期中考试模拟试卷
- 格式:doc
- 大小:232.00 KB
- 文档页数:7
(第12题)ABCDEF 七年级数学试卷(第二学期期中考试)班级__________ 姓名____________ 成绩_________ 一、你一定能选对!〔请将唯一正确答案的序号填在表格内.每题2分,共16分〕 题号 1 2 3 4 5 6 7 8 答案1.假设多边形的边数由3增加到n 〔n 为大于3的整数〕,那么其外角和的度数〔 〕 A .增加B .减少C .不变D .不能确定2.以以下各组数据为边长,能构成三角形的是〔 〕A. 1,4,2B. 6,4,8C. 12,6,5D. 2,6,3 3. 以下说法或运算正确的选项是〔 〕A .(-a 5) ÷(-a) 3= -a 2B .222)(b a b a -=-C .532a a a =+D .a 10÷a 4= a64. 假设三角形的一边长为12+a ,这边上的高为12-a ,那么此三角形的面积为〔 〕 A.142-a B.1442+-a a C.1442++a a D.2122-a 5.画△ABC 的边AB 上的高,以下画法中,正确的选项是......〔 〕6.3,2-==+ab b a ,那么22b ab a +-的值为〔 〕A 、11B 、12C 、13D 、147.将一张长方形纸片按如下图折叠, 如果581=∠, 那么2∠等于〔 〕A. 58B. 64C. 62D.668. 如图,它是由6个面积为1的小正方形组成的长方形,点A 、B 、C 、D 、E 、F 是小正方形的顶点,以这六个点中的任意三点为顶点,组成面积是1的三角形的个数是〔 〕 A .10 B.9 C .12 D.11二、你一定能填得又快又准!〔每空格2分,共20分〕9.学校操场是一个长方形,它的长是4×104cm ,宽为3×104cm ,那么该操场的面积为 _____m 2.10.一个正多边形的每个外角都等于40°,那么它是____ _边形.11. 3,2==nma a ,那么nm a -2= .12.如图.AB ∥CD ,AB 与DE 交于点F ,∠B=40°,∠D=75°.那么∠E= __ ___°. 13.当x=1时,代数式ax 2+bx+1的值是3,那么(a+b -1)(1-a -b)的值等于 . 14.: ()123=++x x ,那么x =____________.15.假设x 2-3mx+9是一个完全平方式,那么m 的值为.16.如图,正方形卡片A 类、B 类和长方形卡片C 类各假设干张,如果要拼一个长为 (a +2b)、宽为(a +b)的大长方形,那么需要C 类卡片 张.17.如图,AB ∥CD, FE 平分∠GFD, GF 与AB 相交于点H .假设∠GHA=40°, 那么∠BEF=_______°. 18. 0132=--a a ,那么代数式a a 103-的值是__________.w W w .三、你来做一做,一定要有过程啊! (共64分) 19.计算:〔每题4分,共24分〕〔1〕(- 3)0 - (12)-2; 〔2〕 y 6+(y 2)3;〔3〕〔-3a+2b)2; 〔4〕162n÷82n÷4n;(5) 〔3x 2y -2x +1)(-2xy) 2; (6)〔x -2)(x+3)-(x +4)(x -4).(第 7 题)21(第 17 题)H GFE DCB A A BCDEF 〔第8题〕ab bb aaC B A 第16题20. 因式分解:〔每题4分,共12分〕(1) 3642-x ; (2) 32244b b a ab --; 〔3〕2x(a-b)-6(b-a).21.〔4分〕假设nm n nm xx x x ++≠==求),0(,3,122的值.22.〔4分〕化简与求值:)3)(5()2)(2(b a b a b a b a +--+-,其中1-=a ,1=b .23.〔4分〕如图,将直角△ABC 沿着射线CB 的方向平移到△DEF 的位置.AC=8,DM=3,平移的距离为6,求四边形DEBM 的面积.w W w .24.(5分)某居民小区为了美化环境,要在一块长为2m ,宽为2n 的矩形绿地上建造花坛,要求花坛所占面积不超过绿地面积的一半,小明为此设计一个如以下图的方案,花坛是由一个矩形和两个半圆组成的,假设m = 32n ,那么小明的设计方案是否符合要求?请你用方法加以说明.25.〔4分〕如图,∠E=∠1+∠2,试探索AB 与CD 的位置关系,并说明理由.26.〔此题总分值6分〕在学完三角形的角平分线后,请你帮助解决以下4个问题.如图,在△ABC 中,∠BAC = 50°,点I 是两角B 、C 平分线的交点. 问题(1):填空:∠BIC = °.问题(2):假设点D 是两条外角平分线的交点;填空:∠BDC = °.问题(3):假设点E 是内角∠ABC 、外角∠ACG 的平分线的交点,试探索:∠BEC 与∠BAC 的数量关系,并说明理由.问题(4):在问题〔3〕的条件下,当∠ACB 等于多少度时,CE ∥AB .21EC B AMF E D CBAIA BCDEG。
七年级下册期中模拟测试(一)数学学科(考试时间:120分钟满分:120分)注意:本试卷分试题卷和答题卡(卷)两部分,答案一律填写在答题卡(卷)上,在试题卷上作答无效.一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.36的平方根是()A.±6 B.6 C.﹣6 D.±【答案】A【解答】解:∵(±6)2=36,∴36的平方根是±6.故选:A.2.如图,小手盖住的点的坐标可能为()A.(4,3)B.(4,﹣3)C.(﹣4,3)D.(﹣4,﹣3)【答案】D【解答】解:小手盖住的点的坐标在第三象限,点横坐标与纵坐标都是负数,只有(﹣4,﹣3)符合.故选:D.3.如图,直线AB、CD相交于点O,OE平分∠BOD,若∠AOE=150°,则∠AOC的度数为()A.50°B.60°C.70°D.80°【答案】B【解答】解:∵∠AOE=150°,∴∠BOE=180°﹣150°=30°,∵OE平分∠BOD,∴∠BOD=2∠BOE=60°,∴∠AOC=∠BOD=60°,故选:B.4.如图,点A为直线BC外一点,AC⊥BC,垂足为C,AC=3,点P是直线BC上的动点,则线段AP长不可能是()A.2 B.3 C.4 D.5【答案】A【解答】解:∵AC⊥BC,∴AP≥AC,即AP≥3.故选:A.5.下列各数3.1415926,﹣,0.202202220…,π,,﹣中,无理数的个数有()A.1个B.2个C.3个D.4个【答案】C【解答】解:3.1415926,﹣是分数,属于有理数;,是整数,属于有理数;无理数有﹣,0.202202220…,π,共3个.故选:C.6.下列四个图形中,不能推出∠2与∠1相等的是()A.B.C.D.【答案】B【解答】解:A、∵∠1和∠2互为对顶角,∴∠1=∠2,故本选项错误;B、∵a∥b,∴∠1+∠2=180°(两直线平行,同旁内角互补),不能判断∠1=∠2,故本选项正确;C、∵a∥b,∴∠1=∠2(两直线平行,内错角相等),故本选项错误;D、如图,∵a∥b,∴∠1=∠3(两直线平行,同位角相等),∵∠2=∠3(对顶角相等),∴∠1=∠2,故本选项错误;故选:B.7.下列命题是真命题的有()①过直线外一点有且只有一条直线平行于已知直线;②同位角相等,两直线平行;③内错角相等;④在同一平面内,同垂直于一条直线的两条直线平行.A.1个B.2个C.3个D.4个【答案】C【解答】解:①过直线外一点有且只有一条直线平行于已知直线,正确,为真命题;②同位角相等,两直线平行,正确,为真命题;③两直线平行,内错角相等,故原命题为假命题;④在同一平面内,同垂直于一条直线的两条直线平行,正确,为真命题;故真命题的个数为3个,故选:C.8.若a、b为实数,且满足,则b﹣a的值为()A.1 B.0 C.﹣1 D.以上都不对【答案】A【解答】解:由题意得,a﹣2=0,3﹣b=0,解得,a=2,b=3,则b﹣a=1,故选:A.9.在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A.(﹣4,5)B.(﹣5,4)C.(4,﹣5)D.(5,﹣4)【答案】D【解答】解:∵在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,∴点M的纵坐标为:﹣4,横坐标为:5,即点M的坐标为:(5,﹣4).故选:D.10.如图a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠1+∠2+∠3=()A.180°B.270°C.360°D.540°【答案】C【解答】解:过点P作P A∥a,则a∥b∥P A,∴∠1+∠MP A=180°,∠3+∠NP A=180°,∴∠1+∠2+∠3=360°.故选:C.11.如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那小明沿着小路的中间,从出口A到出口B所走的路线(图中虚线)长为()A.100米B.99米C.98米D.74米【答案】C【解答】解:利用已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,图是矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,则小明从出口A到出口B所走的路线长为50+(25﹣1)×2=98米.故选:C.12.如图,将边长为1的正方形OAPB沿x轴正方向连续翻转2021次,点P依次落在点P1、P2、P3…,P2021的位置,由图可知P1(1,1),P2(2,0),P3(2,0),P4(3,1),则P2021的坐标为()A.(2020,0)B.(2020,1)C.(2021,0)D.(2021,1)【答案】D【解答】解:根据图形可得,正方形旋转4次为一个周期,即P→P4为一周期,且相差3﹣(﹣1)=4,∴一个周期P向右移动4个单位长度.∵2021÷4=505…1,∴到P2021有505个周期再旋转一次,505×4﹣1=2019,∴P2020(2019,1),由P2020→P2021与P→P1类似,∴P2021(2021,1).故选:D.二、填空题(本大题共6小题,每小题3分,共18分)13.把命题“对顶角相等”改写成“如果…那么…”的形式:.【答案】如果两个角是对顶角,那么这两个角相等【解答】解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.14.如图,l1∥l2,l3∥l4,若∠1=70°,则∠2的度数为.【答案】110°【解答】解:∵l1∥l2,∠1=70°,∴∠3=∠1=70°,∵l3∥l4,∴∠2+∠3=180°,∴∠2=180°﹣∠3=180°﹣70°=110°,故答案为:110°.15.如图,△ABC沿着由点B到点E的方向平移,得到△DEF,若BC=4,EC=1,那么平移的距离是.【答案】3【解答】解:根据平移的性质,平移的距离=BE=4﹣1=3,故答案为:3.16.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是.【答案】35°【解答】解:如图,∵AB∥CD,∴∠AEF=∠1=25°,∵∠MEF=60°,∴∠2=∠MEF﹣∠AEF=60°﹣25°=35°,故答案为35°.17.若第三象限内的点P(x,y)、满足|x|=3,y2=25.则P点的坐标是.【答案】(﹣3,﹣5)【解答】解:∵|x|=3,y2=25,∴x=±3,y=±5,∵P在第三象限,∴点P的坐标是(﹣3,﹣5).故答案为:(﹣3,﹣5).18.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2019个点的横坐标为.【答案】45【解答】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),第2019个点是(45,6),所以,第2019个点的横坐标为45.故答案为:45.三、解答题(本大题共8小题,共66分.解答题应写出文字说明,证明过程或演算步骤.)19.计算下列各式的值:【答案】6【解答】解:=+(﹣5)+9﹣(﹣2)=+(﹣5)+9﹣+2=6.20.求满足下列各式x的值(1)2x2﹣8=0;(2)(x﹣1)3=﹣4.【答案】(1)x=±2;(2)x=﹣1【解答】解:(1)2x2﹣8=0,2x2=8,x2=4,x=±2;(2)(x﹣1)3=﹣4,(x﹣1)3=﹣8,x﹣1=﹣2,x=﹣1.21.一个正数的平方根是2a﹣1与﹣a+2,求a和这个正数.【答案】9【解答】解:由题意得:2a﹣1﹣a+2=0,解得:a=﹣1,2a﹣1=﹣3,﹣a+2=3,则这个正数为9.22.如图,已知单位长度为1的方格中有个三角形ABC.(1)将三角形ABC向上平移3格再向右平移2格所得三角形A'B'C',在所给的网格中画出三角形A'B'C'的位置;(2)求出三角形A'B'C'的面积;(3)如果点C的坐标为(3,﹣1),请在所给的网格中建立平面直角坐标系.填空:①BC与B'C'的关系是;②BB'与CC'的关系是.【答案】(1)略(2)(3)平行且相等,平行且相等.【解答】解:(1)如图所示,三角形A'B'C'即为所求;(2)S△A'B'C'=3×3﹣=;(3)坐标系如图所示,①BC与B'C'的关系是:平行且相等,②BB'与CC'的关系是:平行且相等,故答案为:平行且相等,平行且相等.23.如图,AB,CD相交于点O,OM平分∠BOD.(1)若∠AOC=50°,求∠AOM的度数;(2)若2∠AOD=3∠AOC,求∠COM的度数.【答案】(1)160°(2)144°【解答】解:(1)由题意可得∠BOD=∠AOC=50°,∠AOD=180°﹣∠AOC=130°,∵OM平分∠BOD,∴∠DOM==25°,∴∠AOM=∠AOD+∠DOM=135°+25°=160°;(2)∵2∠AOD=3∠AOC,∠AOD+∠AOC=180°,∴∠AOD+∠AOD=180°,解得∠AOD=108°,∴∠BOD=180°﹣108°=72°,∠COB=∠AOD=108°,∵OM平分∠BOD,∴∠BOM==36°,∴∠COM=∠COB+∠BOM=108°+36°=144°.24.已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD;(2)求∠C的度数.【答案】(1)略(2)25°【解答】(1)证明:∵AE⊥BC,FG⊥BC,∴AE∥GF,∴∠2=∠A,∵∠1=∠2,∴∠1=∠A,∴AB∥CD;(2)解:∵AB∥CD,∴∠D+∠CBD+∠3=180°,∵∠D=∠3+60°,∠CBD=70°,∴∠3=25°,∵AB∥CD,∴∠C=∠3=25°.25.我们知道:无理数是无限不循环的小数.下面是探究无理数的大小过程:因为12=1,22=4,所以1<<2;因为1.42=1.96,1.52=2.25,所以1.4<<1.5;因为1.412=1.9881,1.422=2.0164,所以1.41<<1.42;因为1.4142=1.999396,1.4152=2.002225,所以1.414<<1.415;……如此进行下去,可以得到的更加精确的近似值.(1)请仿照上面的思考过程,请直接写出无理数的大致范围?(精确到0.01)(2)填空:①比较大小:32(填“>、<或=”);②若a、b均为正整数,a>,b<,则a+b的最小值是.(3)现有一块长4.1dm,宽为3dm的长方形木板,要想在这块木板上截出两个面积分别为2dm2和5dm2的正方形木板,张师傅准备采用如图的方式进行,请你帮助分析一下,他的方法可行吗?【答案】(1)2.23<<2.24(2)>,4(3)可行【解答】解:(1)∵2.232<5<2.242,∴2.23<<2.24;(2)①∵(3)2=18,(2)2=12,∴3>2;故答案为:>;②∵a、b均为正整数,a>,b<,∴a最小为3,b=1,∴a+b最小为4;故答案为:4;(3)他的方法可行,理由如下:∵面积分别为2dm2的正方形边长是dm,面积分别为5dm2的正方形是dm,≈2,236<3,+≈3.65<4.1,∴他的方法可行.26.如图,在平面直角坐标系,点A、B的坐标分别为(a,0),(0,b),且|a﹣26|+=0,将点B向右平移24个单位长度得到C.(1)求A、B两点的坐标;(2)点P、Q分别为线段BC、OA两个动点,P自B点向C点以2个单位长度/秒向右运动,同时点Q自A点向O点以4个单位长度/秒向左运动,设运动的时间为t,连接PQ,当PQ恰好平分四边形BOAC的面积时,求t的值;(3)点D是直线AC上一点,连接QD,作∠QDE=120°,边DE与BC的延长线相交于点E,DM平分∠CDE,DN平分∠ADQ,当点Q运动时,∠MDN的度数是否变化?请说明理由.【答案】(1)A(26,0),B(0,8)(2)t=(3)不变【解答】解:(1)∵|a﹣26|+=0,∴a﹣26=0,且8﹣b=0,∴a=26,b=8,∴A(26,0),B(0,8);(2)∵BC∥x轴,BC=24,∴C(24,8),由题意得:BC∥OA,BP=2t,AQ=4t,则PC=24﹣2t,OQ=26﹣4t,BO=8,∴S梯形AOBC=×(24+26)×8=200,当PQ恰好平分四边形BOAC时,S梯形OBPQ=×200=100,∴:×(2t+26﹣4t)×8=100,解得:t=;(3)当点Q运动时,∠MDN的度数不变,理由如下:如图1,当点D在线段CA的延长线上或AC的延长线上时,∵DM平分∠CDE,DN平分∠ADQ,∴∠NDC=,∠QDA,∠MDC=∠CDE,∴∠MDN=∠NDC+∠MDC=(∠QDA+∠CDE)=∠QDE=60°;如图2,当点D在线段AC上时,∵DM平分∠CDE,DN平分∠ADQ,∴∠NDQ=∠ADQ,∠MDC=∠CDE,设∠CDE=α,∴∠QDC=120°﹣α,∠ADQ=180°﹣(120°﹣α)=60°+α,∴∠MDN=∠MDC+∠QDC+∠NDC=α+120°﹣α+(60°+α)=150°;综上所述,∠MDN的度数为150°或60°,∴当点Q运动时,∠MDN的度数不变化.。
新课标七年级数学下册期中调研模拟试卷题号一二三总分得分一、选择题(共8小题,每小题3分,共24分.每小题只有一个选项是符合题意的)1.169的平方根是(A.13B.±13C.±13D.132.(2021湖南岳阳临湘期末,2,★☆☆)点P(m+3,m+1)在平面直角坐标系中的x轴上,则点P的坐标为( A.(0,-2) B.(2,0) C.(4,0)D.(0,-4)3.(2020贵州安顺中考,4,★☆☆)如图,直线a,b相交于点O,如果∠1+∠2=60°,那么∠3=( A.150° B.120° C.60°D.30°4.若2x-4与3x-1是同一个数的两个不相等的平方根,则这个数是(A.2B.-2C.4D.15.(2022辽宁丹东中考,6,★☆☆)如图,直线l1∥l2,直线l3与l1,l2分别交于A,B两点,过点A作AC⊥l2,垂足为C,若∠1=52°,则∠2的度数是( A.32° B.38° C.48°D.52°6.(2022河南南阳社旗期末,9,★★☆)如图,将三角形ABC沿着某一方向平移一定的距离得到三角形DEF,则下列结论:①AD=CF;②AC∥DF;③∠ABC=∠DFE;④∠DAE=∠AEB中,正确的是(A.①②B.①②④C.①②③D.①②③④7.[跨学科·英语](2022贵州六盘水中考,11,★★☆)两个小伙伴拿着如图所示的密码表玩听声音猜动物的游戏,若听到“咚咚—咚咚,咚—咚,咚咚咚—咚”表示的动物是狗,则听到“咚咚一咚,咚咚咚—咚咚,咚—咚咚咚”时,表示的动物是(A.狐狸B.猫C.蜜蜂D.牛8.我们知道“对于实数m、n、k,若m=n,n=k,则m=k”,即相等关系具有传递性.小敏由此进行联想,提出了下列命题:①在同一平面内,a、b、c是直线,若a∥b,b∥c,则a∥c;②在同一平面内,a、b、c是直线,若a⊥b,b⊥c,则a⊥c;③若∠α与∠β互余,∠β与∠γ互余,则∠α与∠γ互余;④若∠α与∠β的两边分别平行,则∠α=∠β或∠α+∠β=180.其中正确的命题是( A.①④ B.②③ C.①②④D.②③④二、填空题(共8小题,每小题3分,共24分)9.(2022山东烟台蓬莱期末,13,★☆☆)-27的立方根与81 的平方根的和是_______。
2022-2023学年上学期七年级数学期中模拟试卷(一)一、选择题(共10小题,每小题3分,共30分)1.四个有理数﹣2,﹣1,0,1,其中最小的是()A .﹣2B .﹣1C .0D .12.下列5个数中:2,1.1,35,0,﹣π,有理数的个数是()个.A .2B .3C .4D .53.下列化简错误的是()A .﹣(﹣3)=3B .(﹣2)2=4C .﹣(+6)=﹣6D .﹣|﹣5|=54.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长16800m ,用科学记数法表示这个数为()A .1.68×104m B .16.8×103m C .0.168×104m D .1.68×105m5.下列是关于x 的一元一次方程的是()A .x(x-1)=xB .x+1x =2C .x=0D .x+26.单项式-x 2y 的系数和次数分别是()A .-1和2B .-1和3C .0和2D .0和37.一个两位数,十位数字是m ,个位数字比十位数字的2倍少3,这个两位数是()A .m(2m-3)B .m(2m+3)C .12m-3D .12m+38.有理数a ,b ,﹣c 在数轴上的位置如图所示,则|a ﹣b|+|b+c|﹣|c+a ﹣b|的值为()A .B B .﹣bC .b+2cD .b ﹣2c 9.如图,新制作的渗水防滑地板是形状完全相同的长方形.三块这样的地板可以拼成一个大的长方形,如果大长方形的周长为150厘米,则一块渗水防滑地板的面积是()平方厘米.A .450B .600C .900D .135010.将自然数按照如下规律排列,则2022在()A .第673个三角形的左下角B .第673个三角形的右下角C .第674个三角形的左下角D .第674个三角形的右下角二、填空题(共4小题,每小题3分,共12分)11.|-12|=__________,3的相反数是__________,-1.5的倒数是__________.12.已知方程03=+n x 是关于x 的一元一次方程,则n=__________.13.已知x ,y 为有理数,定义一种新运算△:x △y =xy ﹣x ﹣y +1,计算:-4△3=.14.做大小两个长方体纸盒,尺寸如下(单位:cm),做两个纸盒共用料_______平方厘米.15.如图,已知四个有理数m 、n 、p 、q 在数轴上对应的点分别为M 、M 、P 、Q ,且m+p=0,则在m 、n 、p 、q 四个有理数中,绝对值最小的一个是__________.16.将9个互不相等的正整数填入幻方的九个格中,使处于同一横行、同一竖列、同一斜对角线上的三个数的和相等.如图所示,将满足条件的9个数中的三个数填入了图中,则正整数a 的值为__________.三、解答题(共72分)17.(本题8分)计算:(1)(﹣16)+10+(﹣5)﹣17(2)-22+(-3)×[(-4)2+2]-(-3)2÷(-2).18.(本题8分)先化简,再求值:()()324125222+--+-x x x x ,其中x =﹣2.19.(本题8分))若关于x 、y 的多项式()()y bxy x x xy ax 323222+---+不含二次项,求b a +-2的值。
2023春统编版八下历史期中考试模拟押题卷闭卷考试注意:本试卷分试题卷和答题卡两部分。
考试时间40分钟,满分100分。
考生应首先阅读答题卡上的文字信息,然后在答题卡上作答。
在试题卷上作答无效。
交卷时只交答题卡。
第一部分选择题(共20小题,40分)每小题只有一个正确答案,请将正确选项填涂到答题卡相应位置。
1.下图是一段“中国近现代史发展历程年代标尺”。
其中,方框③对应选项正确的是()A.井冈烽火B.当家作主C.开天辟地D.社会主义2.1949年9月,中国人民政治协商会议第一届全体会议在北平隆重召开,中国共产党、各民主党派、武无党派人士、人民解放军、各人民团体、各地区、各民族及海外华侨等各方面代表600余人出席会议。
这体现了新中国实行的制度是()A.人民代表大会制度B.社会主义制度C.新民主主义制度D.中国共产党领导的多党合作制度3.某些情况下,歌谣诗词可作为历史研究的史料。
下列歌词反映的历史事件按时间顺序排列正确的是()①打倒列强,打倒列强;除军阀,除军阀②高粱叶子青又青,九一八来了日本兵③红军不怕远征难,万水千山只等闲④雄赳赳,气昂昂,跨过鸭绿江A.①③②④B.②①③④C.①②③④D.④②③①4.2019年4月3日,中韩双方第六次对中国人民志愿军遗骸进行交接,使这些在朝鲜半岛沉睡了超过半个世纪的烈士得以回归故里。
下列人物属于抗美援朝时期牺牲的革命烈士有()①杨靖宇②黄继光③邱少云④董存瑞A.①②③④B.②③C.①④D.①②③5.下图所反映的历史史实是()A.土地改革运动的开展B.家庭联产承包责任制的实行C.农业生产合作社的成立D.人民公社化运动的掀起6.1951年,全国粮食产量达到1.4亿吨,比1949年增长26.9%。
这一农业产量增长背景下大部分的土地拥有形式是()A.封建地主土地所有制B.农民土地所有制C.国家土地所有制D.集体土地所有制7.“一五”计划期间,我国以苏联帮助兴建的156个项目为中心,先后施工1万多个工业项目。
部编版九年级语文(下册期中)模拟试卷及答案满分:120分考试时间:120分钟一、语言的积累与运用。
(35分)1、下列各组词语中字形和加点字的注音完全正确的一项是()A.婆娑.(shā)贮蓄呕.心沥血(ōu)催枯拉朽B.毋.宁(wú)哐骗相形见绌.(cù)怏怏不乐C.媲.美(bì)娉婷爱憎.分明(zēng)娇揉造作D.筵.席(yán)豢养怒不可遏.(è)戛然而止2、下面词语书写完全正确的一项是()A.蓬蒿旁鹜引颈受戮一泻千里B.慰藉告罄相得益彰莫明其妙C.沧桑笙萧锋芒毕露一反既往D.馈赠陷阱通宵达旦再接再厉3、下列句子中加点词语使用不恰当的一项是()A.百花争奇斗艳的时节,柳侯公园里热闹非凡,男女老少饶有兴味....地观赏紫荆花。
B.在期考动员大会上,校长要求我们认真对待考试,遵守考试纪律,做个坦荡..如砥..的人。
C.青云小吃店的粉饺香气四溢,表皮晶莹剔透,馅料饱满,令食客垂涎欲滴....。
D.在柳州小记者团成立13周年纪念活动中,柳州日报社总编辑做了抑扬顿挫....、充满激情的发言。
4、下列语句中没有语病的一项是()A.企业能否长远发展,关键是要把好产品质量关。
B.美国之所以能轻易给中国新兴技术的发展使绊子,是因为他手握大量核心技术的原因。
C.为了提高同学们的语文素养,我校团委积极开展了“读经典作品,建书香校园”的活动。
D.随着人工智能技术的进一步发展,给人民生活带来了极大的便利。
5、下列句子没有使用修辞方法的一项是( )A.但我要问他:“做工苦,难道不做工就不苦吗?”B.假若爱比恨多,小屋就光明温暖,像一座金色池塘,有红色的鲤鱼游弋。
C.这座大得犹如一座城市的建筑物是世世代代的结晶。
D.要养成优雅风度应该遵循哪些准则?6、把下面的句子组成一段连贯的话,排序合理的一项是()①所以,“茶禅一味”,品茶与品悟当下,是一体的。
②每一次把茶拿起来喝的时候,先起一个念头,好好地喝这杯茶吧!③只有当整个身心融入了这一刻,融入了这一个当下,才能真正品出茶的甘味。
七年级下册期中模拟测试(二)数学学科(考试时间:120分钟满分:120分)注意:本试卷分试题卷和答题卡(卷)两部分,答案一律填写在答题卡(卷)上,在试题卷上作答无效.一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.的算术平方根为()A.B.C.D.﹣【答案】C【解答】解:的算术平方根为.故选:C.2.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.【答案】D【解答】解:观察图形可知图案D通过平移后可以得到.故选:D.3.下列坐标中,是第二象限的坐标是()A.(1,﹣5)B.(﹣2,4)C.(﹣1,﹣5)D.(5,7)【答案】B【解答】解:A、(1,﹣5)在第四象限,故本选项不合题意;B、(﹣2,4)在第二象限,故本选项符合题意;C、(﹣1,﹣5)在第三象限,故本选项不合题意;D、(5,7)在第一象限,故本选项不合题意;故选:B.4.下列图形中,∠1与∠2是同位角的是()A.B.C.D.【答案】B【解答】解:A选项,∠1与∠2是对顶角,不是同位角,故该选项不符合题意;B选项,∠1与∠2是同位角,故该选项符合题意;C选项,∠1与∠2是内错角,不是同位角,故该选项不符合题意;D选项,∠1与∠2是同旁内角,不是同位角,故该选项不符合题意;故选:B.5.若点P在x轴的下方,y轴的左方,且到每条坐标轴的距离都是4,则点P的坐标为()A.(4,4)B.(﹣4,4)C.(﹣4,﹣4)D.(4,﹣4)【答案】C【解答】解:∵点P在x轴的下方y轴的左方,∴点P在第三象限,∵点P到每条坐标轴的距离都是4,∴点P的坐标为(﹣4,﹣4).故选:C.6.如图,把河AB中的水引到C,拟修水渠中最短的是()A.CM B.CN C.CP D.CQ【答案】C【解答】解:如图,CP⊥AB,垂足为P,在P处开水渠,则水渠最短.因为直线外一点与直线上各点连线的所有线段中,垂线段最短.故选:C.7.如图,下列条件:①∠1=∠3;②∠DAB=∠BCD;③∠ADC+∠BCD=180°;④∠2=∠4,其中能判定AB∥CD的有()A.1个B.2个C.4个D.3个【答案】A【解答】解:①由∠1=∠3可判定AD∥BC,不符合题意;②由∠DAB=∠BCD不能判定AB∥CD,不符合题意;③由∠ADC+∠BCD=180°可判定AD∥BC,不符合题意;④由∠2=∠4可判定AB∥CD,符合题意.故选:A.8.如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(﹣40,﹣30)表示,那么(10,20)表示的位置是()A.点A B.点B C.点C D.点D【答案】B【解答】解:根据如图所建的坐标系,易知(10,20)表示的位置是点B,故选:B.9.下列说法中,正确的是()①两点之间的所有连线中,线段最短;②过一点有且只有一条直线与已知直线垂直;③平行于同一直线的两条直线互相平行;④直线外一点到这条直线的垂线段叫做点到直线的距离.A.①②B.①③C.①④D.②③【答案】B【解答】解:①两点之间的所有连线中,线段最短,说法正确;②在同一平面内,过一点有且只有一条直线与已知直线垂直,说法错误;③平行于同一直线的两条直线互相平行,说法正确;④直线外一点到这条直线的垂线段的长度叫做点到直线的距离,说法错误.故选:B.10.如图,将一块直角三角板DEF放置在锐角△ABC上,使得该三角板的两条直角边DE、DF恰好分别经过点B、C,若∠ABC+∠ACB=120°,则∠ABD+∠ACD的值为()A.60°B.50°C.40°D.30°【答案】D【解答】解:在△ABC中,∠ABC+∠ACB=120°,在△DBC中,∠BDC=90°,∴∠DBC+∠DCB=180°﹣90°=90°,∴∠ABD+∠ACD=120°﹣90°=30°.故选:D.11.一次数学活动中,检验两条纸带①、②的边线是否平行,小明和小丽采用两种不同的方法:小明对纸带①沿AB折叠,量得∠1=∠2=50°;小丽对纸带②沿GH折叠,发现GD与GC重合,HF与HE重合.则下列判断正确的是()A.纸带①的边线平行,纸带②的边线不平行B.纸带①、②的边线都平行C.纸带①的边线不平行,纸带②的边线平行D.纸带①、②的边线都不平行【答案】C【解答】解:如图①所示:∵∠1=∠2=50°,∴∠3=∠2=50°,∴∠4=∠5=180°﹣50°﹣50°=80°,∴∠2≠∠4,∴纸带①的边线不平行;如图②所示:∵GD与GC重合,HF与HE重合,∴∠CGH=∠DGH=90°,∠EHG=∠FHG=90°,∴∠CGH+∠EHG=180°,∴纸带②的边线平行.故选:C.12.如图,点A(1,0)第一次跳动至点A1(﹣1,1),第二次跳动至点A2(2,1),第三次跳动至点A3(﹣2,2),第四次跳动至点A4(3,2),…,依此规律跳动下去,点A第100次跳动至点A100的坐标是()A.(50,51)B.(51,50)C.(49,50)D.(50,49)【答案】B【解答】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),∴第100次跳动至点的坐标是(51,50).故选:B二、填空题(本大题共6小题,每小题3分,共18分)13.5的平方根是.【答案】±【解答】解:∵(±)2=5,∴5的平方根是±.故答案为:±.14.如图,AB、CD相交于点O,OE是∠AOC的平分线,∠BOD=70°,∠EOF=65°,则∠AOF的度数为°.【答案】30【解答】解:∵∠BOD=70°,∴∠AOC=∠BOD=70°,∵OE是∠AOC的平分线,∴∠AOE=∠AOC=70°=35°,∵∠EOF=65°,∴∠AOF=65°﹣35°=30°,故答案为:30.15.已知≈4.496,≈14.22,则≈.【答案】44.96【解答】解:==10≈10×4.496=44.96,故答案为:44.96.16.如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,则∠1+∠2=.【答案】45°【解答】解:如图,过点A作l∥m,则∠1=∠3.又∵m∥n,∴l∥n,∴∠4=∠2,∴∠1+∠2=∠3+∠4=45°.故答案是:45°.17.如图所示,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条”之”字路,余下部分绿化,道路的宽为2米,则绿化的面积为m2.【答案】540【解答】解:如图,把两条”之”字路平移到长方形地块ABCD的最上边和最左边,则余下部分EFGH是矩形.∵CF=32﹣2=30(米),CG=20﹣2=18(米),∴矩形EFCG的面积=30×18=540(平方米).答:绿化的面积为540m2.故答案为:540.18.在平面直角坐标系中,点P位于原点,第1秒钟向右移动1个单位,第2秒钟向上移动2个单位,第3秒钟向左移动3个单位,第4秒钟向下移动4个单位,第5秒钟向右移动5个单位,…依此类推,经过2021秒钟后,点P的坐标是.【答案】(1011,﹣1010)【解答】解:观察图形可知经过2017秒钟后,点P在第四象限的直线y=﹣x+1上,∵2021÷4=505余1,∴P2021的横坐标为1+2×505=1011,∴y=﹣1011+1=﹣1010,∴P(1011,﹣1010).故答案为(1011,﹣1010)三、解答题(本大题共8小题,共66分.解答题应写出文字说明,证明过程或演算步骤.)19.计算:+﹣(﹣1).【答案】1﹣【解答】解:+﹣(﹣1)=3﹣3﹣+1=1﹣20.已知正数m的两个不同平方根分别是2a﹣7和a+4,又b﹣7的立方根为﹣2.(1)求a和正数m及b的值;(2)求3a+2b的算术平方根.【答案】(1)a=1,m=25,b=﹣1 (2)1【解答】解:(1)∵正数m的两个不同平方根分别是2a﹣7和a+4,∴(2a﹣7)+(a+4)=0,∴a=1,2a﹣7=﹣5,∴m=25,∵b﹣7的立方根为﹣2,∴b﹣7=﹣8,∴b=﹣1,∴a=1,m=25,b=﹣1;(2)由(1)有a=1,b=﹣1,∴3a+2b=3×1+2×(﹣1)=1,∴3a+2b的算术平方根为1.21.补全下列题目的解题过程.如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D,求证DF∥AC.证明:∵∠1=∠2(已知),且∠2=∠3,∠1=∠4(),∴∠3=∠4(等量代换),∴DB∥(),∴∠C=∠ABD(),∵∠C=∠D(已知),∴∠D=∠ABD(),∴DF∥AC().【答案】对顶角相等;CE;内错角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.【解答】证明:∵∠1=∠2(已知),且∠2=∠3,∠1=∠4(对顶角相等),∴∠3=∠4(等量代换),∴DB∥CE(内错角相等,两直线平行),∴∠C=∠ABD(两直线平行,同位角相等),∵∠C=∠D(已知),∴∠D=∠ABD(等量代换),∴DF∥A C(内错角相等,两直线平行),故答案为:对顶角相等;CE;内错角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.22.如图,在平面直角坐标系中,三角形ABC的顶点都在网格点上,其中点C的坐标为(1,2).(1)点A的坐标是点B的坐标是.(2)画出将三角形ABC先向左平移2个单位长度,再向上平移1个单位长度所得到的三角形A'B'C'.请写出三角形A'B'C'的三个顶点坐标;(3)求三角形ABC的面积.【答案】(1)(2,﹣1);(4,3)(2)略(3)5【解答】解:(1)A(2,﹣1),B(4,3);故答案为(2,﹣1);(4,3);(2)如图,三角形A'B'C'为所作;A′(0,0),B′(2,4),C′(﹣1,3);(3)三角形ABC的面积=3×4﹣×3×1﹣×3×1﹣×2×4=5.23.已知点P(2m﹣4,m+4),解答下列问题:(1)若点P在y轴上,则点P的坐标为;(2)若点P的纵坐标比横坐标大7,求出点P坐标;(3)若点P在过A(2,3)点且与x轴平行的直线上,则AP的长为多少?【答案】(1)(0,6)(2) (﹣2,5)(3)8【解答】解:(1)令2m﹣4=0,解得m=2,所以P点的坐标为(0,6),故答案为:(0,6);(2)令m+4﹣(2m﹣4)=7,解得m=1,所以P点的坐标为(﹣2,5);(3)∵点P在过A(2,3)点且与x轴平行的直线上,∴m+4=3,解得m=﹣1.∴P点的坐标为(﹣6,3),∴AP=2+6=8.24.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|,例如:数轴上表示﹣1与﹣2的两点间的距离=|﹣1﹣(﹣2)|=﹣1+2=1;而|x+2|=|x﹣(﹣2)|,所以|x+2|表示x与﹣2两点间的距离.利用数形结合思想回答下列问题:(1)数轴上表示﹣2和5两点之间的距离.(2)若数轴上表示点x的数满足|x﹣1|=3,那么x=.(3)若数轴上表示点x的数满足﹣4<x<2,则|x﹣2|+|x+4|=.【答案】(1)76(2)﹣2或4(3)6【解答】解:(1)根据题意知数轴上表示﹣2和5两点之间的距离为5﹣(﹣2)=7,故答案为:7;(2)∵|x﹣1|=3,即在数轴上到表示1和x的点的距离为3,∴x=﹣2或x=4,故答案为:﹣2或4;(3)∵|x﹣2|+|x+4|表示在数轴上表示x的点到﹣4和2的点的距离之和,且x位于﹣4到2之间,∴|x﹣2|+|x+4|=2﹣x+x+4=6,故答案为:6.25如图①.已知AM∥CN,点B为平面内一点,AB⊥BC于点B,过点B作BD⊥AM于点D,设∠BCN=α.(1)若α=30°,求∠ABD的度数;(2)如图②,若点E、F在DM上,连接BE、BF、CF,使得BE平分∠ABD、BF平分∠DBC,求∠EBF的度数;(3)如图③,在(2)问的条件下,若CF平分∠BCH,且∠BFC=3∠BCN,求∠EBC 的度数.【答案】(1)30°(2)45°(3)97.5°.【解答】解:(1)延长DB,交NC于点H,如图,∵AM∥CN,BD⊥AM,∴DH⊥NC.∴∠BHC=90°.∵∠BCN=α=30°,∴∠HBC=90°﹣∠BCN=60°.∵AB⊥BC,∴∠ABC=90°.∴∠ABD=180°﹣∠ABC﹣∠HBC=30°;(2)延长DB,交NC于点H,如图,∵AM∥CN,BD⊥AM,∴DH⊥NC.∴∠BHC=90°.∵∠BCN=α,∴∠HBC=90°﹣α.∵AB⊥BC,∴∠ABC=90°.∴∠ABD=180°﹣∠ABC﹣∠HBC=α.∵BE平分∠ABD,∴∠DBE=∠ABE=α.∵∠HBC=90°﹣α,∴∠DBC=180°﹣∠HBC=90°+α.∵BF平分∠DBC,∴∠DBF=∠CBF=∠DBC=45°+α.∴∠EBF=∠DBF﹣∠DBE=45°+α﹣α=45°;(3)∵∠BCN=α,∴∠HCB=180°﹣∠BCN=180°﹣α.∵CF平分∠BCH,∴∠BCF=∠HCF=∠HCB=90°﹣α.∵AM∥CN,∴∠DFC=∠HCF=90°﹣α.∵∠BFC=3∠BCN,∴∠BFC=3α.∴∠DFB=∠DFC﹣∠BFC=90°﹣α.由(2)知:∠DBF=45°+α.∵BD⊥AM,∴∠D=90°.∴∠DBF+∠DFB=90°.∴45°+α+90°﹣α=90°.解得:α=15°.∴∠FBC=∠DBF=45°+α=52.5°.∴∠EBC=∠FBC+∠EBF=52.5°+45°=97.5°.26.如图1,在平面直角坐标系中,点A,B的坐标分别是(﹣2,0),(4,0),现同时将点A、B分别向上平移2个单位长度,再向右平移2个单位长度,得到A,B的对应点C,D.连接AC、BD、CD.(1)写出点C,D的坐标并求出四边形ABDC的面积.(2)在x轴上是否存在一点E,使得△DEC的面积是△DEB面积的2倍?若存在,请求出点E的坐标;若不存在,请说明理由.(3)如图2,点F是直线BD上一个动点,连接FC、FO,当点F在直线BD上运动时,请直接写出∠OFC与∠FCD,∠FOB的数量关系.【答案】(1) 12(2)存在(3)当点F在线段BD上,∠OFC=∠FOB+∠FCD;;当点F在线段BD的延长线上,∠OFC=∠FOB﹣∠FCD.【解答】解:(1)∵点A,B的坐标分别是(﹣2,0),(4,0),现同时将点A、B分别向上平移2个单位长度,再向右平移2个单位长度得到A,B的对应点C,D,∴点C的坐标为(0,2),点D的坐标为(6,2);四边形ABDC的面积=2×(4+2)=12;(2)存在.设点E的坐标为(x,0),∵△DEC的面积是△DEB面积的2倍,∴×6×2=2××|4﹣x|×2,解得x=1或x=7,∴点E的坐标为(1,0)和(7,0);(3)当点F在线段BD上,作FM∥AB,如图1,∵MF∥AB,∴∠2=∠FOB,∵CD∥AB,∴CD∥MF,∴∠1=∠FCD,∴∠OFC=∠1+∠2=∠FOB+∠FCD;当点F在线段DB的延长线上,作FN∥AB,如图2,∵FN∥AB,∴∠NFO=∠FOB,∵CD∥AB,∴CD∥FN,∴∠NFC=∠FCD,∴∠OFC=∠NFC﹣∠NFO=∠FCD﹣∠FOB;同样得到当点F在线段BD的延长线上,得到∠OFC=∠FOB﹣∠FCD.。
普通高中高一下学期期中模块考试数学模拟试卷一、选择题:本大题共10小题, 每小题5分, 共50分. 在每小题给出的四个选项中, 只有一项是符合题目要求的.1. 设a , b ∈R , 若a -|b |>0, 则下面不等式中正确的是( ) A. b -a >0 B. a 3+b 3<0 C. b +a <0 D. a 2-b 2>02. tan 2012°∈( )A. (0,33) B. (33,1) C. (-1, -33) D. (-33, 0) 3. 在等差数列{a n }中, 若a 3+a 5+a 7+a 9+a 11=100, 则3a 9-a 13的值为( ) A. 20 B. 30 C. 40 D. 504. 若a =2, b =33, A =30°, 则此△ABC 解的情况是( ) A. 一解 B. 两解 C. 至少一解 D. 无解5. 互不相等的正数a , b , c , d 成等比数列, 则( )A.bc >2d a + B. bc <2d a + C. 2da bc += D. 无法判断 6. 设f (x )=25cos 2x -21sin 2x +33sinx cosx , 则f (x )的最小正周期为 ( )A. 2πB. 4πC. πD.2π7. 已知数列{a n }是首项为1的等比数列, S n 是{a n }的前n 项和, 且9s 3=s 6, 则数列{na 1}的前5项和为( )A.3285 B.1631 C.815 D.285 8. 已知非零向量a , b , c 满足a +b +c =0, 向量a 与b 夹角为120°, 且|b |=2|a |, 则向量a 与c 的夹角为( ) A. 60°B. 150°C. 120°D. 90°9. 设a ·b ·c >0, 二次函数f (x )=ax 2+bx +c 的图象可能是( )A B C D10. 已知f (x )=x -1, g (x )=-x 2+(3m +1)x -2m (m +1), 满足下面两个条件: ①对任意实数x , 有f (x )<0或g (x )<0;②存在x ∈(-∞, -2), 满足f (x )·g (x )<0. 则实数m 的取值范围为 ( ) A. (-∞, -1) B. (1, +∞) C. (-1, 1) D. (-2, 0)二、填空题:本大题共5小题, 每题5分, 共25分. 请将答案填在答题卡对应题号的位置上.11. 平面上满足约束条件⎪⎩⎪⎨⎧≤--≤+≥0602y x y x x 的点(x , y )形成的区域D 的面积为 .12.若三个数5,5m +-m =13. 设a , b , c 是向量, 在下列命题中, 正确的是 .①a ·b =b ·c , 则a =c ; ②(a ·b )·c =a ·(b ·c ); ③|a ·b |=|a |·|b | ④|a +b |2=(a +b )2; ⑤若a ∥b , b ∥c , 则a ∥c ; ⑥若a ⊥b , b ⊥c , 则a ⊥c . 14. 已知y =asinx +b (a <0)的最大值是3, 最小值是-1, 则a = , b = .15. 已知数列{a n }中, a 1=1, 且na n +1=(n +2)a n , (n ∈N *), 则a 2= , a n = .三、解答题:本大题共6小题, 共75分. 解答应写出文字说明、证明过程或演算步骤. 16. (12分)解下列不等式:(1) 3x 2+5x -2≤0(2)323--x x ≥1 (3) x 3-3x +2>017.(12分)已知△ABC 的角A 、B 、C 所对的边分别是a , b , c , 设向量m =(a , b ), n =(sinB , sinA ),p =(b -2, a -2).(1) 若m ∥n , 判断△ABC 的形状, 并说明理由; (2) 若m ⊥p , 边长c =2, ∠C =3π, 求△ABC 的面积.18.(12分)如图四边形ABCD中,2,4,AB BC CD === 且60,150B C ∠=︒∠=︒,求边AD 的长.19. (12分)已知函数()44cos 2sin cos sin f x x x x x =+-.⑴求()f x 的最小正周期; ⑵当0,2x π⎡⎤∈⎢⎥⎣⎦时,求()f x 的最大值以及取得最大值时x 的集合.20.(13分)若S n 是公差不为0的等差数列{a n }的前n 项和, 则S 1, S 2, S 4成等比数列.(1) 求数列S 1, S 2, S 4的公比;(2) 若S 2=4, 求{a n }的通项公式;(3) 在(2)条件下, 若b n =a n -14, 求{|b n |}的前n 项和T n .21. (14分)某房地产开发公司计划在一楼区内建造一个长方形公园ABCD ,公园由长方形的休闲区A 1B 1C 1D 1(阴影部分)和环公园人行道组成。