光纤光栅传感系统的详细介绍
- 格式:doc
- 大小:20.00 KB
- 文档页数:5
光纤光栅传感技术随着科技的不断发展,传感技术也不断得到创新和突破。
光纤光栅传感技术是一种新兴的传感技术,它可以利用光纤光栅的特殊结构将物理量转换成光学信号,从而实现物理量的测量和监测。
本文将从光纤光栅传感技术的原理、应用和发展前景三个方面进行详细介绍。
一、光纤光栅传感技术的原理光纤光栅传感技术是一种基于光纤光栅的传感技术,其原理是利用光纤光栅的布拉格反射原理将物理量转换成光学信号。
光纤光栅是一种光学器件,它是由一段光纤中周期性改变折射率的结构组成。
当入射光线经过光纤光栅时,会被反射或透射,其中反射的光线会发生布拉格反射,即反射光线的波长和入射光线的波长满足以下条件:2n Λ=λ,其中n为光的折射率,Λ为光纤光栅的周期,λ为入射光的波长。
因此,光纤光栅可以将入射光的波长转换为光学信号的强度,从而实现物理量的测量和监测。
二、光纤光栅传感技术的应用光纤光栅传感技术具有广泛的应用前景,主要包括以下几个方面: 1.温度传感:光纤光栅传感技术可以利用光纤光栅的热敏特性实现温度的测量和监测。
通过光纤光栅的布拉格反射原理,可以将温度转换成光学信号的强度,从而实现温度的监测和控制。
2.应变传感:光纤光栅传感技术可以利用光纤光栅的应变敏感特性实现应变的测量和监测。
通过光纤光栅的布拉格反射原理,可以将应变转换成光学信号的强度,从而实现应变的监测和控制。
3.压力传感:光纤光栅传感技术可以利用光纤光栅的压力敏感特性实现压力的测量和监测。
通过光纤光栅的布拉格反射原理,可以将压力转换成光学信号的强度,从而实现压力的监测和控制。
4.化学传感:光纤光栅传感技术可以利用光纤光栅的化学敏感特性实现化学物质的测量和监测。
通过光纤光栅的布拉格反射原理,可以将化学物质的浓度转换成光学信号的强度,从而实现化学物质的监测和控制。
三、光纤光栅传感技术的发展前景光纤光栅传感技术具有广泛的应用前景,随着科技的不断发展,其应用领域也在不断拓展。
未来,光纤光栅传感技术将在以下几个方面得到进一步的发展:1.多功能传感:光纤光栅传感技术将实现多功能传感,即通过一个光纤光栅实现多种物理量的测量和监测。
光纤光栅传感技术的原理与应用
光纤光栅传感技术是一种基于光纤的传感技术,利用光纤中的周期性折射率变化来实现对外界环境的测量和监测。
它在工业、医疗、环境监测等领域有着广泛的应用。
光纤光栅传感技术的原理是通过在光纤中制造周期性的折射率变化,形成一种光栅结构。
当光信号经过光纤光栅时,会发生光的衍射现象,从而改变光信号的传播特性。
这种变化可以用来测量外界的物理量,如温度、压力、应变等。
光纤光栅传感技术的应用非常广泛。
在工业领域,光纤光栅传感技术可以实时监测设备的温度、压力和振动等参数,从而实现对设备状态的监测和预警。
在医疗领域,光纤光栅传感技术可以用于监测患者的体温、呼吸和心率等生理参数,帮助医生做出准确的诊断和治疗决策。
在环境监测领域,光纤光栅传感技术可以用于监测水质、大气污染和地震等自然灾害,提供及时的数据支持。
与传统的传感技术相比,光纤光栅传感技术具有许多优势。
首先,光纤光栅传感器可以远距离传输信号,适用于需要长距离监测的场景。
其次,光纤光栅传感器具有高灵敏度和高分辨率,可以实现对微小变化的检测。
此外,光纤光栅传感器还具有耐高温、耐腐蚀和抗电磁干扰等特点,适用于各种恶劣环境条件下的应用。
光纤光栅传感技术是一种高精度、高可靠性的传感技术。
它在工业、
医疗、环境监测等领域的应用前景广阔。
随着技术的不断发展和创新,光纤光栅传感技术将进一步提升其性能和应用范围,为人们的生产和生活带来更多的便利和安全。
光纤光栅传感器的基本原理及应用光栅原理应用以及应用基本原理光纤光栅传感器的基本原理及应用摘要:概述光纤光栅传感器的基本原理及实际应用,介绍了光纤光栅传感器在地球动力学、航天器及船舶航运、民用工程结构、电力工业、医学、和化学传感中的应用。
一、前言 1978 年加拿大渥太华通信研究中心的 KOHill 等人首次在掺锗石英光纤中发现光纤的光敏效应,并采用驻波写入法制成世界上第一根光纤光栅。
19,美国联合技术研究中心的 GMeltz 等人实现了光纤Bragg 光栅FBG的 UV 激光侧面写入技术,使光纤光栅的制作技术实现了突破性进展。
随着光纤光栅制造技术的不断完善,其应用的成果日益增多,从光纤通信、光纤传感到光计算和光信息处理的整个领域都将由于光纤光栅的实用化而发生革命性的变化,光纤光栅技术是光纤技术中继掺铒光纤放大器EDFA 技术之后的又一重大技术突破。
光纤光栅是利用光纤中的光敏性制成的。
所谓光纤中的光敏性是指激光通过掺杂光纤时,光纤的折射率将随光强的空间分布发生相应变化的特性。
而在纤芯内形成的空间相位光栅,其实质就是在纤芯内形成一个窄带的透射或反射滤波器或反射镜。
利用这一特性可制造出许多性能独特的光纤器件,它们都具有反射带宽范围大、附加损耗小、体积小,易与光纤耦合,可与其它光器件兼容成一体,不受环境尘埃影响等一系列优异性能。
光纤光栅的种类很多,主要分两大类:一是 Bragg 光栅也称为反射或短周期光栅,二是透射光栅也称为长周期光栅。
光纤光栅从结构上可分为周期性结构和非周期性结构,从功能上还可分为滤波型光栅和色散补偿型光栅;其中,色散补偿型光栅是非周期光栅,又称为啁啾光栅chirp 光栅。
目前光纤光栅的应用主要集中在光纤通信领域和光纤传感器领域。
在光纤传感器领域,光纤光栅传感器的应用前景十分广阔。
由于光纤光栅传感器具有抗电磁干扰、尺寸小标准裸光纤为 125um、重量轻、耐温性好工作温度上限可达 400?,600?、复用能力强、传输距离远传感器到解调端可达几公里、耐腐蚀、高灵敏度、无源器件、易形变等优点,早在 1988 年就成功地应用在航空、航天领域中作为有效的无损检测当中,同时光纤光栅传感器还可应用于化学医药、材料工业、水利电力、船舶、煤矿等各个领域,以及在土木工程领域中如建筑物、桥梁、水坝、管线、隧道、容器、高速公路、机场跑道等的混凝土组件和结构中测定结构的完整性和内部应变状态,从而建立灵巧结构,并进一步实现智能建筑。
光纤光栅传感器技术的研究与应用光纤光栅传感技术简介光纤光栅传感技术是一种新兴的传感技术,它是利用光纤光栅传输和接收光信号,实现对物理量和环境参数的检测和测量。
这种传感技术因其高温度稳定性、高灵敏度、高分辨率、抗电磁干扰等优点,具有在多个领域有应用前景。
光纤光栅传感技术的研究光纤光栅传感技术是光纤传感技术中的一种,它是将光纤和光栅相结合,形成一种特殊结构的传感器。
光栅具有折射率周期性的结构,能够产生对光波的反射,形成光反射信号,而借助于这个特殊结构,就可以实现对物理量和环境参数的检测。
光纤光栅传感技术的研究主要包括传感器的结构设计、光纤材料的选择、传感器的应变灵敏度和温度稳定性等方面的研究。
光纤光栅传感技术的应用光纤光栅传感技术具有多种应用场景,主要可以分为结构健康监测和环境检测两类。
1. 结构健康监测随着结构健康监测技术的发展,光纤光栅传感技术在工业和民用领域的应用越来越广泛。
例如,在航空航天领域,光纤光栅传感技术可以用于飞机结构的应力和应变检测,从而保证飞机的安全。
在铁路交通领域,光纤光栅传感技术可以用于铁路桥梁和隧道的健康监测。
在海洋工程领域,光纤光栅传感技术可以用于海底输油管道的监测,从而保证海底油气的开发和生产安全。
2. 环境检测光纤光栅传感技术可以应用于多种环境参数检测,包括温度、压力、电场等参数。
例如,在石化工业领域,光纤光栅传感技术可以用于液化天然气储罐的温度监测;在电气工程领域,光纤光栅传感技术可以用于高压电缆的测量和保护。
总之,光纤光栅传感技术以其独特的物理特性和多样的应用优势,在现代传感领域得到广泛的应用。
未来,随着技术的发展和普及,光纤光栅传感技术将会在更多的领域、更广泛的应用中发挥作用,为人类提供更多的安全和保障。
11公司介绍2 光纤光栅传感新技术及产品公司介绍上海派溯智能科技有限公司是一家以光纤传感器产品研发、生产、销售、服务为一体的高新技术企业。
前身为海川股份上海启鹏工程材料有限公司的智能所。
公司掌握光纤激光传输技术、中心波长紧密控制技术、高速信号同步处理技术、光信号定位技术、大容量系统集成技术等核心光传感新技术。
产品主要包括各类光纤传感器、光纤传感解调设备、系统软件等。
光纤传感技术作为先进的安全神经感知系统,当今应用非常广泛,应用涉及:1、桥梁、隧道、管廊、水利水务、矿山及其他土木工程的安全监测;2、公路隧道、电力隧道、综合管廊、储油罐等场所的火灾报警;3、电力设备、动力设备的工作温度实时在线监测等。
公司为住建部行业标准《土木工程用光纤光栅温度传感器》、《土木工程用光纤光栅应变传感器》主编单位,《城市地下综合管廊运行维护及安全技术标准》参编单位。
公司的光纤光栅火灾报警产品已获国家消防3C 认证,光纤光栅煤矿安全监测产品已获国家安标MA认证,同时获各项发明专利和实用新型专利50多项。
公司拥有一流的产品研发生产基地,基地占地面积20000平方米,设有配套齐全的精密生产设备和检测设备,产品生产层层质量检测把关,确保产品出厂后品质保障。
总公司于2008年通过SGS公司ISO9001质量管理体系认证,2009年获得上海市专利培育企业和上海市高新技术企业证书,2010年被评为上海市科技小巨人培育企业。
何满朝院士宋院士来公司考察指导工作卢耀如院士振骐院士主编光纤光栅行业技术标准光纤光栅传感新技术及其产品通过拉伸和压缩光纤光栅,或者改变温度,可以改变光纤光栅的周期和有效折射率,从而达到改变光纤光栅的反射波长的目的。
反射波长和应变、温度、压力、压强等物理量成线性关系。
光纤光栅结构原理光纤光栅传感系统主要由光纤光栅传感器、传输光纤和光纤光栅解调设备组成。
光纤光栅传感器主要用于获取温度、应变、压力、位移等物理量,光纤光栅解调设备用于对传感器信号的检测和数据处理,以获得测量结果,通过光纤能够实现长距离监测。
光栅传感器的发展前景摘要:此文对光纤光栅传感系统进行了介绍,对光纤光栅系统的宽带光源进行了说明,重点分析了光纤光栅传感器的传感原理及如何区分测量技术,对信号常用的信号解调方法进行了总结,最后,提出为适应未来的需要对系统各部分的优化措施。
关键字:光栅传感器,发展,信号解调,优化一.光纤光栅传感简介自1978年,加拿大的Hill等人首次在掺锗石英光纤中发现光敏现象并采用驻波法制造出世界上第一根光纤光栅和1989年美国的Melt等人实现了光纤Bragg光栅(FBG)的UV激光侧面写入技术以来,光纤光栅的制造技术不断完善,人们对光纤光栅在光传感方面的研究变得更为广泛和深入。
光纤光栅传感器具有一般传感器抗电磁干扰、灵敏度高、尺寸小、重量轻、成本低,适于在高温、腐蚀性等环境中使用的优点外,还具有本征自相干能力强和在一根光纤上利用复用技术实现多点复用、多参量分布式区分测量的独特优势。
故光纤光栅传感器已成为当前传感器的研究热点。
由光源、光纤光栅传感器和信号解调系统为主构成的光纤光栅系统如何能够在降低成本、提高测量精度、满足实时测量等方面的前提下,使各部分达到最优匹配,满足光纤光栅传感系统在现代化各个领域实用化的需要也是研究人员重点考虑的问题。
光源性能的好坏决定着整个系统所送光信号的好坏。
在光纤光栅传感中,由于传感量是对波长编码,光源必须有较宽的带宽和较强的输出功率与稳定性,以满足分布式传感系统中多点多参量测量的需要。
光纤光栅传感系统常用的光源有LED,LD和掺杂不同浓度、不同种类的稀土离子的光源。
LED光源有较宽的带宽,可达到几十个纳米,有较高的可靠性,但光源的输出功率较低,且很难与单模光纤耦合。
LD光源具有单色性好、相干性强、功率高的特点。
但LD光谱的稳定性差(4×10-4/℃)。
因此,这2种光源自身的缺点制约了它们在光传感中的应用。
掺杂不同种类、不同浓度的稀土离子的光源研究最广泛的是掺铒光源。
现在C波段掺铒光源已经研制成功并使用,随着光通信中对通信容量和速度的要求及分布式光纤传感密集布点对光源带宽要求,L波段的研究越来越重要。
光纤光栅传感器概述光纤光栅传感器是一种基于光纤传输和光栅技术的传感器。
它利用光栅的特性来测量光纤中的光信号,从而实现对物理量的测量和监测。
光纤光栅传感器具有高精度、长寿命、抗干扰等特点,在许多领域中广泛应用。
工作原理光纤光栅传感器的工作原理基于布拉格光栅的特性。
布拉格光栅是一种光学衍射结构,它由一系列等间距的折射率变化区域组成。
当入射光波与光栅相互作用时,会发生光衍射现象。
根据不同的入射角度和波长,只有特定的波长会在特定的入射角度下被反射回来。
这个特定波长就是布拉格波长。
在光纤光栅传感器中,通过将光纤中一段长度的折射率周期性变化,形成一个布拉格光栅。
当光信号从光纤中传输经过光栅区域时,会发生衍射现象,反射出特定波长的光信号。
通过测量这个特定波长的光信号的强度变化,可以得到物理量的信息。
应用领域光纤光栅传感器在许多领域中得到广泛应用。
以下是一些典型的应用领域:1. 温度测量:光纤光栅传感器可以通过测量光栅中的布拉格波长随温度的变化来实现温度的测量。
这种传感器具有高精度、快速响应等优点,在工业过程控制、环境监测等方面应用广泛。
2. 应变测量:光纤光栅传感器可以通过测量光纤中的布拉格波长随应变的变化来实现应变的测量。
由于光纤的柔性和高强度特性,这种传感器在结构健康监测、材料力学测试等领域中具有广泛的应用前景。
3. 液位测量:光纤光栅传感器可以通过测量光栅中的布拉格波长随液位的变化来实现液位的测量。
这种传感器具有高灵敏度、非接触式测量等优点,适用于液体储罐、水池等液位监测场景。
4. 压力测量:光纤光栅传感器可以通过测量光栅中的布拉格波长随压力的变化来实现压力的测量。
这种传感器具有高精度、快速响应等优点,适用于工业流体控制、汽车发动机监测等领域。
总结光纤光栅传感器是一种基于光纤传输和光栅技术的传感器,利用光栅的特性来测量光纤中的光信号,实现对物理量的测量和监测。
它具有高精度、长寿命、抗干扰等优点,在温度测量、应变测量、液位测量、压力测量等领域中得到广泛应用。
光纤光栅传感系统基本知识光纤光栅是利用光纤材料的光敏性,通过紫外光曝光的方法将入射光相干场图样写入纤芯,在纤芯内产生沿纤芯轴向的折射率周期性变化,从而形成永久性空间的相位光栅,其作用实质上是在纤芯内形成一个窄带的(透射或反射)滤波器或反射镜。
当一束宽光谱光经过光纤光栅时,满足光纤光栅布拉格条件的波长将产生反射,其余的波长透过光纤光栅继续传输,反射波长和光栅周期的关系如下:λ= 2 nΛ其中n为光纤芯的折射率。
Λ为光栅的周期。
图1. 光纤光栅传感系统的基本原理图现在一般采用高强度紫外光源通过Phase Mask所形成的干涉条纹对光纤进行侧面横向曝光以在该光纤芯中产生折射率从而调制或相位光栅。
当光纤光栅受应变和周围的温度发生变化时,将导致光栅周期Λ和有效纤芯折射率neff产生变化,从而产生光栅Bragg信号的波长漂移B ,通过监测Bragg波长B 的变化情况,即可获得测点上光纤光栅的应变和周围温度的变化状况。
光纤光栅波长漂移B与应变和温度变化的关系如下:其中,第一项代表光纤的应变效应,第二项表示温度对光纤的影响。
在1550 nm波长,典型的应变敏感系数为;温度敏感系数为。
所以,光纤光栅Bragg波长的变化与应变或环境温度的变化呈线性变化关系,通过检测光纤光栅Bragg波长,就可以测得应变或环境温度。
在工程应用中一般采用合适应用的方法,用环氧树脂胶进行封装,外加保护封装进行保护,从而形成光纤光栅光纤传感器。
由于光纤光栅(FBG)只能对某个波长进行反射,反射波长的变化需要通过光纤光栅解调仪来测量,一般需要对多个光纤光栅传感器进行测量,也就是说要进行波分复用,将多个光纤光栅(FBG)的串接、每个光纤光栅(FBG)对于一个中心波长,在保证测量的动态范围内,各个光纤光栅(FBG)的波长之间不重叠,这样通过光纤光栅解调仪(FBG Interrogator)实现对不同光纤光栅传感器的反射波长的测量,从而转化成压力或应变的数据。
光纤光栅传感系统的详细介绍
本文介绍了光纤光栅传感系统的构成,分析了光纤光栅传感系统所用的3种不同的光源LED,LD和掺铒光源的性能,阐述了光纤光栅传感器的工作原理和各种不同的温度和应力的区分测量方法,描述了滤波法、干涉法、可调窄带光源法等几种常用的信号解调技术,最后,提出适应未来的需要如何对光纤光栅传感系统的光源、光纤光栅传感器和信号解调进行优化。
自1978年,加拿大的Hill等人首次在掺锗石英光纤中发现光敏现象并采用驻波法制造出世界上第一根光纤光栅和1989年美国的Melt等人实现了光纤Bragg光栅(FBG)的UV激光侧面写入技术以来,光纤光栅的制造技术不断完善,人们对光纤光栅在光传感方面的研究变得更为广泛和深入。
光纤光栅传感器具有一般传感器抗电磁干扰、灵敏度高、尺寸小、重量轻、成本低,适于在高温、腐蚀性等环境中使用的优点外,还具有本征自相干能力强和在一根光纤上利用复用技术实现多点复用、多参量分布式区分测量的独特优势。
故光纤光栅传感器已成为当前传感器的研究热点。
由光源、光纤光栅传感器和信号解调系统为主构成的光纤光栅系统如何能够在降低成本、提高测量精度、满足实时测量等方面的前提下,使各部分达到最优匹配,满足光纤光栅传感系统在现代化各个领域实用化的需要也是研究人员重点考虑的问题。
本文对光纤光栅传感系统进行了介绍,对光纤光栅系统的宽带光源进行了说明,重点分析了光纤光栅传感器的传感原理及如何区分测量技术,对信号常用的信号解调方法进行了总结,最后,提出为适应未来的需要对系统各部分的优化措施。
1、光纤光栅传感系统光纤光栅传感系统主要由宽带光源、光纤光栅传感器、信号解调等组成。
宽带光源为系统提供光能量,光纤光栅传感器利用光源的光波感应外界被测量的信息,外界被测量的信息通过信号解调系统实时地反映出来。
1.1 光源
光源性能的好坏决定着整个系统所送光信号的好坏。
在光纤光栅传感中,由于传感量是对。