发电机及其辅助系统简介
- 格式:ppt
- 大小:14.04 MB
- 文档页数:46
水力发电的基本流程及发电系统设备简介水力发电的基本流程1、什么是水电站?水电站枢纽的组成。
水电站是将水能转变为电能的水力装置,它由各种水工建筑物,以及发电、变电、配电等机械、电气设备,组成为一个有机的综合体,互相配合,协同工作,这种水力装置,就是水电站枢纽或者水力枢纽,简称水电站。
它由挡水建筑物、泄水建筑物、进水建筑物、引水建筑物、平水建筑物及水电站厂房等水工建筑物共7个部分组成,机电设备则安装在各种建筑物上,主要是在厂房内及其附近。
(1)挡水建筑物。
是拦截水流、雍高水位、形成水库,以集中落差、调节流量的建筑物,例如坝和闸。
(2)泄水建筑物。
其作用主要是泄放水库容纳不了的来水,防止洪水漫过坝顶,确保水库安全运用,因而是水库中必不可少的建筑物,例如溢流坝、河岸溢洪道、坝下泄水管及隧洞、引水明渠溢水道等。
(3)进水建筑物。
使水轮机从河流或水库取得所需的流量,如进水口。
(4)引水建筑物。
引水建筑物是引水式或混合式水电站中,用来集中落差(对混合式水电站而言,则只是集中总会落差)和输送流量的工程设施,如明渠、隧洞等。
有时水轮机管道也被称为引水建筑物,但严格说来,由于它主要是输送流量的,所以与同时具有集中落差和输送流量双重作用的引水建筑物并不完全相同。
有些水电站具有较长的尾水隧洞及尾水渠道,这也属于引水建筑物。
(5)平水建筑物。
其作用是当负荷突然变化引起引水系统中流量和压力剧烈波动时,借以调整供水流量及压力,保证引水建筑物、水轮机管道的安全和水轮发电机组的稳定运行。
如引水式或混合式水电站的引水系统中设置的平水建筑物如压力池或高压池。
(6)厂区建筑物。
包括厂房、变电站和开关站。
厂房是水电站枢纽中最重要的建筑物之一,它不同于一般的工业厂房,而是是水力机械、电气设备等有机地结合在一起的特殊的水工建筑物;变电站是安装升压变压器的场所;而开关站则是安装各种高压配电装置的地方,故也称高压配电场。
(7)枢纽中的其它建筑物。
火力发电工作原理及主要设备介绍-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN火力发电工作原理及主要设备介绍火力发电一般是指利用石油、煤炭和天然气等燃料燃烧时产生的热能来加热水,使水变成高温、高压水蒸气,然后再由水蒸气推动发电机来发电的方式的总称。
以煤、石油或天然气作为燃料的发电厂统称为火电厂。
火力发电站的主要设备系统包括:燃料供给系统、给水系统、蒸汽系统、冷却系统、电气系统及其他一些辅助处理设备。
火力发电系统主要由燃烧系统(以锅炉为核心)、汽水系统(主要由各类泵、给水加热器、凝汽器、管道、水冷壁等组成)、电气系统(以汽轮发电机、主变压器等为主)、控制系统等组成。
前二者产生高温高压蒸汽;电气系统实现由热能、机械能到电能的转变;控制系统保证各系统安全、合理、经济运行。
火力发电的重要问题是提高热效率,办法是提高锅炉的参数(蒸汽的压强和温度)。
90年代,世界最好的火电厂能把40%左右的热能转换为电能;大型供热电厂的热能利用率也只能达到60%~70%。
此外,火力发电大量燃煤、燃油,造成环境污染,也成为日益引人关注的问题。
热电厂为火力发电厂,采用煤炭作为一次能源,利用皮带传送技术,向锅炉输送经处理过的煤粉,煤粉燃烧加热锅炉使锅炉中的水变为水蒸汽,经一次加热之后,水蒸汽进入高压缸。
为了提高热效率,应对水蒸汽进行二次加热,水蒸汽进入中压缸。
通过利用中压缸的蒸汽去推动汽轮发电机发电。
从中压缸引出进入对称的低压缸。
已经作过功的蒸汽一部分从中间段抽出供给炼油、化肥等兄弟企业,其余部分流经凝汽器水冷,成为40度左右的饱和水作为再利用水。
40度左右的饱和水经过凝结水泵,经过低压加热器到除氧器中,此时为160度左右的饱和水,经过除氧器除氧,利用给水泵送入高压加热器中,其中高压加热器利用再加热蒸汽作为加热燃料,最后流入锅炉进行再次利用。
以上就是一次生产流程。
火力发电厂的基本生产过程火力发电厂的主要生产系统包括汽水系统、燃烧系统和电气系统,现分述如下:(一)汽水系统:火力发电厂的汽水系统是由锅炉、汽轮机、凝汽器、高低压加热器、凝结水泵和给水泵等组成,他包括汽水循环、化学水处理和冷却系统等。
发电厂热力辅助设备概论发电厂热力辅助设备是指在发电厂中用于辅助提高热力发电效率和保障发电设备安全稳定运行的设备。
这些设备包括锅炉、蒸汽轮机、燃气轮机、热交换器、冷凝器、除氧器、再热器等。
锅炉是发电厂中最常见的热力辅助设备之一,它用来产生蒸汽,经过蒸汽轮机或燃气轮机发电。
锅炉的工作原理是利用燃料燃烧产生高温高压的燃烧气体,通过燃烧气体和水的热交换来产生蒸汽。
锅炉的性能直接影响了发电厂的热力效率和安全稳定运行。
蒸汽轮机和燃气轮机是发电厂中直接用来转换热能为机械能的设备,它们将锅炉产生的蒸汽或燃气转换为旋转动力,驱动发电机发电。
热交换器、冷凝器和除氧器则是用来提高锅炉和蒸汽轮机系统热能利用效率和保障设备安全运行的设备,它们通过热交换等方式调节热力发电系统中的温度、压力和水质等参数。
除了上述设备外,发电厂热力辅助设备还包括了很多其他类型的设备,如给水泵、循环水泵、变频器、阀门、传感器等,它们都是发电厂正常运行和高效发电的重要组成部分。
总体来说,发电厂热力辅助设备的作用是提高发电效率、降低成本、保障安全运行和延长设备寿命,是发电厂运行的关键支撑。
发电厂热力辅助设备在整个热力发电系统中扮演着至关重要的角色。
一方面,它们对于提高发电效率、降低排放、保障设备安全运行、延长设备使用寿命至关重要;另一方面,它们也直接影响着发电厂的经济性、稳定性和可靠性。
除了锅炉、蒸汽轮机、燃气轮机、热交换器、冷凝器、除氧器等核心设备外,发电厂热力辅助设备还包括给水泵、循环水泵、变频器、阀门、传感器等。
其中,给水泵是用于将水供应到锅炉内部,循环水泵则是用于循环水冷却系统。
这些泵的运行稳定性和效率会直接影响到整个发电厂系统的水循环效果和能耗。
而变频器在发电厂中的应用也十分广泛,它通过调节设备的运行速度,可有效地节约能源、延长设备寿命。
而阀门则是用来调节介质流动的方向、流量和压力,保证了系统在不同工况下的稳定运行。
另外,传感器也在发电厂中发挥着重要作用,通过感知温度、压力、流速等参数,帮助系统实时监测和控制生产过程,确保了整个系统的安全运行。
一、1000MW汽轮机及其辅助系统设备介绍一、1000MW汽轮机系统介绍邹县电厂四期工程安装有两台1000MW燃煤汽轮发电机组,电力通过500KV输电线路送入山东电网。
机组运转层标高17m。
邹四工程为汽轮机组由东方汽轮机厂和日本株式会社日立制作所合作设计生产,性能保证由东汽厂和日立公司共同负责。
汽轮机为超超临界、一次中间再热、四缸四排汽、单轴、双背压、凝汽式、八级回热抽汽,机组运行方式为定-滑-定,采用高压缸启动方式,不设高排逆止门。
额定主汽门前压力25MPa,主、再汽温度600℃,设计额定功率(TRL)为1000MW,最大连续出力(TMCR)1044.1MW,阀门全开(VWO)下功率为1083。
5 MW.THA工况保证热耗为7354kJ/kwh。
汽机采用高压缸、中压缸和两个低压缸结构,中压缸、低压缸均为双流反向布置.机组外形尺寸为37。
9×9。
9 × 6.8(米).主蒸汽通过布置在机头的4个主汽门和4个调门进入高压缸,做功后的蒸汽进入再热器.再热蒸汽经2个中压联合汽门由两个进汽口进入中压缸做功后再进入两个双流反向布置的低压缸,乏汽排入凝汽器.以下分系统设备分别介绍:1、汽缸和转子高中低压转子全部采用整锻实心转子,可在不揭缸的情况下进行动平衡调整。
其中高压转子重24。
2吨,中压转子重28.8吨,低压A转子重78.5吨,低压B转子重78.8吨。
高、中压转子采用改良12Cr锻钢,低压转子采用Ni-Cr—Mo-V钢.汽轮机由一个双调节级的单流高压缸、一个双流的中压缸和两个双流的低压缸串联组成。
高、中、低压汽缸全部采用双层缸,水平中分,便于检查和检修,通过精确的机加工来保证汽缸的接合面实现直接金属面对金属面密封.低压缸上设有自动控制的喷水系统,在每个低压缸上半部设置的排汽隔膜阀(即大气阀),该阀有足够的排汽面积,排汽隔离阀的爆破压力值为34.3kPa(g).低压缸与凝汽器的连接采用不锈钢弹性膨胀节方式,凝汽器与基础采用刚性支撑,即在凝汽器中心点为绝对死点,在凝汽器底部四周采用聚四氟乙烯支撑台板,使凝汽器壳体能向四周顺利膨胀,并考虑了凝汽器抽真空吸力对低压缸的影响.2、汽机轴承汽轮机四根转子由8只径向轴承支承,#1~#4轴承,即高中转子支持轴承采用可倾瓦、落地式轴承,#5~#8轴承,即两个低压转子支持轴承采用椭圆形轴承,轴承直接座落在低压外缸上.轴承采用球面座水平中分自调心型。
火力发电原理及设备介绍火力发电原理及设备介绍(一)2008-1-9 20:34:04核心提示:火力发电一般是指利用石油、煤炭和天然气等燃料燃烧时产生的热能来加热水,使水变成高温、高压水蒸气,然后再由水蒸气推动发电机来发电的方式的总称。
以煤、石油或天然气作为燃料的发电厂统称为火电厂。
火力发电站的主要设备系统包括:燃料供给系统、给水系统、蒸汽系火力发电一般是指利用石油、煤炭和天然气等燃料燃烧时产生的热能来加热水,使水变成高温、高压水蒸气,然后再由水蒸气推动发电机来发电的方式的总称。
以煤、石油或天然气作为燃料的发电厂统称为火电厂。
火力发电站的主要设备系统包括:燃料供给系统、给水系统、蒸汽系统、冷却系统、电气系统及其他一些辅助处理设备。
火力发电系统主要由燃烧系统(以锅炉为核心)、汽水系统(主要由各类泵、给水加热器、凝汽器、管道、水冷壁等组成)、电气系统(以汽轮发电机、主变压器等为主)、控制系统等组成。
前二者产生高温高压蒸汽;电气系统实现由热能、机械能到电能的转变;控制系统保证各系统安全、合理、经济运行。
火力发电的重要问题是提高热效率,办法是提高锅炉的参数(蒸汽的压强和温度)。
90年代,世界最好的火电厂能把40,左右的热能转换为电能;大型供热电厂的热能利用率也只能达到60,,70,。
此外,火力发电大量燃煤、燃油,造成环境污染,也成为日益引人关注的问题。
热电厂为火力发电厂,采用煤炭作为一次能源,利用皮带传送技术,向锅炉输送经处理过的煤粉,煤粉燃烧加热锅炉使锅炉中的水变为水蒸汽,经一次加热之后,水蒸汽进入高压缸。
为了提高热效率,应对水蒸汽进行二次加热,水蒸汽进入中压缸。
通过利用中压缸的蒸汽去推动汽轮发电机发电。
从中压缸引出进入对称的低压缸。
已经作过功的蒸汽一部分从中间段抽出供给炼油、化肥等兄弟企业,其余部分流经凝汽器水冷,成为40度左右的饱和水作为再利用水。
40度左右的饱和水经过凝结水泵,经过低压加热器到除氧器中,此时为160度左右的饱和水,经过除氧器除氧,利用给水泵送入高压加热器中,其中高压加热器利用再加热蒸汽作为加热燃料,最后流入锅炉进行再次利用。
核电厂系统及设备知识概述核电厂是一种利用核能发电的设施,它包含了一系列的系统和设备,每个系统和设备都发挥着重要的作用。
本文将介绍核电厂的主要系统和设备,并解释它们的功能和工作原理。
主要系统1.反应堆系统2.蒸汽发生器系统3.蒸汽涡轮机系统4.发电机系统5.控制和保护系统6.辅助系统下面将对每个系统进行详细介绍。
1. 反应堆系统反应堆系统是核电厂的核心组成部分。
它包括核反应堆、燃料组件、冷却剂循环系统和反应堆容器等。
核反应堆是核能发电的关键元素,它通过控制核反应过程来产生热能。
燃料组件是反应堆内用于核反应的燃料,通常使用铀或钚等放射性物质。
冷却剂循环系统用于将冷却剂(如轻水或重水)循环传递到反应堆中,从而控制反应堆的温度。
2. 蒸汽发生器系统蒸汽发生器系统使用反应堆中产生的热能将水转化为蒸汽。
蒸汽发生器是其中的关键设备,它通过将热能传递给水来产生高温高压的蒸汽。
蒸汽发生器中的水一般以自然循环或强制循环方式进行传热。
3. 蒸汽涡轮机系统蒸汽涡轮机系统利用蒸汽的能量驱动涡轮机的转动,从而产生机械能。
涡轮机通常由高压涡轮、中压涡轮和低压涡轮组成,每个涡轮对应一个级别的蒸汽。
这些涡轮通过轴传递机械能给发电机。
4. 发电机系统发电机系统将涡轮机传递过来的机械能转化为电能。
发电机是核电厂中非常重要的设备,它通过利用电磁感应原理将机械能转化为电能。
5. 控制和保护系统控制和保护系统对核电厂的运行和安全起着重要作用。
它包括控制设备、保护设备和监测设备等。
控制设备用于控制核反应堆和其他系统的运行,保护设备用于检测和响应发生异常情况,监测设备用于监测核电厂的运行状态和参数。
6. 辅助系统辅助系统是核电厂的辅助设备,它们为主要系统提供支持和保障。
常见的辅助系统包括给水系统、消防系统、氢气系统、冷却水系统等。
设备知识除了核电厂的主要系统,还有一些关键设备需要了解。
1.控制棒2.轻水堆3.反应堆压力容器4.冷却塔5.辐射防护设备控制棒是用于控制和调节核反应堆的关键设备,它可以通过插入或提取来控制核反应堆中的核反应过程。
余热发电系统介绍余热发电系统是一种利用工业生产过程中产生的余热进行发电的技术系统。
工业生产过程中,许多设备和工艺会产生大量的废热,如果这些废热能得到合理利用,不仅可以减少能源的浪费,还可以提高工厂的能源利用效率,并且减少对环境的污染。
余热发电系统就是通过收集、处理和利用这些废热,使其转化为电能的设备和系统。
1.余热收集装置:包括余热管道、余热回收器等。
工业生产过程中产生的余热通过管道传输到余热回收器,然后由回收器将余热传递给其他装置进行能量转化。
2.能量转化装置:包括锅炉、蒸汽发生器等。
余热经过收集器后,转移到锅炉或蒸汽发生器中,产生高温高压的蒸汽。
3.发电装置:包括汽轮机、发电机等。
蒸汽通过高效率的汽轮机驱动,使其旋转,驱动发电机产生电能。
4.辅助系统:包括冷却系统、控制系统等。
冷却系统用于冷却汽轮机和发电机,保证系统正常运行;控制系统用于控制和调节余热发电系统的运行参数,保证系统的安全和稳定。
首先,通过余热收集装置将工业生产过程中的废热收集起来,然后输送到能量转化装置中。
在能量转化装置中,通过锅炉或蒸汽发生器将废热转化为高压高温的蒸汽,然后将蒸汽传送到发电装置中。
在发电装置中,蒸汽通过汽轮机的作用,使其旋转,然后通过与汽轮机相连的发电机转动,产生电能。
最后,通过辅助系统的作用,保证整个系统的稳定和安全运行。
1.资源利用率高:利用工业生产过程中产生的废热进行发电,实现资源的再利用,减少能源的浪费。
2.环保节能:有效地减少了废热的排放,降低了对环境的污染,实现了清洁能源的利用。
3.经济效益好:通过余热发电,不仅可以给企业节省大量的能源成本,还可以使企业获得可观的电力收入。
4.提升能源利用效率:将废热转化为电能,提高了工厂的能源利用效率,降低了能源投入。
5.系统灵活性高:余热发电系统可以与其他能源系统相结合,形成综合能源系统,提高整体的能源利用效率。
总之,余热发电系统是一种将工业生产过程中产生的废热转化为电能的技术系统,通过废热的收集、转化和利用,有效地提高了工厂的能源利用效率,降低了能源的浪费,减少了对环境的污染,具有良好的经济效益和环境效益。