7.4实践与探索PPT课件
- 格式:pptx
- 大小:6.48 MB
- 文档页数:58
7.4实践与探索教材分析:本节是《数学(七年级)(下)》第七章第四部分内容.是本章所学知识的应用,学生在前面已经学习了一次方程组,这一节主要是对一次方程组的应用,运用一次方程组解应用题,主要是引导学生找等量关系式,设未知数,用字母表示适当的未知数。
从而列出一次方程组。
学情分析:1、通过提问、课堂学生表现、课内外练习和作业反馈回来的信息可知:学生对本节的知识掌握的较好。
2、学生认知发展分析:通过学生的表现可以推断学生基本上掌握了本节的内容。
3、学生认知障碍点:学生对找数量关系式以及用字母表示适当的未知数不是很熟练。
教学目标:1、2、3、成实事求是的态度以及质疑和独立思考的习惯教学重点:1、重点:让学生实践与探索,运用二元一次方程组解决有关配套问题的应用题。
教学难点:2.难点:寻找相等关系以及方程组的整数解问题。
教学过程一、提纲导学:1、复习提问:列二元一次方程组解决实际问题的步骤是什么?其中什么是关键?2、创世情景,导入新课2个盒身3个盒底1张纸能做成成套的纸盒吗?3、出示导纲:问题1.本题有哪些已知量?问题2.求什么?问题3.若设用x张白卡纸做盒身,y张白卡纸做盒底盖。
则有几个盒身和几个盒底?问题4.找出2个等量关系,列出方程组?4、自学设疑:结合提纲导学中的几个问题,自学课本42页内容,并把自己有疑问的地方列出来。
二、合作交流:1、小组交流:导纲中的问题和学生提出来的问题在小组内共享.2、展示评价:书面展示要求:书写迅速,字迹工整,答题规范.评价要求:(1)、声音洪亮,条理清晰,突出重点(2)、点评解题方法及思路,重点点评优缺点及总结方法规.(3)、非点评同学认真听讲,有疑问或见解及时提出来,补充或阐述不同观点.3、质疑解难:通过前面的学习,同学们还有什么疑问?请大担提出来一起分享三、导学归纳:通过今天这节课的学习,你有什么收获?可让学生大担说出这节课的收获.四、拓展训练:某农场300名职工耕种5l公顷土地,计划种植水稻、棉花和蔬菜,已知种植各种植物每公顷所需劳动力人数及投入的设备资金如下表:已知该农场计划在设备上投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工都有工作,而且投入的设备资金正好够用?先让学生自主探索,与伙伴交流。
《二元一次方程组的应用》典型例题例1有一个两位数,个位上的数比十位上的数大5,如果把两个数字的位置对换,那么所得的新数与原数的和是143,求这个两位数.例2下表是某一周甲、乙两种股票每天的收盘价:(收盘价:股票每天交易结束时的价格)某人在该周内持有若干甲、乙两种股票,若按照两种股票每天收盘价计算(不计手续费、税费等),该人账户上星期二比星期一获利200元,星期三比星期二获利1300元,试问该人持有甲、乙股票各多少股.例3 一个三位数,各数位上的数字之和为13,十位上的数字比个位上的数字大2,如果把百位上的数字与个位上的数字对调,那么所得新数比原来的三位数大99.求这个三位数.例4 一个两位数除以它各位数字之和的商为7,余数为6,如果它十位上的数字与个位上的数字对调,所得的新数去除以各位数字之和,商为3,余数为5,求这个两位数.参考答案例1 分析: 若设这个两位数的十位数字为x ,个位数字为y ,则这个两位数是x y +10.再根据“个位上的数比十位上的数大5”,“新数与原数的和为143”可以列出两个方程.解: 设这个两位数的十位数字为x ,个位数字为y ,根据题意,得⎩⎨⎧=+++=-.143)10()10(,5x y y x x y 整理,得⎩⎨⎧=+=-.13,5y x x y 解得⎩⎨⎧==.9,4y x 答:这个两位数是49.说明:本题若设这个两位数的十位数字为x ,则个位数字为)5(+x ,列出一元一次方程求解也很方便.例2 解: 设该人持有甲、乙股票分别是x 、y 股,根据题意,得⎩⎨⎧=-+-=-+-,1300)3.139.13()5.129.12(,200)5.133.13()125.12(y x y x 解得⎩⎨⎧==.1500,1000y x 答:该人持有甲、乙股票分别为1000,1500股.例 3 分析:这里有三个未知数——个位上的数字,百位上的数字及十位上的数字.有三个相等关系:(1)百位上数字 + 十位上数字+个位上数字=13(2)十位上的数字=个位上数字+2(3)百位上数字与个位上数字交换后的三位数=原三位数+99解:设这个三位数个位上的数字为x ,十位上的数字为y ,百位上数字为z ,根据题意,得 ⎪⎩⎪⎨⎧+++=+++==++991010010100213x y z z y x x y z y x解方程组,得 ⎪⎩⎪⎨⎧===364z y x答:这个三位数是364.例4 分析:设这个两位数的十位数字为x ,个位数字为y ,那么这个两位数是10x +y ,两个数字之和是(x 十y ),个位数字与十位数字对调后的两位数是10y 十x ,由题意可列出两个等式.解:设两位数的十位数字为x ,个位数字为y ,根据题意,得⎩⎨⎧++=+++=+)2(5)(310)1(6)(710y x x y y x y x)4(2)3(-⨯得 ,93=y 3=y ,把3=y 代入(3),得8=x .答:这个两位数是83.说明:数字问题要善于抓住其特征,正确地表示出三位数,然后找出等量关系,列出方程组.尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文档在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
7.4 实践与探索
1.能够对生活中的实际问题进行数学建模,理解建模的数学思想。
2.能列二元一次方程组解简单的实际问题,进一步提高分析问题中的数量关系、设未知数、列方程组并解方程组和检验结果的合理性等能力。
重点1:行程问题
重点2:工程问题
难点:数字问题
给出适当的复习内容为后面的问题探究做铺垫,创设问题这不引导学生解决问日的合理思路,维持学生学习积极性.
从易到难逐步解决问题,对问题先进行估算,独立探究问题中的数量关系,再小组合作交流,找出等量关系列出方程组,通过精算验证估算值;画出图形分析问题,从图形的不同分割,可以从不同角度考虑问题,得到问题的不同解决方法,分析问题的数量关系,找出基本等量关系和列出方程组的两个等量关系.认真分析问题中的数量关系,把问题中的数量关系图表化,从图表中获取等量关系的信息,从而列出方程组.。
7.4 实践与探索——工程问题【知识引入】第一小组的同学分铅笔若干支,若每人各取5支,则还剩4支;若有1人只取2支,则其余每人恰好各得6支.问第一小组同学有多少人?铅笔有多少支?问题1:尝试用一元一次方程解决问题解:设第一组同学有x个人,由题意得:5x+4=2+6(x−1)解得x=8那么:8×5+4=44答:第一小组同学有8个人,铅笔有44支问题2:尝试用二元一次方程组解决问题解:设第一小组有x个人,铅笔有y只,由题意得:解得{x=8y=44答:第一小组同学有8个人,铅笔有44支【新知探究】某厂第二车间的人数比第一车间人数的45少30人.如果从第一车间调10人到第二车间,那么第二车间的人数就是第一车间人数的34.问这两个车间原来各有多少人?问题1:尝试用一元一次方程解决问题解:设第一车间有x个人,那么第二车间有(45x−30)个人,由题意得:3 4(x−10)=45x−30+10解得x=250那么45×250−30=170答:第一车间有250个人,第二车间有170个人问题2:尝试用二元一次方程组解决问题解:设第一车间有x个人,第二车间有y个人,由题意得:{45x −30=y 34(x −10)=y +10 解得{x =250y =170答:第一车间有250个人,第二车间有170个人【二元一次方程组解工程问题】数量关系:(1)工作效率×工作时间=工作量.(2)(甲的工作效率+乙的工作效率)×工作时间=工作量.(3)如果工作总量未知,可以记为“1”【例题解析】甲、乙两人要加工400个机器零件,若甲先做1天,然后两人再共做2天,则还有60个无法完成;若两人合作3天,则可超产20个.问:甲、乙两人每天各加工多少个零件?解:甲每天加工x 个,乙每天加工y 个.由题意可得:{x +2(x +y)=400−603(x +y )=400+20解得:{x =60y =80, 答:甲每天加工60个,乙每天加工80个【拓展提升】甲、乙两人合作加工一批零件,8天可以完成。