酶工程制药1
- 格式:ppt
- 大小:4.00 MB
- 文档页数:58
酶工程技术在医药制药领域的应用论文(共2篇)本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!第1篇:酶工程技术在医药制药领域的应用一、酶工程技术研究进展1固定化酶酶工程的最初10年,主要兴趣在发展固定化方法和载体,探索其应用的可能性。
第一代固定化生物催化剂的特征是单酶的固定化,发展了吸附、共价、交联和包埋等数十种固定化方法。
现已有20多种利用单酶活力的固定化生物催化剂在世界上获得工业应用。
2多酶系统的固定化固定化单酶不可能引起发酵工业的根本变革。
大多数生物化学产品的合成和转化必须依赖一连串酶反应,而且需要辅助因子和ATP的参与。
早在70年代初已尝试将催化顺序反应的几种酶共固定,发现物质转化的速度比溶液中酶混合物高。
70年代后期,辅酶的保持和再生又特别受到重视。
ATP和NAD在大分子化后可保持在半透膜内,往返于催化合成的酶与再生它们的酶之间。
已知的酶有50%以上需要辅因的存在参与酶促反应。
ATP、FAD、NAD、PLP与PQQ的再生都可能通过固定化技术获得不同程度的解决,其中包括这些辅因的固定化与其他酶促反应相偶联或对辅因进行化学修饰及利用这些辅因的类似物与衍生物等。
实验发现应用固定化辅因及其衍生物对酶的活力具有良好作用,如thioNAD与A-PAD对马肝醇脱氢酶的活力比NAD更有效。
亚细胞成份都是天然地巧妙定位的多酶集合体,从理论上推测,固定化各种细胞器就可能有效地利用各种多酶系统。
我们曾固定化了羊精囊微粒体、鼠肝微粒体、线粒体和细胞质,为了克服固定化细胞器不够稳定的缺点,KangFuGu等人《构建了一种含有固定化多酶系统和NAD的人工细胞,用于将氨或尿素转变成必需的氨基酸,取得了良好结果。
3固定化细胞从单酶-多酶-细胞器固定化的进一步延伸就是进行完整细胞的固定化,其中包括微生物细胞,动物细胞与植物细胞的固定化。
酶工程制药常用技术及应用酶工程制药常用技术及应用酶是由生物体活细胞产生的具有催化特定化学反应的蛋白质、RNA或其复合体。
是生物催化剂,能通过降低反应的活化能加快反应速度,但不改变反应的平衡点。
绝大多数酶的化学本质是蛋白质。
具有催化效率高、专一性强、作用条件温和等特点。
酶作为一种生物催化剂,已广泛地应用于轻工业的各个生产领域。
近几十年来,随着酶工程不断的技术性突破,在工业、农业、医药卫生、能源开发及环境工程等方面的应用越来越广泛。
酶工程就是将酶或者微生物细胞,动植物细胞,细胞器等在一定的生物反应装置中,利用酶所具有的生物催化功能,借助工程手段将相应的原料转化成有用物质并应用于社会生活的一门科学技术。
它包括酶制剂的制备,酶的固定化,酶的修饰与改造及酶反应器等方面内容。
酶工程的应用,主要集中于食品工业,轻工业以及医药工业中。
一、酶工程制药的基本技术现代酶工程制药的基本技术主要包括酶和细胞的固定化、酶的化学修饰、酶法的手性药物合成技术等。
1.酶和细胞的固定化技术酶本身还是溶于水的,只是是用物理的或化学的方法使酶与水不溶性大分子载体结合或把酶包埋在其中,使得酶在水中溶性凝胶或半透膜的微囊体从而导致流动性降低。
酶固定化后一般稳定性增加,易从反应系统中分离,且易于控制,能反复多次使用。
便于运输和贮存,有利于自动化生产,但是活性降低,使用范围减小,技术还有发展空间。
固定化酶是近十余年发展起来的酶应用技术,在工业生产、化学分析和医药等方面有诱人的应用前景。
酶和细胞的固定化方法有:吸附、共价结合、包埋、选择性热变性、光照、辐射和定点固定化技术等,在制药工业中,包埋法应用较多,其次为吸附法。
固定化细胞包括微生物细胞(包括基因工程菌)、动物和植物细胞。
植物细胞固定化一般采用包埋法,在中药有效成分的应用上具有广阔的前景,至今研究成功的固定化植物细胞有固定化南洋金花、烟草、胡萝卜等10多种。
动物细胞有固定化主要用吸附法和包埋法,目前动物细胞微囊化固定法使其研究的热点,动物细胞有固定化技术现已成功应用于药物药物筛选模型、单克隆抗体、白细胞介素、干扰素等药物的生产过程。
酶工程及其在制药工业中的应用在制药工业中,酶的应用已经成为热点话题,而酶工程则是这一领域的核心技术之一。
酶工程指的是利用工程手段对酶的结构、性质和功能进行改造和优化,以实现更高效的酶催化反应和更广泛的应用。
在制药领域,酶工程的应用范围非常广泛,包括药物合成、药物分析、药物检测等多个环节。
本文将从酶工程的基本原理出发,探讨其在制药工业中的应用现状和未来发展方向。
一、酶工程的基本原理酶是一种特殊的蛋白质,具有高度的催化活性和特异性结构。
通过对酶的结构和功能进行优化,可以提高其在反应中的催化效率,增强其抗性、热稳定性和储存稳定性等性质,实现更好的实际应用效果。
酶工程主要有以下三种方式:1. 基因重组技术:将不同来源的酶基因或其部分序列进行重组,形成新的酶分子,并利用表达技术或转导技术进行大规模生产。
2. 重组工程:通过改变酶的氨基酸序列或改变在酶分子上的化学修饰,使得酶的活性、稳定性等性质更加适合目标反应条件,实现优化酶催化反应的目的。
3. 对位点选择的改变:改变缺陷位点中的氨基酸顺序和立体构象,使得酶的催化能力更加精准和高效。
通过上述酶工程的手段,可以有效地提高酶在制药领域中的应用效能。
下面,我们将从几个典型的应用案例出发,探讨酶工程在制药工业中的应用现状。
二、酶在药物合成中的应用药物合成一直是制药工业的关键步骤,而酶在合成药物中也发挥着越来越重要的作用。
通过酶的选择和优化,可以实现药物合成反应的高效催化,提高合成过程中产物的纯度和收率。
下面是一些典型的药物合成案例:1. 酶催化氨基酸合成:通过利用大肠杆菌缺陷株E. coli,将含有不同酶基因的菌株进行重组,实现天然氨基酸的高效合成。
2. 酶催化激素合成:酶工程技术也被广泛应用于激素的生产中,通过基因重组和对位点选择改变等手段,实现环内酯酶、果糖转移酶等酶在激素合成中的有效应用。
3. 酶催化抗生素合成:利用酶工程技术可以实现抗生素的目标合成,比如大家比较熟悉的β-内酰胺类抗生素和大环内酯类抗生素。