车方案?人教新版七年级下学期《9.3 一元一次不等式组》2019年同步练习卷参考答案与试题解析一.选择题(共20小题)1.下列不等式组:①,②,③,④,⑤.其中一元一次不等组的个数是()A.2个B.3个C.4个D.5个【分析】根据一元一次不等式组的定义,含有两个或两个以上的不等式,不等式中的未知数相同,并且未知数的最高次数是一次,对各选项判断后再计算个数即可.【解答】解:根据一元一次不等式组的定义,①②④都只含有一个未知数,并且未知数的最高次数是1,所以都是一元一次不等式组;③含有一个未知数,但未知数的最高次数是2,⑤含有两个未知数,所以②⑤都不是一元一次不等式组.故有①②④三个一元一次不等式组.故选:B.【点评】本题主要考查一元一次不等式组的定义,熟练掌握定义并灵活运用是解题的关键.2.下列各式不是一元一次不等式组的是()A.B.C.D.【分析】根据一元一次不等式组的定义进行解答.【解答】解:A、该不等式组符合一元一次不等式组的定义,故本选项错误;B、该不等式组符合一元一次不等式组的定义,故本选项错误;C、该不等式组中含有2给未知数,不是一元一次不等式组,故本选项正确;D、该不等式组符合一元一次不等式组的定义,故本选项错误;故选:C.【点评】本题考查了一元一次不等式组的定义,每个不等式中含有同一个未知数且未知数的次数是1的不等式组是一元一次不等式组.3.下列选项中是一元一次不等式组的是()A.B.C.D.【分析】根据一元一次不等式的定义即用不等号连接的,含有一个未知数,并且未知数的次数都是1,系数不为0,左右两边为整式的式子叫做一元一次不等式解答即可.【解答】解:A、含有两个未知数,错误;B、未知数的次数是2,错误;C、含有两个未知数,错误;D、符合一元一次不等式组的定义,正确;故选:D.【点评】本题比较简单,考查的是一元一次不等式组的定义,只要熟练掌握一元一次不等式的定义即可轻松解答.4.下列各式中是一元一次不等式组的是()A.B.C.D.【分析】根据一元一次不等式组的定义进行判断.【解答】解:A、第二个不等式组不是整式不等式,故本选项错误;B、该方程组中有2个未知数,故本选项错误;C、该不等式组中的第二个不等式中不含有未知数,故本选项错误;D、该不等式组符合一元一次不等式组的定义,故本选项正确;故选:D.【点评】本题考查了一元一次不等式组的定义.几个含有同一个未知数的一元一次不等式组合在一起,就组成了一个一元一次不等式组.5.不等式组的解集为()A.x>﹣1B.x<2C.x<﹣1或x>2D.﹣1<x<2【分析】先求出不等式的解集,再求出不等式组的解集即可.【解答】解:,∵解不等式①得:x<2,解不等式②得:x>﹣1,∴不等式组的解集为﹣1<x<2,故选:D.【点评】本题考查了解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键.6.不等式组的解集()A.x≥﹣2B.﹣2<x<3C.x>3D.﹣2≤x<3【分析】根据解不等式组的方法可以解答本题.【解答】解:,由不等式①,得x<3,由不等式②,得x≥﹣2,由不等式①②可得原不等式组的解集是﹣2≤x<3故选:D.【点评】本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式的方法.7.不等式组的解集是()A.无解B.x<﹣1C.x≥D.﹣1<x≤【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3﹣2x<5,得:x>﹣1,解不等式2(x﹣2)≤1,得:x≤,则不等式组的解集为﹣1<x≤,故选:D.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.若关于x的一元一次不等式组无解,则a的取值范围是()A.a≥3B.a>3C.a≤3D.a<3【分析】先求出各不等式的解集,再与已知解集相比较求出a的取值范围.【解答】解:由x﹣a>0得,x>a;由3x﹣1<2(x+1)得,x<3,∵此不等式组的解集是空集,∴a≥3.故选:A.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.已知关于x的方程9x﹣3=kx+14有整数解,且关于x的不等式组有且只有4个整数解,则满足条件的整数k有()个.A.1B.2C.3D.0【分析】解不等式组和方程得出关于x的范围及x的值,根据不等式组有4个整数解和方程的解为整数得出k的范围,继而可得整数k的取值.【解答】解:解关于x的方程9x﹣3=kx+14得:x=,∵方程有整数解,∴9﹣k=±1或9﹣k=±17,解得:k=8或10或﹣8或26,解不等式组得不等式组的解集为≤x<5,∵不等式组有且只有四个整数解,∴0<≤1,解得:2<k≤30;所以满足条件的整数k的值为8、10、26,故选:C.【点评】本题主要考查方程的解和一元一次不等式组的解,熟练掌握解方程和不等式组的能力,并根据题意得到关于k的范围是解题的关键.10.已知关于x的不等式组的整数解共有5个,则a的取值范围是()A.﹣4<a<﹣3B.﹣4≤a<﹣3C.a<﹣3D.﹣4<a<【分析】求出不等式组的解集,根据不等式组的解集和已知不等式组的整数解有5个即可得出a的取值范围是﹣4≤a<﹣3.【解答】解:解不等式x﹣a>0,得:x>a,解不等式3﹣2x>0,得:x<1.5,∵不等式组的整数解有5个,∴﹣4≤a<﹣3.故选:B.【点评】本题考查了解一元一次不等式,解一元一次不等式组,一元一次不等式组的整数解等知识点,关键是能根据不等式组的解集和已知得出a的取值范围.11.关于x的不等式组的所有整数解的积为2,则m的取值范围为()A.m>﹣3B.m<﹣2C.﹣3≤m<﹣2D.﹣3<m≤﹣2【分析】由x≤﹣且不等式组的所有整数解的积为2知整数解为﹣1、﹣2这2个,据此可得答案.【解答】解:由x≤﹣且不等式组的所有整数解的积为2知整数解为﹣1、﹣2这2个,所以﹣3≤m<﹣2,故选:C.【点评】本题考查了一元一次的整数解,结合不等式的解集及整数解的积得出具体的整数解是解题的关键.12.若关于x的不等式组的整数解有3个,则a的取值范围是()A.3<a≤4B.2<a≤3C.2≤a<3D.3≤a<4【分析】先求出不等式组的解集,即可得出关于a的不等式组,求出不等式组的解集即可.【解答】解:,∵解不等式①得:x<1+a,∴不等式组的解集为1≤x<1+a,∵不等式组的整数解有3个,∴3<1+a≤4,解得:2<a≤3,故选:B.【点评】本题考查了解一元一次不等式组,不等式组的整数解的应用,能求出3<1+a≤4是解此题的关键.13.若干个苹果分给x个小孩,如果每人分3个,那么余7个;如果每人分5个,那么最后一人分到的苹果不足5个,则x满足的不等式组为()A.0<(3x+7)﹣5(x﹣1)≤5B.0<(3x+7)﹣5(x﹣1)<5C.0≤(3x+7)﹣5(x﹣1)<5D.0≤(3x+7)﹣5(x﹣1)≤5【分析】若干个苹果分给x个小孩,根据如果每人分3个,那么余7个,共(3x+7)个苹果;如果每人分5个,那么最后一人分到的苹果是(3x+7)﹣5(x﹣1),可列出不等式组.【解答】解:若干个苹果分给x个小孩,0≤(3x+7)﹣5(x﹣1)<5.故选:C.【点评】本题考查理解题意的能力,设出人数就能表示出苹果数,然后根据最后一人分到的苹果不足5个,可列出不等式组.14.7x+1是不小于﹣3的负数,表示为()A.﹣3≤7x+1≤0B.﹣3<7x+1<0C.﹣3≤7x+1<0D.﹣3<7x+1≤0【分析】首先表示“7x+1不小于﹣3”为7x+1≥﹣3,再表示“7x+1是负数”为7x+1<0,进而可得不等式组.【解答】解:由题意得:﹣3≤7x+1<0,故选:C.【点评】此题主要考查了由实际问题抽象出一元一次不等式组,关键是找准题干中体现不等关系的语句,根据语句列出不等关系.往往不等关系出现在“不足”,“不少于”,“不大于”,“不超过”“负数”“正数”等这些词语出现的地方.所以重点理解这些地方有利于自己解决此类题目.15.将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有一个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x人,则可列不等式为()A.8(x﹣1)<5x+12<8B.0<5x+12<8xC.0<5x+12﹣8(x﹣1)<8D.8x<5x+12<8【分析】设有x人,由于每位小朋友分5个苹果,则还剩12个苹果,则苹果有(5x+12)个;若每位小朋友分8个苹果,则有一个小朋友分不到8个苹果,就是苹果数﹣8(x﹣1)大于0,并且小于8,根据不等关系就可以列出不等式【解答】解:设有x人,则苹果有(5x+12)个,由题意得:0<5x+12﹣8(x﹣1)<8,故选:C.【点评】此题主要考查由实际问题抽象出一元一次不等式组,关键是正确理解题意,找出题目中的不等关系.16.现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,若设宿舍间数为x,则可以列得不等式组为()A.B.C.D.【分析】易得学生总人数,不空也不满意思是一个宿舍人数在1人和5人之间,关系式为:总人数﹣(x﹣1)间宿舍的人数≥1;总人数﹣(x﹣1)间宿舍的人数≤5,把相关数值代入即可.【解答】解:∵若每间住4人,则还有19人无宿舍住,∴学生总人数为(4x+19)人,∵一间宿舍不空也不满,∴学生总人数﹣(x﹣1)间宿舍的人数在1和5之间,∴列的不等式组为:故选:D.【点评】考查列不等式组,理解“不空也不满”的意思是解决本题的突破点,得到相应的关系式是解决本题的关键.17.按如图的程序进行操作,规定:程序运行从“输入一个值x”到“结果是否>365”为一次操作.如果必须进行3次操作才能得到输出值,那么输入值x必须满足()A.x<50B.x<95C.50<x<95D.50<x≤95【分析】根据运算程序,列出算式:2x﹣5,由于运行3次,所以将每次运算的结果再代入算式,然后再解不等式即可.【解答】解:前3次操作的结果分别为2x﹣5;2(2x﹣5)﹣5=4x﹣15;2(4x﹣15)﹣5=8x﹣35;∵操作进行3次才能得到输出值,∴,解得:50<x≤95.故选:D.【点评】本题考查了一元一次不等式组的应用,解题的关键是通过程序表达式,将程序转化问题化为不等式组.18.已知某程序如图所示,规定:从“输入实数x”到“结果是否大于95”为一次操作.如果该程序进行了两次操作停止,那么实数x的取值范围是()A.x>23B.11≤x≤23C.23<x≤47D.x≤47【分析】表示出第一次、第二次的输出结果,再由第二次输出结果可得出不等式,解出即可.【解答】解:第一次的结果为:2x+1,没有输出,则2x+1≤95,解得:x≤47;第二次的结果为:2(2x+1)+1=4x+3,输出,则4x+3>95,解得:x>23;综上可得:23<x≤47.故选:C.【点评】本题考查了一元一次方程组的应用,解答本题的关键是读懂题意,根据结果是否可以输出,得出不等式.19.如图,一个运算程序,若需要经过两次运算才能输出结果,则x的取值范围为()A.x>1B.1<x≤7C.1≤x<7D.1≤x≤7【分析】输入x,经过第一次运算的结果为:5x+2<37,经过第二次运算5(5x+2)+2≥37,两个不等式联立成为不等式组,解之即可.【解答】解:根据题意得:,解得:1≤x<7,即x的取值范围为:1≤x<7,故选:C.【点评】本题考查一元一次不等式组的应用,正确找出等量关系,列出一元一次不等式组是解题的关键.20.把一些图书分给几名同学,如果每人分3本,那么余8本;如果前面的每名同学分5本,那么最后一人就分不到3本(且至少有一本).这些图书有()A.23本B.24本C.25本D.26本【分析】设共有x名学生,根据每人分3本,那么余8本,可得图书共有(3x+8)本,再由每名同学分5本,那么最后一人就分不到3本,可得出不等式,解出即可.【解答】解:设共有x名学生,则图书共有(3x+8)本,由题意得,0<3x+8﹣5(x﹣1)<3,解得:5<x<6.5,∵x为非负整数,∴x=6.∴书的数量为:3×6+8=26.故选:D.【点评】本题考查了列一元一次不等式组解实际问题的运用,一元一次不等式组的解法的运用,解答时根据题意中的不相等关系建立不等式组是关键.二.填空题(共15小题)21.写出一个无解的一元一次不等式组为.【分析】由题意写出一个无解的一元一次不等式组主要考查,其简便求法就是用口诀求解,根据不等式组解集的口诀:大大小小找不到(无解),来写出一个无解的一元一次不等式组.【解答】解:根据不等式组解集的口诀:大大小小找不到(无解),可写x≤2,x≥3,即.【点评】主要运用了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).22.对于三个数a,b,c,用M{a,b,c}表示这三个数的中位数,用max{a,b,c}表示这三个数中最大的数.例如:M{﹣2,﹣1,0}=﹣1;max{﹣2,﹣1,0}=0,max{﹣2,﹣1,a}=根据以上材料,解决下列问题:若max{3,5﹣3x,2x﹣6}=M{1,5,3},则x的取值范围为<x<.【分析】由max{3,5﹣3x,2x﹣6}=M{1,5,3}得,解之可得.【解答】解:∵max{3,5﹣3x,2x﹣6}=M{1,5,3}=3,∴,∴<x<,故答案为<x<.【点评】此题考查了一元一次不等式组的应用,解题的关键是读懂题意,根据题意得到不等式去求解,考查综合应用能力.23.不等式组的解集是2<x≤4.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x≤4,由②得,x>2,故不等式组的解集为:2<x≤4.故答案为:2<x≤4.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.24.如果关于x的不等式组无解,则a的取值范围是a≤2.【分析】解出不等式组的解集(含a的式子),与不等式组无解比较,求出a 的取值范围.【解答】解:∵不等式组无解,根据“大大小小解不了”则a+2≥3a﹣2,所以a的取值范围是a≤2.【点评】本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得另一个未知数.25.不等式组的解集为x<3a+2,则a的取值范围是a≤﹣3.【分析】根据口诀“同小取小”可知不等式组的解集,解这个不等式即可.【解答】解:解这个不等式组为x<3a+2,则3a+2≤a﹣4,解这个不等式得a≤﹣3故答案a≤﹣3.【点评】主要考查了已知一元一次不等式解集求不等式中的字母的值,同样也是利用口诀求解,注意:当符号方向不同,数字相同时(如:x>a,x<a),没有交集也是无解但是要注意当两数相等时,在解题过程中不要漏掉相等这个关系.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).26.若不等式组无解,则m的取值范围是m<.【分析】先求出各个不等式的解集,因为不等式组无解,所以必须是大大小小找不到的情况,由此即可求出答案.【解答】解:解不等式组可得,因为不等式组无解,所以m<.【点评】本题主要考查了已知一元一次不等式组的解集,求不等式组中的字母的值,同样也是利用口诀求解.注意:当符号方向不同,数字相同时(如:x>a,x<a),没有交集也是无解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).27.不等式组的整数解是0.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:解不等式①得:x>﹣1,解不等式②得:x≤0,∴不等式组的解集为﹣1<x≤0,∴不等式组的整数解为0,故答案为0.【点评】本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是能求出不等式组的解集.28.关于x的不等式组只有5个整数解,则a的取值范围是﹣5<a≤﹣.【分析】先解每一个不等式,再根据不等式组有5个整数解,确定含a的式子的取值范围.【解答】解:,由①得:x≤21,由②得:x>2﹣3a,∵关于x的不等式组只有5个整数解,即:21,20,19,18,17,∴16≤2﹣3a<17,解得:﹣5<a≤﹣,故答案为:﹣5<a≤﹣.【点评】本题考查了一元一次不等式组的整数解.关键是先解每一个不等式,再根据整数解的个数,确定含a的代数式的取值范围.29.不等式组有3个整数解,则a的取值范围是﹣6<a≤﹣5.【分析】根据解不等式组,可得不等式组的解,根据不等式组的解有3个整数解,可得答案.【解答】解:不等式组,由﹣x<﹣1,解得:x>4,由4(x﹣1)≤2(x﹣a),解得:x≤2﹣a,故不等式组的解为:4<x≤2﹣a,由关于x的不等式组有3个整数解,解得:7≤2﹣a<8,解得:﹣6<a≤﹣5.故答案为:﹣6<a≤﹣5【点评】本题考查了一元一次不等式组,利用不等式的解得出关于a的不等式是解题关键.30.武汉东湖高新开发区某企业新增了一个项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共8台,具体情况如下表:经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨.设购买A种型号的污水处理设备x台,可列不等式组.【分析】设购买污水处理设备A型号x台,则购买B型号(8﹣x)台,根据企业最多支出89万元购买设备,要求月处理污水能力不低于1380吨,列出不等式组,然后找出最合适的方案即可.【解答】解:设购买污水处理设备A型号x台,则购买B型号(8﹣x)台,根据题意,得,故答案为:.【点评】此题主要考查了由实际问题中抽象出不等式组,关键是正确理解题意,抓住题目中含不等关系的句子,列出不等式.31.列不等式组:x与3的和小于4,且x与6的差是负数.【分析】根据x与3的和小于4,且x与6的差是负数可列出不等式组,是负数就是小于0的意思.【解答】解:根据题意得:.故答案为:【点评】本题考查根据实际问题列不等式组,关键是抓住关键词语,根据不等量关系列出不等式组.32.把43个苹果分给若干个学生,除一名学生分得的苹果不足3个外,其余每人分得6个,求学生人数.若设学生为x人,则可以列出不等式组为.【分析】设学生数为x,则每人6个有一人分得的不足3个,可得两个不等关系:剩余苹果数=苹果数﹣(x﹣1)个人每人分6个<3;剩余苹果数=苹果数﹣(x﹣1)个人每人分6个≥0.根据这两个不等关系就可以列出不等式组.【解答】解:设学生有x人,由题意得:.故答案为:.【点评】此题主要考查了一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的关系,此题的不等关系是:0≤剩余苹果数<3.33.安排学生住宿,若每间住4人,则还有15人无房可住;若每间住6人,则还有一间不空也不满,则宿舍的房间数量可能为8或9或10.【分析】设宿舍有x间,则学生有(4x+15)人,根据题意条件建立不等式组求出x的值即可.【解答】解:设宿舍有x间,则学生人数为(4x+15)人根据题意得:0<(4x+15)﹣6(x﹣1)<6解得:<x<且x为正整数∴x=8或9或10故答案为8或9或10【点评】本题考查了列一元一次不等式组解实际问题的运用,一元一次不等式的解法的运用,解答时设适当的未知数是关键34.下面是一个运算程序图,若需要经过两次运算才能输出结果y,则输入的x的取值范围是4≤x<11.【分析】输入x,经过第一次运算,结果为3x﹣1<32,经过第二次运算,结果为3(3x ﹣1)﹣1≥32,两个不等式联立,形成一元一次不等式组求解,即可得到答案.【解答】解:根据题意得:,解得:4≤x<11,即输入的x的取值范围为:4≤x<11,故答案为:4≤x<11.【点评】本题考查一元一次不等式组的应用,正确找出等量关系,列出不等式组是解题的关键.35.初三的几位同学拍了一张合影作为留念,已知拍一张底片需要5元,洗一张相片需要0.5元.拍一张照片,在每位同学得到一张相片的前提下,平均每人分摊的钱不足1.5元,那么参加合影的同学人数为至少6人.【分析】首先依据题意得出不等关系即平均每人分摊的钱不足1.5元,由此列出不等式,进而解决问题.【解答】解:设参加合影的同学人数为x人,则有5+0.5x<1.5x,解得x>5,∵x取正整数,∴参加合影的同学人数至少为6人,故答案为至少6人.【点评】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.三.解答题(共10小题)36.解不等式组:并将解集在数轴上表示.。
一元一次不等式组典型题基础题知识点1 解一元一次不等式组1.下列不等式组中,是一元一次不等式组的是(A )A .⎩⎪⎨⎪⎧x>2x<-3B .⎩⎪⎨⎪⎧x +1>0y -2<0 C .⎩⎪⎨⎪⎧3x -2>0(x -2)(x +3)>0 D .⎩⎪⎨⎪⎧3x -2>0x +1>1x2.下列四个数中,为不等式组⎩⎪⎨⎪⎧3x -6<0,3+x>3的解的是(C )A .-1B .0C .1D .23.(福州中考)不等式组⎩⎪⎨⎪⎧x ≥-1,x<2的解集在数轴上表示正确的是(A )4.(福州中考)不等式组⎩⎪⎨⎪⎧x +1>0,x -3>0的解集是(B )A .x >-1B .x >3C .-1<x <3D .x <35.(湘西中考)不等式组⎩⎪⎨⎪⎧2x -1≤3,x +3>4的解集是(B )A .x >1B .1<x ≤2C .x ≤2D .无解6.(雅安校级月考)不等式组⎩⎪⎨⎪⎧x -3>2,x<3的解集是(D )A .x <3B .3<x <5C .x >5D .无解7.(周口一模)不等式组⎩⎪⎨⎪⎧x -1≤1,5-2x ≥-1的解集在数轴上表示为(A )8.(自贡中考)不等式组⎩⎪⎨⎪⎧-2x +3≥0,x -1>0的解集是1<x ≤32.9.代数式1-k 的值大于-1而又不大于3,则k 的取值范围是-2≤k<2.10.若y 同时满足y +1>0与y -2<0,则y 的取值范围是-1<y <2.11.(天津中考)解不等式组:⎩⎪⎨⎪⎧x +2≤6,①3x -2≥2x.②请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得x ≤4; (Ⅱ)解不等式②,得x ≥2;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为2≤x ≤4. 12.解不等式组:(1)(济南中考)⎩⎪⎨⎪⎧x -3<1,①4x -4≥x +2;②解:解不等式①,得x <4.解不等式②,得x ≥2.∴不等式组的解集为2≤x <4.(2)(郴州中考)⎩⎪⎨⎪⎧x -1>0,①3(x -1)<2x ;②解:解不等式①,得x >1.解不等式②,得x <3.∴不等式组的解集是1<x <3.(3)(云南中考)⎩⎪⎨⎪⎧2(x +3)>10,①2x +1>x ;②解:解不等式①,得x >2.解不等式②,得x >-1. ∴不等式组的解集为x >2.(4)(无锡中考)⎩⎪⎨⎪⎧2(x -1)≥x +1,①x -2>13(2x -1).② 解:解不等式①,得x ≥3. 解不等式②,得x>5. ∴不等式组的解集为x>5.知识点2 不等式组的运用13.(威海中考)已知点P(3-m ,m -1)在第二象限,则m 的取值范围在数轴上表示正确的是(A )14.若不等式组⎩⎪⎨⎪⎧x>3,x>m的解集是x>3,则m 的取值范围是m ≤3.中档题15.(达州中考)不等式组⎩⎪⎨⎪⎧x -3≤0,13(x -2)<x +1的解集在数轴上表示正确的是(A )16.(株洲中考)一元一次不等式组⎩⎪⎨⎪⎧2x +1>0,x -5≤0的解集中,整数解的个数是(C )A .4B .5C .6D .717.若不等式组⎩⎪⎨⎪⎧2x +a -1>0,2x -a -1<0的解集为0<x <1,则a 的值为(A )A .1B .2C .3D .418.如果不等式组⎩⎪⎨⎪⎧2x -1>3(x -1),x<m 的解集是x <2,那么m 的取值范围是(D )A .m =2B .m >2C .m <2D .m ≥219.(潍坊中考)若不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x>x -2无解,则实数a 的取值范围是(D )A .a ≥-1B .a <-1C .a ≤1D .a ≤-120.(绵阳中考)在关于x ,y 的方程组⎩⎪⎨⎪⎧2x +y =m +7,x +2y =8-m 中,未知数满足x ≥0,y >0,那么m 的取值范围在数轴上应表示为(C )21.(烟台中考)不等式组⎩⎪⎨⎪⎧x -1≥0,4-2x<0的最小整数解是3.22.(龙东中考)不等式组2≤3x -7<8的解集为3≤x <5.23.(鄂州中考)若不等式组⎩⎪⎨⎪⎧2x -b ≥0,x +a ≤0的解集为3≤x ≤4,则不等式ax +b <0的解集为x >32.24.(遂宁中考)解下列不等式组,并把解集在数轴上表示出来.(1)⎩⎪⎨⎪⎧3(x +2)>x +8,①x 4≥x -13;②解:解不等式①,得x >1. 解不等式②,得x ≤4.∴这个不等式的解集是1<x ≤4. 其解集在数轴上表示为:(2)⎩⎪⎨⎪⎧2x +3>3x ,①x +33-x -16≥12.②解:解不等式①,得x<3.解不等式②,得x ≥-4.∴这个不等式组的解集是-4≤x<3. 其解集在数轴上表示为:25.(毕节中考)解不等式组⎩⎪⎨⎪⎧2x +5≤3(x +2),①2x -1+3x2<1,②把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.解:解不等式①,得x ≥-1. 解不等式②,得x <3.∴原不等式组的解集是-1≤x <3. 其解集在数轴上表示如下:∴不等式组的非负整数解有:0,1,2. 综合题26.(南通中考)若关于x 的不等式组⎩⎪⎨⎪⎧x 2+x +13>0,①3x +5a +4>4(x +1)+3a ②恰有三个整数解,求实数a 的取值范围. 解:解不等式①,得x >-25.解不等式②,得x <2a.∵不等式组恰有三个整数解,∴2<2a ≤3. ∴1<a ≤32.。
2
1.根据下图所示写出所表示的解集:
2.若不等式组nxmx12的解集是-1
4.方程组ayxyx21的解为x,y,且x>0,y<0,则a的取值范围是________.
5.若关于x的不等式组bxax无解,则a、b的关系为________.
答案: 4.a>12 (1)bax(2)bax(3)
1.(1)x>b (2)x≤a (3)a
3.4cm
5.a≥b
b
a
x
(4)
b
a
2
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。】
7C学科网,最大最全的中小学教育资源网站,教学资料详细分类下载!
1 一元一次不等式应用题专项练习 1.某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们,如果每人送3本,则还余8本;如果前面每人送5本,则最后一人得到的课外读物不足3本,设该校买了m本课外读物,有x名学生获奖,请解答下列问题:(1)用含x的代数式表示m; (2)求出该校的获奖人数及所买课外读物的本数.
2某果品公司要请汽车运输公司或火车货运站将60t水果从A地运到B地.已知汽车和火车从A地到B地的运输路程都是Skm,两家运输单位除都要收取运输途中每吨每小时5元的冷藏费用外,其他收取的费用和有关运输资料由表列出: 运输工具 行驶速度(km/h) 运输单价(元/t.km) 装卸费用 汽车 50 2 3000 火车 80 1.7 4620 (1)分别写出这两家运输单位运送这批水果所要收取的总费用y1元和y2元(用含S的式子表示); (2)为减少费用,当s=100km时,你认为果品公司应该选择哪一家运输单位更为合算?
3.用甲、乙两种原料配制成某种果汁,已知这两种原料的维生素C的含量及购买这两种原料的价格如表: 甲种原料 乙种原料 维生素C含量(单位/千克) 800 200 原料价格(元/kg) 18 14 (1)现制作这种果汁200kg,要求至少含有52 000单位的维生素C,试写出所需甲种原料的质量x(kg)应满足的不等式; (2)如果还要求购买甲、乙两种原料的费用不超过1 800元,那么请你写出所需甲种原料的质量x(kg)应满足的另一个不等式.
4,为了抓住世博会商机,某商店决定购进A,B两种世博会纪念品,若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品4件,B种纪念品3件,需要550元, 2
(1)求购进A,B两种纪念品每件需多少元? (2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑到市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过B种纪念品数量的8倍,那么该商店共有几种进货方案? (3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?
5.某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车. (1)每名熟练工和新工人每月分别可以安装多少辆电动汽车? (2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案? (3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能地少?
6.某地区果农收获草莓30吨,枇杷13吨,现计划租用甲、乙两种货车共10辆将这批水果全部运往省城,已知甲种货车可装草莓4吨和枇杷1吨,乙种货车可装草莓、枇杷各2吨. (1)该果农安排甲、乙两种货车时有几种方案请您帮助设计出来; (2)若甲种货车每辆要付运输费2 000元,乙种货车每辆要付运输费1 300元,则该果农应选择哪种运输方案才能使运费最少,最少运费是多少元?
7.开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本. (1)求每支钢笔和每本笔记本的价格; (2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出. 3
8.为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A、B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见下表: 型号 占地面积 (单位:m2/个 ) 使用农户数 (单位:户/个) 造价 (单位:万元/个) A 15 18 2 B 20 30 3 已知可供建造沼气池的占地面积不超过365m2,该村农户共有492户. (1)满足条件的方案共有几种?写出解答过程; (2)通过计算判断,哪种建造方案最省钱?
参考答案 . 1. 解:(1)m=3x+8; (2)根据题意得:, 解得:5<x<6, 因为x为正整数, 所以x=6, 把x=6代入m=3x+8得,m=26, 答:该校获奖人数为6人,所买课外读物为26本.
2. 解:(1)y1=(2×60)s+5××60+3000=126s+3000;
y2=(1.7×60)s+5××60+4620=105.75s+4620;
(2)当s=100km时,y1=3000+126×100=15600(元),y2=105.75×100+4620=15195(元). 故为减少费用,果品公司应选择火车货运站运送这批水果更为合算.
3. 解:(1)若所需甲种原料的质量为xkg,则需乙种原料(200﹣x)kg. 根据题意,得800x+200(200﹣x)≥52000;
(2)由题意得,18x+14(200﹣x)≤1800. 4
4 解:(1)设A,B两种纪念品每件需x元,y元.
,
解得:. 答:A,B两种纪念品每件需25元,150元;
(2)设购买A种纪念品a件,B种纪念品b件. ,
解得≤b≤. 则b=29;30;31;32;33; 则a对应为 226,220;214;208,202. 答:商店共有5种进货方案:进A种纪念品226件,B种纪念品29件;或A种纪念品220件,B种纪念品30件;或A种纪念品214件,B种纪念品31件;或A种纪念品208件,B种纪念品32件;或A种纪念品202件,B种纪念品33件;
(3)解法一:方案1利润为:226×20+29×30=5390(元); 方案2利润为:220×20+30×30=5300(元); 方案3利润为:214×20+30×31=5210(元); 方案4利润为:208×20+30×32=5120(元); 方案5利润为:202×20+30×33=5030(元); 故A种纪念品226件,B种纪念品29件利润较大为5390元.
解法二:解:设利润为W元,则W=20a+30b, ∵25a+150b=1000, ∴a=400﹣6b, ∴代入上式得:W=8000﹣90b, ∵﹣90<0, ∴W随着b的增大而减小,∴当b=29时,W最大,即此时a=226时,W最大, ∴W最大=8000﹣90×29=5390(元),
答:方案获利最大为:A种纪念品226件,B种纪念品29件,最大利润为5390元. 5. 解:(1)设每名熟练工和新工人每月分别可以安装x、y辆电动汽车.
根据题意,得,
解得. 答:每名熟练工和新工人每月分别可以安装4、2辆电动汽车.
(2)设工厂有a名熟练工. 根据题意,得12(4a+2n)=240, 2a+n=10, n=10﹣2a, 又a,n都是正整数,0<n<10, 所以n=8,6,4,2. 5
即工厂有4种新工人的招聘方案. ①n=8,a=1,即新工人8人,熟练工1人; ②n=6,a=2,即新工人6人,熟练工2人; ③n=4,a=3,即新工人4人,熟练工3人; ④n=2,a=4,即新工人2人,熟练工4人.
(3)结合(2)知:要使新工人的数量多于熟练工,则n=8,a=1;或n=6,a=2;或n=4,a=3. 根据题意,得 W=2000a+1200n=2000a+1200(10﹣2a)=12000﹣400a. 要使工厂每月支出的工资总额W(元)尽可能地少,则a应最大. 显然当n=4,a=3时,工厂每月支出的工资总额W(元)尽可能地少. 6. 解:(1)设应安排x辆甲种货车,那么应安排(10﹣x)辆乙种货车运送这批水果,
由题意得:, 解得5≤x≤7,又因为x是整数,所以x=5或6或7, 方案: 方案一:安排甲种货车5辆,乙种货车5辆; 方案二:安排甲种货车6辆,乙种货车4辆; 方案三:安排甲种货车7辆,乙种货车3辆.
(2)在方案一中果农应付运输费:5×2 000+5×1300=16 500(元) 在方案二中果农应付运输费:6×2 000+4×1 300=17 200(元) 在方案三中果农应付运输费:7×2 000+3×1 300=17 900(元) 答:选择方案一,甲、乙两种货车各安排5辆运输这批水果时,总运费最少,最少运费是16 500元. 7. 解:(1)设每支钢笔x元,每本笔记本y元.
依题意得:,
解得:, 答:每支钢笔3元,每本笔记本5元.
(2)设买a支钢笔,则买笔记本(48﹣a)本, 依题意得:, 解得:20≤a≤24, ∴一共有5种方案.
方案一:购买钢笔20支,则购买笔记本28本; 方案二:购买钢笔21支,则购买笔记本27本; 方案三:购买钢笔22支,则购买笔记本26本; 方案四:购买钢笔23支,则购买笔记本25本; 方案五:购买钢笔24支,则购买笔记本24本. 8. 解:(1)设建造A型沼气池x个,则建造B型沼气池(20﹣x)个,
依题意得:, 解得:7≤x≤9. ∵x为整数∴x=7,8,9,
所以满足条件的方案有三种.