⑤a // b a1 b1,a2 b2( R) ⑤a // b a1 b1,a2 b2,a3 b3( R)
⑥ a b a1b1 a2b2 0 ⑥a b a1b1 a2b2 a3b3 0
⑦ | a | a12 a22
⑦ | a | a12 a22 a32
6.利用圆的性质类比得出球的性质
圆的概念和性质
圆的周长 S = 2πR
圆的面积 S =πR2
圆心与弦(非直径)中点的连线 垂直于弦
球的概念和性质
球的表面积 S = 4πR2
球的体积 V = 4πR3
3
球心与不过球心的截面(圆面) 的圆心的连线垂直于截面
与圆心距离相等的两弦相等 与球心距离相等的两截面面积相等
与圆心距离不相等的两弦不相 与球心距离不相等的两截面面积
① a b (a1 b1,a2 b2 )
② a b (a1 b1,a2 b2 ) ③ a (a1,a2 )( R)
①a b (a1 b1,a2 b2,a3 b3) ② a b (a1 b1,a2 b2,a3 b3)
③ a (a1,a2,a3)( R)
④ a b a1b1 a2b2 ④ a b a1b1 a2b2 a3b3
例题解析:
例1、试根据等式的性质猜想不等式的性质。
等式的性质:
猜想不等式的性质:
(1) a=ba+c=b+c; (2) a=b ac=bc; (3) a=ba2=b2;
(1) a>ba+c>b+c; (2) a>b ac>bc; (3) a>ba2>b2;
问:这样猜想出的结论是否一定正确?
例2.(2003年新课程)在平面几何里,有勾股定理:
等,距圆心较近的弦较长