光纤光栅传感系统的现状及发展趋势
- 格式:pdf
- 大小:208.06 KB
- 文档页数:4
天津理工大学2004届毕业设计第一章绪论光纤光栅是利用光纤材料的光敏性在光纤内建立的一种空间周期性折射率分布,其作用在于改变或控制光在该区域的传播行为与方式。
作为一种新型的光学器件,光纤光栅已经在诸多方面得到了不同的应用。
相信在不久的将来随着光纤光栅与其他技术的进一步结合,其可应用前景会更为广阔。
1.1光纤光栅的发展历史光纤技术自20 世纪60 年代末至今在不到30 年的时间里以惊人的速度发展成为信息技术领域中的支柱性高新技术。
然而, 随着现代社会对信息技术的更新更高的要求, 光纤通信、光纤传感技术正面临着新的挑战。
传统光学器件由于制作的复杂性和体积大而笨拙等原因无法适应新技术的要求。
因此光纤光栅应运而生。
光纤光栅是利用石英光纤的紫外光敏特性将光波导结构直接写在光纤中形成的光纤波导器件。
该技术最早出现于1978年,加拿大的K.O.Hill在掺锗光纤中,用488nm氩离子激光在光纤中产生驻波干涉条纹,首次发现了在掺锗光纤中的光致光栅现象,并制造出世界上第一条光纤光栅。
从此开创了光纤光栅发展的历史。
这种方法制作的Bragg光纤光栅反射滤波器的线宽可以很窄,反射率也较高,但只能制作反射波长和写入波相同的光纤反射器,通过加外力的方法使光栅的调谐范围较小,大大限制了他的应用。
此后由于制作工艺及应用的局限这项技术一直未得到进一步的发展,历经十年进展缓慢。
直到1989年,美国的Meltz等人利用两束干涉的紫外光从光纤的侧面成功地写入了光栅,研制成功Bragg光纤光栅滤波器。
Archambult等人也报道了用单个准分子激光器制作近100%反射率的Bragg光纤光栅滤波器的方法。
这标志着光纤光栅技术进入了快速发展的阶段。
此后随着写入方法的不断改善;光敏性的逐渐提高;各种特种光栅也相继问世;同时光纤光栅的应用前景也得到了广泛的关注。
特别是近年来光纤光栅在光通信、光纤激光器和光纤传感器等领域的应用越来越受到人们的重视,取得了令人瞩目的成就。
2024年光纤温度传感器市场发展现状摘要光纤温度传感器是一种基于光纤的传感器技术,在温度监测领域有着广泛的应用。
本文旨在探讨光纤温度传感器市场的发展现状,并分析其趋势和前景。
简介光纤温度传感器是通过测量光纤的温度变化来实现温度监测的一种传感器技术。
与传统的温度传感器相比,光纤温度传感器具有体积小、防水、防电磁干扰等优势,被广泛应用于工业、医疗、航天等领域。
市场规模目前,光纤温度传感器市场规模不断扩大。
根据市场调研公司的数据显示,2019年全球光纤温度传感器市场规模达到XX亿美元,并预计在未来几年内将以每年X%的复合增长率增长。
其中,光纤温度传感器在工业自动化领域应用最为广泛。
市场驱动因素光纤温度传感器市场的快速发展离不开以下几个驱动因素:1. 工业自动化的增长随着工业自动化程度的提高,对温度监测精度和稳定性的要求也越来越高。
光纤温度传感器以其高精度、长寿命等特点,成为工业自动化领域不可或缺的组成部分。
2. 能源行业的需求能源行业对温度监测有着极高的需求,光纤温度传感器能够在高温、高压等恶劣条件下稳定工作,因此在石油化工、核电等领域得到广泛应用。
3. 医疗领域的发展随着医疗技术的不断进步,对温度监测的需求也在增加。
光纤温度传感器具备非接触、高灵敏度等特点,被广泛应用于体温测量、手术过程监测等诸多方面。
市场挑战光纤温度传感器市场在发展过程中面临一些挑战:1. 技术难题光纤温度传感器技术相对较为复杂,需要解决光纤损耗、温度漂移等问题,提高传感器的可靠性和精度。
2. 价格竞争光纤温度传感器的市场竞争激烈,价格也是影响其发展的一个重要因素。
降低成本、提高性价比是一个亟待解决的问题。
3. 法规标准的制定光纤温度传感器作为一种新兴技术,尚未建立统一的法规和标准体系,这给市场发展带来了不确定性。
市场趋势和前景光纤温度传感器市场在未来具有广阔的发展前景:1. 技术创新随着光纤技术的不断发展,光纤温度传感器将进一步提高其精度和可靠性。
光纤光栅与结构集成工艺原理方法及国内外研究现状概述 概述光纤传感器种类繁多,能以高分辨率测量许多物理参数,与传统的机电类传感器相比具有很多优势,如:本质防爆、抗电磁干扰、抗腐蚀、耐高温、体积小、重量轻、灵活方便等,因此其应用范围非常广泛,并且特别适于恶劣环境中的应用。
但是因为裸光纤纤细、质脆、尤其是剪切能力差,直接将光纤光栅作为传感器在工程中遇到了铺设工艺上的难题。
因此,对裸FBG 进行封装,是将FBG 传感器在实际应用中推广的一个重要环节,对于研制满足航空航天领域需要的体积小、质量轻FBG 传感器具有重要意义。
一、光纤光栅工作原理光纤光栅的最基本原理是相位匹配条件:β1、β2是正、反向传输常数,Λ是光纤光栅的周期,在写入光栅的过程中确定下来。
当一束宽谱带光波在光栅中传输时,入射光在相应的频率上被反射回来,其余的不受影响从光栅的另外一端透射出来。
光纤光栅起到了光波选频的作用,反射的条件称为布拉格条件。
由光纤光栅相位匹配条件得到反射中心波长(布拉格波长)表达式:二、光纤光栅的写入2.1 短周期光纤光栅的写制内部写入法(又称驻波法) 将波长488nm 的基模氢离子激光从一个端面祸合到锗掺杂光纤中,经过光纤另一端面反射镜的反射,使光纤中的入射和反射激光相干涉形成驻波。
由于纤芯材料具有光敏性,其折射率发生相应的周期变化,于是形成了与干涉周期一样的立体折射率光栅。
此方法是早期使用的,该方法要求122πββ-=ΛΛ=n B 2λ锗含量很高,芯径很小,并且只能够制作布拉格波长与写入波长相同的光纤光栅,因此目前很少被采用。
全息成删法(又称外侧写入法) 1989年,Meltz等人首次用此方法制作了横向侧面曝光的光纤光栅。
用两束相干紫外光束在掺锗光纤的侧面相干,形成干涉图,利用光纤材料的光敏性形成光纤光栅。
写制设备装置如图2.1所示。
通过改变入射光波长或两相干光束之间的夹角,可以得到不同栅格周期的光纤光栅。
但是要得到高反射率的光栅,则对所用光源及周围环境有较高的要求。
光纤光栅传感器的原理应用1. 光纤光栅传感器的基本原理光纤光栅传感器是一种基于光纤光栅原理的传感器,主要用于测量和监测光纤中的温度、应变、压力等物理量。
其基本原理如下:•光纤光栅构造:光纤光栅由一段光纤中定期布置的光栅构成,其中光栅中的折射率周期性变化,形成了一个光栅结构。
•光栅反射与折射:当光线传播通过光纤光栅时,一部分光线会被光栅反射回来,另一部分光线会因为光栅的折射而偏转。
•光栅中的相位偏移:当外界物理量(如温度、应变、压力)作用于光栅光纤时,会引起光栅的折射率发生改变,从而导致光栅中的相位偏移。
•相位偏移的测量:通过测量光纤光栅反射光的相位,可以间接得到光栅中的相位偏移,进而推导出外界物理量的变化。
2. 光纤光栅传感器的应用领域光纤光栅传感器在各个领域都有广泛的应用,包括但不限于以下方面:2.1 温度传感•石油和化工工业:用于测量和监测油井和化工过程中的温度变化,以确保设备的正常运行和安全性。
•电力系统:用于测量电力设备和输电线路中的温度,以保护设备并及时发现故障。
•环境监测:用于测量大气温度、水温等环境参数,用于气象和环境保护研究。
2.2 应变传感•结构安全监测:用于测量桥梁、建筑物等结构的应变变化,以预防和监测结构的损坏。
•航天航空领域:用于测量飞机、火箭等复杂结构的应变,以保证其安全性和稳定性。
•汽车工业:用于测量汽车和列车等交通工具的应变,以确保车辆的安全性和性能。
2.3 压力传感•工业自动化:用于测量和监测工业设备中的压力变化,以控制和调节设备的运行状态。
•化工过程:用于测量化工过程中的压力,以确保设备的正常运行和安全性。
•石油勘探:用于测量油井中的压力变化,以评估油井的产量和储量。
3. 光纤光栅传感器的优势和特点光纤光栅传感器具有以下优势和特点:•高灵敏度:光纤光栅传感器能够实现高精度的物理量测量,具有很高的灵敏度和分辨率。
•远距离传输:光纤传输具有低损耗和高带宽的特点,可实现长距离传输和分布式测量。
光纤光栅传感技术在航空航天领域中的应用与发展作者:李婧怡朱振华来源:《中国新通信》 2018年第4期一、引言20 世纪70 年代末, 光纤传感技术伴随着光纤通信技术的发展而迅速兴起的。
近20 年,光纤光栅作为一种微型光学元件得到迅速发展, 从而使得光纤传感技术的发展得到一个质的飞跃。
在航空航天领域内, 对于各类传感器的使用极其密集。
而对它的灵敏度、体积和重量都有较高的要求。
对于一架飞行器的结构健康监测需要的传感器数量庞大, 因此传感器的尺寸、重量就变得尤为重要。
尤其是当先进的飞行器在飞行的过程中, 传统传感技术已无法满足实时准确监测大气数据这一需求。
另外, 飞行器在飞行期间都会受到极其严酷的飞行环境( 包括高温、强磁场等) 的影响。
现有的传统电类传感器, 很容易受环境因素的限制不能在极端的飞行环境下正常工作,这必然会影响飞行器的使用安全,导致灾难性事故。
而光纤光栅传感器则因其质量轻、体积小、耐高温、耐腐蚀、抗电磁干扰等优点, 很大程度上可以克服环境因素的影响,能够准确监测飞行器结构的各种参量, 及时作出判断, 防止事故的发生。
光纤光栅传感技术在航空航天领域内的广泛应用将会对航空航天的发展具有重要的促进作用。
二、光纤光栅传感技术的原理光纤光栅是利用紫外曝光技术在光纤纤芯内形成的折射率的周期性分布结构,当一定带宽的光通过环形器入射到光纤光栅中,由于光纤光栅具有波长选择性,只能使特定波长的光发生反射,然后通过解调仪或光谱仪来测量反射光的波长变化,就可以实现被测结构的应变和温度的测量, 其传感原理如图1 所示。
光纤光栅周期的改变量和有效折射率neff会影响光纤光栅的反射光谱。
任何使这两个参量发生改变的物理过程都将引起光栅布格波长的漂移,它们与波长改变量ΔλB 之间存在如下的关系式ΔλB=2neff ΔΛ+2ΔneffΛ (2-1)基于光纤光栅的传感过程是通过外界物理参量对光纤光栅的周期或有效折射率的影响,引起发射光中心波长的飘移。
光纤传感调研报告光纤传感调研报告一、引言光纤传感是指利用光纤作为传感元件的一种传感技术。
光纤传感的基本原理是通过探测光纤中光信号的变化来检测和测量各种参数或物理量。
光纤传感技术具有高灵敏度、长距离传输、耐腐蚀等优点,因此在许多领域得到广泛应用。
本报告旨在对光纤传感技术进行调研,并介绍其主要应用领域和发展趋势。
二、主要应用领域1. 环境监测光纤传感可以用于环境监测领域,例如温度、湿度、气体浓度等参数的监测。
通过将光纤布设在需要监测的环境中,可以实时、远程地监测环境的变化情况,为环境保护和自然灾害预警提供有效手段。
2. 结构健康监测光纤传感可以用于建筑、桥梁、管道等结构的健康监测。
通过将光纤嵌入到结构中,可以实时监测结构的应变、挠度等参数,及时发现结构的变形和破损情况,提前预警并进行维修。
3. 工业检测光纤传感可以用于工业生产过程的检测和控制。
例如,在高温、高压等恶劣环境下,使用光纤传感技术可以实现对工业设备的温度、压力、流量等参数进行监测,提高工业生产的安全性和效率。
4. 医疗领域光纤传感在医疗领域也有重要应用。
例如,通过将光纤引入人体,可以实现心率监测、血氧监测等生理参数的测量,对健康状态进行监控。
三、发展趋势1. 多功能化光纤传感技术正朝着多功能化方向发展。
将不同类型的传感技术与光纤传感结合,可以实现多种参数的监测,提高光纤传感技术的综合应用能力。
2. 远程监测随着物联网和远程监测技术的发展,光纤传感技术也向着远程监测方向发展。
通过将光纤接入网络,可以实现对远程位置的监测和控制,提高监测的效率和灵活性。
3. 小型化光纤传感器的小型化是发展的重要趋势。
小型化的光纤传感器能够更方便地嵌入到各种设备和结构中,实现对各种参数的实时监测。
4. 智能化光纤传感技术正朝着智能化方向发展。
通过与人工智能、大数据分析等技术结合,可以实现光纤传感数据的智能分析和预测,提高传感系统的智能化水平。
四、结论光纤传感技术是一种非常有潜力的传感技术,具有广泛的应用前景。
光纤光栅传感器的工作原理和应用实例一、本文概述光纤光栅传感器作为一种先进的光学传感器,近年来在多个领域中都得到了广泛的应用。
本文旨在全面介绍光纤光栅传感器的工作原理及其在各领域中的应用实例。
我们将详细阐述光纤光栅传感器的基本原理,包括其结构、光学特性以及如何实现传感功能。
接着,我们将通过一系列应用实例,展示光纤光栅传感器在结构健康监测、温度测量、压力传感以及安全防护等领域的实际应用。
通过本文的阅读,读者将能够对光纤光栅传感器有一个全面深入的了解,并理解其在现代科技中的重要地位。
二、光纤光栅传感器的基本概念和原理光纤光栅传感器,也被称为光纤布拉格光栅(Fiber Bragg Grating, FBG)传感器,是一种基于光纤光栅技术的传感元件。
其基本概念源于光纤中的光栅效应,即当光在光纤中传播时,遇到周期性折射率变化的结构(即光栅),会发生特定波长的反射或透射。
光纤光栅传感器的工作原理基于光纤中的光栅对光的反射作用。
在制造过程中,通过在光纤芯部形成周期性的折射率变化,即形成光栅,当入射光满足布拉格条件时,即入射光的波长等于光栅周期的两倍与光纤有效折射率的乘积时,该波长的光将被反射回来。
当外界环境(如温度、压力、应变等)发生变化时,光纤光栅的周期或折射率会发生变化,从而改变反射光的波长,通过对这些波长变化的检测和分析,就可以实现对环境参数的测量。
光纤光栅传感器具有许多独特的优点,如抗电磁干扰、灵敏度高、测量范围大、响应速度快、能够实现分布式测量等。
这使得它在许多领域,如结构健康监测、航空航天、石油化工、环境监测、医疗设备、智能交通等,都有广泛的应用前景。
光纤光栅传感器的工作原理决定了其可以通过测量光栅反射光的波长变化来感知外界环境的变化。
因此,在实际应用中,通常需要将光纤光栅传感器与光谱分析仪、解调器等设备配合使用,以实现对环境参数的精确测量。
光纤光栅传感器的基本概念和原理为其在各种应用场景中的广泛应用提供了坚实的基础。
国内外800g 相干器件发展现状及发展趋势
相干器件是利用光的相干性来实现光信号的传输和处理的器件,包括光纤光栅、相干探测器、相干光源等。
以下是国内外相干器件的发展现状及发展趋势:
发展现状:
1. 光纤光栅:目前国内外已经取得了很大的突破,光纤光栅的制备工艺不断改进,性能得到了显著提升。
光纤光栅已广泛应用于通信系统中的滤波器、传感器等领域。
2. 相干探测器:国内外相干探测器技术已相当成熟,具有高灵敏度、高速度和高分辨率等优点。
目前已经广泛应用于光通信系统、光学成像等领域。
3. 相干光源:国内外的相干光源技术也在不断发展,光栅镜、光纤激光器等相干光源的性能有了大幅提升。
相干光源在光通信、光测量等领域有着广泛的应用。
发展趋势:
1. 高性能:相干器件需要具备更高的性能指标,如更高的灵敏度、更快的响应速度、更宽的工作波长范围等。
随着技术的不断进步,相干器件的性能将得到进一步提升。
2. 多功能集成:相干器件将越来越多地集成成多功能模块,实现光信号的传输、处理、调制等功能。
这将提高光通信和光学成像系统的整体性能。
3. 新材料应用:新材料的应用将推动相干器件的进一步发展,例如有机高分子材料、二维材料等具有特殊光学性质的材料,可以用于制备新型的相干器件。
4. 混合集成技术:利用混合集成技术将不同类型的相干器件集
成在一起,可以实现更复杂、更高性能的光学系统。
总体而言,相干器件将继续在光通信、光学成像等领域发挥重要作用,随着技术的不断进步,相干器件的性能将不断提升,应用范围也将不断扩大。
光纤光栅传感技术与工程应用研究共3篇光纤光栅传感技术与工程应用研究1光纤光栅传感技术是一种基于光纤光栅的传感方法,该方法可以实现对多种物理量的测量和监测,在工业控制、环境监测、航空航天等领域具有广泛的应用。
一、光纤光栅传感技术的基本原理光纤光栅传感技术是基于光纤光栅的干涉原理实现的,其基本结构包括一个光纤光栅和一个光源。
光源经过光纤光栅后,会被反射回来,并与入射光进行干涉,产生干涉图案。
通过对干涉图案进行分析,可以得到与被测量物理量相关的干涉模式,从而实现对物理量的测量和监测。
二、光纤光栅传感技术的特点光纤光栅传感技术具有以下特点:1. 高灵敏度:光纤光栅传感技术具有高灵敏度和高分辨率的特点,能够实现对微小变化的测量和监测。
2. 高可靠性:由于光纤光栅传感技术采用光学传输信号,避免了传统电学测量系统中电磁波干扰等问题,因此具有高可靠性。
3. 高精度:光纤光栅传感技术精度高,能够实现对物理量的精确测量和监测,能够满足工业控制和科学研究的要求。
4. 无须外部电力供应:光纤光栅传感技术可以通过光纤传输信号,无须外部电力供应,避免了传统测量系统中复杂的电路和电源设计。
三、光纤光栅传感技术的工程应用研究1. 工业控制领域:光纤光栅传感技术可以实现对温度、压力、振动等物理量的测量和监测,广泛应用于机械加工、化工等行业的工业控制中。
在机械加工中,光纤光栅传感技术可以实现对数控机床的精确定位、运动速度的监测等。
在化工行业中,光纤光栅可以实现对管道压力、流量等的测量和监测。
2. 油气勘探领域:光纤光栅传感技术可以实现对石油和天然气井的测量和监测,包括温度、压力、流量等多种物理量。
该技术对于提高石油和天然气的产出率、降低开采成本等具有重要的作用。
3. 环境监测领域:光纤光栅传感技术可以实现对环境参数的测量和监测,包括温度、湿度、气体等多种物理量。
在环境监测领域中,光纤光栅传感技术可以用于城市建设、农业生产、气象预报等多个方面。
光纤光栅传感技术光纤光栅传感技术是一种基于光学原理的传感技术,主要是通过光纤光栅的变化来实现对物理量的测量。
随着传感技术的不断发展,光纤光栅传感技术也越来越被广泛应用于各个领域。
一、光纤光栅的构成光纤光栅由光纤和一系列的周期性折射率波动结构组成。
它的制作主要是核心光纤和包层光纤在一定的条件下经过加热和拉伸,形成了一个具有周期性折射率变化的结构。
这个结构可以使光纤对波长进行选择性过滤,同时也可以把激光光束分成几个不同的方向。
二、光纤光栅的工作原理光纤光栅传感技术主要是基于弛豫效应的原理。
当物理量发生变化时,光纤光栅的折射率骤然变化,这就会使得光波在光纤光栅中发生散射,同时也会产生光波的反射和传输,这样就可以通过光纤光栅来测量物理量的变化。
在工作过程中,当光波进入光纤光栅时,它会被反射和散射。
在反射和散射的过程中,光波会在光纤光栅中形成了一定的激发场。
这个场会导致光的相位移动,进而影响到光波的传输。
因此,当光波经过光纤光栅的时候,根据光的相位变化情况,就可以计算出物理量的变化。
三、光纤光栅传感技术的应用光纤光栅传感技术具有高精度、高稳定性和重复性好等特点,因此它在环境监测、地震监测、电力监测、石油开采、桥梁监测和医药仪器等领域都有广泛的应用。
1、环境监测光纤光栅传感技术可以被用来测量环境中的温度、湿度、大气压力等物理量,可以对环境变化的情况进行监测。
2、地震监测光纤光栅传感技术可以被用来测量地震波的传播路径和速度等参数,以及地面震动等参数,可以对地震进行预测和监测。
3、电力监测光纤光栅传感技术可以被用来对变压器、电缆、输电线路等电力设备进行实时监测,可以对电力系统的运行状态进行监测和控制。
4、石油开采光纤光栅传感技术可以被用来测量油井内部的温度、压力、流量等参数,可以对石油开采的过程进行监测和控制。
5、桥梁监测光纤光栅传感技术可以被用来监测桥梁的变形、振动等情况,可以为桥梁的维护提供有力的参考。
6、医药仪器光纤光栅传感技术可以被用来制造医学设备,例如制造血压计、心脏起搏器等医学仪器,在医疗领域中也有着广泛的应用。
光纤传感技术综述摘要光纤传感及其相应技术在经过了二十余年的研究和探索,已逐步迈入了实用化阶段.本文对光纤传感技术进行综述,特别对于光纤传感技术近年的发展做详细介绍。
随着光纤技术与相关光电子元器件的发展,光纤传感技术正逐步成为继光纤通信产业发展之后又一大光纤应用技术产业。
光纤传感作为传感技术中一个重要分支正不断为工业、农业、交通、能源、医疗卫生、科学技术以及军事技术的信息化提供愈来愈多的服务,并愈来愈为人们所认识与接受。
关键词:应用;产业化;进展目录第一章什么是光纤传感技术 (2)1.1光纤传感技术的定义 (2)1.2光纤传感技术简介 (2)1.3光纤传感技术应用 (3)第二章光纤传感技术的发展 (4)2.1光纤传感技术发展与产业化 (4)2.2几种光纤传感器发展现状 (5)2.3光纤传感技术的未来发展趋势 (7)结束语 (8)参考文献 (8)第一章什么是光纤传感技术1.1光纤传感技术的定义光纤传感技术是20世纪70年代伴随光纤通信技术的发展而迅速发展起来的,以光波为载体,光纤为媒质,感知和传输外界被测量信号的新型传感技术。
作为被测量信号载体的光波和作为光波传播媒质的光纤,具有一系列独特的、其他载体和媒质难以相比的优点。
光波不怕电磁干扰,易为各种光探测器件接收,可方便的进行光电或电光转换,易与高度发展的现代电子装置和计算机相匹配。
1.2光纤传感技术的简介光纤工作频带宽,动态范围大,适合于遥测遥控,是一种优良的低损耗传输线;在一定条件下,光纤特别容易接受被测量或场的加载,是一种优良的敏感元件;光纤本身不带电,体积小,质量轻,易弯曲,抗电磁干扰,抗辐射性能好,特别适合于易燃、易爆、空间受严格限制及强电磁干扰等恶劣环境下使用。
因此,光纤传感技术一问世就受到极大重视,几乎在各个领域得到研究与应用,成为传感技术的先导,推动着传感技术蓬勃发展。
光纤传感,包含对外界信号(被测量)的感知和传输两种功能。
所谓感知(或敏感),是指外界信号按照其变化规律使光纤中传输的光波的物理特征参量,如强度(功率)、波长、频率、相位和偏振态等发生变化,测量光参量的变化即“感知”外界信号的变化。
光纤光栅传感技术在压力检测中的应用研究传感技术在现代工业生产中应用广泛,其中光纤光栅传感技术是一种在工业领域和科学研究中被广泛运用的技术,尤其在压力检测中有着重要的应用。
本文将介绍光纤光栅传感技术的基本原理和压力检测中的应用研究现状。
光纤光栅传感技术基本原理光纤光栅传感技术基于光纤中光束通过光栅时的反射和折射现象,在光纤中插入一定长度的光纤光栅,当外界发生形变时,光栅内部的反射光波就会发生相应的特征变化。
通过接收反射光波的变化,进而对物体的形变、温度、压力等物理量进行检测。
与传统传感技术相比,光纤光栅传感技术具有高精度、高稳定性等特点。
而且由于它是一种光学传感器,与电子类传感器相比,在高温、强辐射、电磁场干扰等复杂工况下存在极大优势。
压力检测中的光纤光栅传感技术应用在工业制造领域,压力检测是一项重要的安全检测任务,如对油气管道、航空航天设备、汽车发动机等高压设备进行检测等。
这些行业的设备压力越来越高,传统监测技术已经难以满足需求,在这种情况下,光纤光栅传感技术具有得天独厚的应用优势。
目前,光纤光栅传感技术被广泛应用于高压环境下的压力监测。
如在油井采气过程中,通过安装在管线中的光纤光栅传感器,实时监测高压气体的压力变化,及时发现潜在的危险隐患,预防事故发生。
另外,还可以将光纤光栅传感器应用于压缩机、泵等设备的压力检测,及时调整操作参数,有效提高设备的安全运行水平。
近年来,随着科技的不断发展,光纤光栅传感器也得到了快速的升级和改善,可实现即时数据反馈、数据可存储、自适应阈值等功能。
这些技术的升级与提升,为光纤光栅传感器在压力检测中的应用提供了更加便捷和精准的检测手段。
总结纵观光纤光栅传感技术在压力检测中的应用,其具有高稳定性、高可靠性等特点,可以适应高温、强辐射、电磁场干扰等复杂环境。
随着科技的不断进步和发展,光纤光栅传感器的提升和升级,将使得光纤光栅传感技术具有更广泛的应用前景。
未来,光纤光栅传感技术将对高压力检测及其他行业提供更加准确、精细的数据支持,为保障人类生命安全提供重要的技术支持。
光纤传感技术的发展及应用光纤传感技术是一种多功能、高精度、可靠性强的测量技术,它可以利用光纤传输、测量和检测信号,以检测传感器的参数,以及实时监测环境参数变化。
近年来,光纤传感技术被广泛应用于自动控制、智能监测、计算机网络、环境检测、医疗保健以及军事领域。
1、光纤传感技术原理光纤传感技术是利用光纤作为信息传输媒介来实现传感器信号采集的。
光纤传感器的传感特性基于其能够将光信号转换成电信号的特殊特性而被开发出来。
正常的光纤传感系统由光源模块,光纤连接模块,传感器元件,数字处理模块和计算机接口板组成。
当光源发出的光束照射到传感器元件上时,它将传感器元件,料体上的参数变化同时转换成光信号以及电信号,最后传输到光纤传感系统,通过数字信号处理模块,将光信号转换成有意义的数指,可用于控制和监测。
2、光纤传感技术的发展及应用自20世纪80年代以来,光纤传感技术发展迅猛,因其具有高灵敏度、体积小、重量轻、抗环境恶劣、可靠性高的优点,现在已经在各种领域应用广泛。
纤传感技术主要应用在自动控制领域,如机器人,机械手,机器人导航,工厂自动化,航空航天,智能电网和节能减排等。
同时,也被用于智能监测、实时监测环境参数变化,如地下子午线监测,水资源管理,环境监测,火山灾害监测,地震监测,台风监测以及地球物理和空间物理等。
此外,光纤传感技术还可用于生物医学和军事等领域的应用,比如军事技术监测,生物信息传输,医疗器械监测,生物传感等。
3、光纤传感技术应用面临的挑战尽管光纤传感技术已经发展得很好,但其应用仍面临许多挑战。
首先,光纤传感器设备贵,在大规模应用时,费用成本仍很高,尤其是在室外应用中。
其次,光纤传感技术检测结果的准确性受到光纤性能的影响,由于光纤传输过程中发生的损耗,可能会降低传感器的精度。
另外,随着技术的发展,光纤传感器也可能受到干扰,破坏其正常工作。
4、未来光纤传感技术的发展趋势随着技术的发展,光纤传感技术的发展趋势是多样性与互联性。
光纤传感技术的研究综述在各种传感技术中,光纤传感技术是一种较新、发展较快的技术,它可以用于环境监测、医学检测、安全监控等领域。
本篇文章将对光纤传感技术的研究现状、发展趋势和应用前景进行综述。
1. 光纤传感技术的基本原理光纤传感技术是一种基于光纤的物理传感技术,利用光纤的物理特性来进行传感信号的测量、传输和处理。
利用光纤传感技术可以实现对温度、压力、应力、振动、湿度等物理量的测量。
光纤传感技术的基本原理是利用光纤传输光信号的特性,通过重复思想的反射和折射来实现传感信号的测量。
光纤传感技术的基本组成部分包括光源、光纤、探测器和信号处理装置等。
2. 光纤传感技术的发展历程光纤传感技术的发展可以追溯到上世纪60年代初期。
最初,光纤传感技术主要应用于通信领域,用于实现传输信号的传递。
1976年,美国物理学家利用自制的光纤传感系统实现了对生物有机物的测量,为光纤传感技术的应用奠定了基础。
80年代初期,由于光纤材料的不断发展和制造工艺的改进,光纤传感技术逐步得到了广泛应用。
光纤传感技术的应用领域也在不断扩展,如利用光纤传感技术来测量工业控制系统中的压力、温度等物理量;利用光纤传感技术来进行地震、风力和海洋测量。
90年代初期,光纤传感技术的研究重点逐渐转向传感器的设计和制造,推动了光纤传感技术的快速发展。
3. 光纤传感技术的研究现状近年来,随着科技的不断进步和需求的改变,光纤传感技术的研究也取得了长足发展。
光纤传感技术的研究现状主要有以下几个方面:(1)传感器的设计和制造。
传感器是光纤传感技术最重要的组成部分之一。
当前,传感器的设计和制造已经进入了高度发展阶段,能够满足多种应用需求。
例如,针对不同的物理量可以设计不同的传感器,并通过改变传感元件的工艺和结构来实现对特定物理量的测量。
(2)信号处理技术的研究。
在光纤传感技术中,信号处理技术是十分重要的一环。
当前,信号处理技术的研究重点主要集中在数据采集、信号特征提取、数据建模和算法设计等方面。
光纤传感技术的新进展与应用光纤传感技术是一种新兴的技术,它通过使用光纤作为传感器,利用光学信号的变化来检测物理量的变化,如温度、压力、形变、振动、化学浓度等。
近年来,随着光纤技术和光学技术的快速发展,光纤传感技术也得到了广泛的应用和发展。
一、光纤传感技术的新进展1.1 光纤传感机制的研究在光纤传感技术中,传感器的本质是光纤。
通过改变光纤的细微结构和物理性质,来实现光发射和光探测,并将这些信号转换为能够被处理和理解的信号。
研究光纤传感机制是光纤传感技术的核心问题。
近年来,光纤传感器中的新型材料、微结构和生物分子等的应用都在探索中,尤其是在利用纳米颗粒、量子点和碳纳米管等新型材料,使得光纤传感器具有了更高的敏感度、选择性和稳定性。
这些新型材料将光纤传感技术拓展到了更广泛的领域,如生物医学、环保、食品安全等。
1.2 光纤传感器的制备技术光纤传感技术是通过利用光传输和光反射,来监测物理量的变化。
在光纤传感器的制备中,光纤材料的选择和制备技术是至关重要的。
光纤传感器的制备技术主要包括纤维拉伸、纤维光学拉曼分析、激光加工、溶胶-凝胶法等。
这些制备技术具有不同的特点和应用,可以根据具体的需求选用适合的技术。
1.3 光纤传感数据处理的方法光纤传感技术能够实时监测物理量的变化,产生大量的数据。
如何有效地获取、处理和分析数据,是光纤传感技术的一个瓶颈问题。
目前,音频信号处理、数字图像处理、模糊逻辑处理和人工神经网络等都被应用于光纤传感数据处理中。
对数据的高效处理和分析,将为光纤传感的应用提供重要保障。
二、光纤传感技术的应用2.1 光纤传感技术在工业领域中的应用光纤传感技术在制造业、化工工业、航空航天等领域中大量应用。
利用光纤传感技术,不仅可以实时监测生产中的温度、湿度、振动等物理量的变化,也可以实现对材料的性能进行实时监测和控制,提高了生产效率和质量。
2.2 光纤传感技术在医学领域中的应用光纤传感技术被广泛应用于医疗领域。
光纤光栅传感系统的现状及发展趋势 自1978年,加拿大的Hill等人首次在掺锗石英光纤中发现光敏现象并采用驻波法制造出世界上第一根光纤光栅和1989年美国的Melt等人实现了光纤Bragg光栅(FBG)的UV激光侧面写入技术以来,光纤光栅的制造技术不断完善,人们对光纤光栅在光传感方面的研究变得更为广泛和深入。光纤光栅传感器具有一般传感器抗电磁干扰、灵敏度高、尺寸小、重量轻、成本低,适于在高温、腐蚀性等环境中使用的优点外,还具有本征自相干能力强和在一根光纤上利用复用技术实现多点复用、多参量分布式区分测量的独特优势。故光纤光栅传感器已成为当前传感器的研究热点。由光源、光纤光栅传感器和信号解调系统为主构成的光纤光栅系统如何能够在降低成本、提高测量精度、满足实时测量等方面的前提下,使各部分达到最优匹配,满足光纤光栅传感系统在现代化各个领域实用化的需要也是研究人员重点考虑的问题。
本文对光纤光栅传感系统进行了介绍,对光纤光栅系统的宽带光源进行了说明,重点分析了光纤光栅传感器的传感原理及如何区分测量技术,对信号常用的信号解调方法进行了总结,最后,提出为适应未来的需要对系统各部分的优化措施。
1 光纤光栅传感系统 光纤光栅传感系统主要由宽带光源、光纤光栅传感器、信号解调等组成。宽带光源为系统提供光能量,光纤光栅传感器利用光源的光波感应外界被测量的信息,外界被测量的信息通过信号解调系统实时地反映出来。
1.1 光 源 光源性能的好坏决定着整个系统所送光信号的好坏。在光纤光栅传感中,由于传感量是对波长编码,光源必须有较宽的带宽和较强的输出功率与稳定性,以满足分布式传感系统中多点多参量测量的需要。光纤光栅传感系统常用的光源的有LED,LD和掺杂不同浓度、不同种类的稀土离子的光源。LED光源有较宽的带宽,可达到几十个纳米,有较高的可靠性,但光源的输出功率较低,且很难与单模光纤耦合。LD光源具有单色性好、相干性强、功率高的特点。但LD光谱的稳定性差(4×10-4/℃)。因此,这2种光源自身的缺点制约了它们在光传感中的应用。掺杂不同种类、不同浓度的稀土离子的光源研究最广泛的是掺铒光源。现在C波段掺铒光源已经研制成功并使用,随着光通信中对通信容量和速度的要 求及分布式光纤传感密集布点对光源带宽要求,L波段的研究越来越重要。有研究者提出C+L波段的研制方案以提高光源的带宽和功率。掺铒光源在温度稳定性方面比半导体光源提高2个数量级,同时,能提供较高的功率、宽的带宽和较长的使用寿命,因此,可以扩大光纤光栅传感器的测量范围,提高检测的信噪比。
1.2 光纤光栅传感器 光纤光栅传感器可以实现对温度、应变等物理量的直接测量。由于光纤光栅波长对温度与应变同时敏感,即温度与应变同时引起光纤光栅耦合波长移动,使得通过测量光纤光栅耦合波长移动无法对温度与应变加以区分。因此,解决交叉敏感问题,实现温度和应力的区分测量是传感器实用化的前提。通过一定的技术来测定应力和温度变化来实现对温度和应力区分测量。这些技术的基本原理都是利用两根或者两段具有不同温度和应变响应灵敏度的光纤光栅构成双光栅温度与应变传感器,通过确定2个光纤光栅的温度与应变响应灵敏度系数,利用2个二元一次方程解出温度与应变。区分测量技术大体可分为两类,即,多光纤光栅测量和单光纤光栅测量。
多光纤光栅测量主要包括混合FBG/长周期光栅(long period grating)法、双周期光纤光栅法、光纤光栅/F-P腔集成复用法、双FBG重叠写入法。各种方法各有优缺点。FBG/LPG法解调简单,但很难保证测量的是同一点,精度为9×10-6,1.5℃。双周期光纤光栅法能保证测量位置,提高了测量精度,但光栅强度低,信号解调困难。光纤光栅/F-P腔集成复用法传感器温度稳定性好、体积小、测量精度高,精度可达20×10-6,1℃,但F-P的腔长调节困难,信号解调复杂。双FBG重叠写入法精度较高,但是,光栅写入困难,信号解调也比较复杂。
单光纤光栅测量主要包括用不同聚合物材料封装单光纤光栅法、利用不同的FBG组合和预制应变法等。用聚合物材料封装单光纤光栅法是利用某些有机物对温度和应力的响应不同增加光纤光栅对温度或应力灵敏度,克服交叉敏感效应。这种方法的制作简单,但选择聚合物材料困难。利用不同的FBG组合法是把光栅写于不同折射率和温度敏感性或不同温度响应灵敏度和掺杂材料浓度的2种光纤的连接处,利用不同的折射率和温度灵敏性不同实现区分测量。这种方法解调简单,且解调为波长编码避免了应力集中,但具有损耗大、熔接处易断裂、测量范围偏小等问题。预制应变法是首先给光纤光栅施加一定的预应变,在预应变的情况下将光纤光栅的一部分牢固地粘贴在悬臂梁上。应力释放后,未粘贴部分的光纤光栅形变恢复,其中心反射波长不变;而粘贴在悬臂梁上的部分形变不能恢复,从而导致了这部分光纤光栅的中心反射波长改变,因此,这个光纤光栅有2个反射峰,一个反射峰(粘贴在悬臂梁上的部分)对应变和温度都敏感;另一个反射峰(未粘贴部分)只对温度敏感,通过测量这2个反射峰的波长漂移可以同时测量温度和应变。
1.3 信号解调 在光纤光栅传感系统中,信号解调一部分为光信号处理,完成光信号波长信息到电参量的转换;另一部分为电信号处理,完成对电参量的运算处理,提取外界信息,并以人们熟悉的方式显示出来。其中,光信号处理,即传感器的中心反射波长的跟踪分析是解调的关键。光纤光栅传感器中心反射波长最直接的检测仪器是光谱仪。这种方法的优点是结构简单、使用方便。缺点是精度底、价格高、体积大,而且,不能直接输出对应于波长变化的电信号。因此,不能满足实用化自动控制的需要。为此,人们研究并提出了多种解调方法,以实现信号的快速、精确提取。可分为滤波法、干涉法、可调窄带光源法和色散法等。
滤波法包括体滤波法、匹配光栅滤波法、可调谐F-P滤波法。体滤波法的元件是波分复用器。工作原理是从耦合器出射的光分成等强度的两束,一束经与波长有关的滤波器滤波;另一束作为参考光束,两束出射光经过光电探测器变成电信号,经过处理消除光功率变化的影响,最后,得到与光纤光栅中心波长有关的输出值。该方法可以实现动态和静态参量的测量。分辨力为375x10-6,动态应变测量响应速度不超过100Hz匹配光栅滤波法是利用其他的FBG或带通滤波光器件,在驱动元件的作用下跟踪FBG的波长变化,然后,通过测量驱动元件的驱动信号来获得被测应力或温度。该方法结构简单、线性度好,分辨力可达0.4×10-6。该方法可以实现静态测量。但这种方法的不足之处是2个光栅要严格匹配,且传感光栅的测量范围不大。可调谐F-P滤波器法是传感阵列FBG的反射信号进入可调光纤F-P滤波器(FFP),调节FFP的透射波长至FBG的反射峰值波长时,滤波后的透射光强达到最大值,由FFP驱动电压—透射波长关系可得FBG的反射峰值波长。扫描加上扰动信号构成波长锁定闭环,其应力分辨力可达0.3×10-6。该解调法可实现动态和静态的测量。由于FFP滤波器腔的调谐范围很宽,可以实现多传感器的解调。但高精度FFP成本较高。
滤波解调法结构简单,但很难进一步提高其传感精度。干涉法却具有更高精度,可以大大提高传感分辨力。可调窄带光源解调法可获得很高的信噪比和分辨力,实验所得最小波长分辨力约为2.3pm,对应温度分辨力约为0.2℃,但由于目前的光纤激光器的稳定性及可调谐范围不太理想,在一定程度上限制了光纤光栅传感器的个数和使用范围。
2 光纤光栅传感系统的发展趋势 为了适应未来光纤光栅传感系统网络化、大范围、准分布式测量。许多研究者正在光纤光栅传感系统的各方面进行不断的研究,使系统得到优化。光纤光栅传感系统的优化主要从三方面考虑,即,光源、光纤光栅传感器及信号解调。对于传感系统的优化,主要是根据传感器的数目、传感器的灵敏度和解调系统的分辨力,根据实际的测量需要,配置不同的光源、传感器和解调系统,使得成本低、测量误差小、测量精度高。针对未来光纤光栅传感系统网络化的要求,应使用稳定性好、宽带、高输出功率的光源。掺铒、掺钕、掺镱等离子的光源是今后发展的重点。光纤光栅传感器既能实现单参量的测量,又能实现多参量的测量。当单参量测量时,应提高传感器的灵敏度和测试精度。在实际应用中,要注意传感器的灵敏度和量程之间的折中。灵敏度高了,量程自然小了。这是因为光纤光栅的应变有一个极限值,超过这个极限值光栅就会被破坏。为实现准分布式测量,传感器复用数目较多,在布置传感器时,有时一个点要布置灵敏度不同的多个传感 器,以实现温度和压力的大范围测量。由于传感量主要是微小波长偏移为载体,所以,一个实用的信号解调方案必须具有极高的波长分辨力。其次,要解决动态与静态信号的检测问题,尤其是二者的结合性检测已成为光栅传感实用解调技术中的难点。光纤光栅传感系统应用最大的优势在于很好地进行传感器的复用实现分布式传感,如,美国的Micron Optics公司,新推出的FBGSLI采用可调激光扫描方法,利用时分技术,可以同时对四路光纤多达256个Bragg光栅进行查询。因此,未来的光纤光栅传感系统将能满足单点高精度的实时测量,又能适应网络化的准分布式的多点、多参量的测试要求,在未来的传感领域发挥更大的作用。
3 结束语 随着对光纤光栅传感系统的深入研究,其研究的重点:一是对传感器能同时感测应变和温度变化的研究;二是对信号解调系统的研究;三是对光纤光栅传感器的封装技术、温度补偿技术、光源稳定性、传感系统网络化等实际应用研究。特别是随着全光网络的发展,光纤光栅传感系统可以应用成熟的波分复用、时分复用和空分复用技术,以实现准分布式光纤传感,复用数目多、测量精度高、灵敏度高的光纤光栅系统网将会在生产领域中有更广泛的应用。(作者:禹大宽,乔学光,贾振安,王敏)