地电位反击
- 格式:doc
- 大小:31.00 KB
- 文档页数:3
毕业综合作业移动基站防雷与接地系统的设计选题类型:论文学生姓名:***学号: ***********系部:通信工程系专业:移动通信技术班级: 102指导老师:***浙江·绍兴提交时间:2013年4月摘要本文论述了移动基站防雷接地系统经常出现的问题,结合平时的实地考察,切实地提出根据实际情况设计移动通信基站防雷接地系统的设计思想。
由于移动通信基站的天线设置大多安装在建筑物的房顶上,还有一部分安装在铁塔上,相对周围环境而言,形成十分突出的目标,从而导致雷击概率增多。
通信设备损坏,耗费了大量人力财力。
怎样才能有效地预防雷害,确保移动通信基站设备和工作人员的安全呢?必须根据每个基站的实际情况设计移动通信基站的防雷接地系统,实施基站针对性防雷。
关键词:防雷;接地;反击电压;分级防雷目录第一章移动基站防雷与接地系统简介 (1)1.1 防雷与接地系统 (1)第二章移动基站雷害的主要原因 (2)2.1 雷击的主要原因 (2)2.2 反击电压 (3)2.3 移动基站防雷措施 (5)第三章移动基站防雷与接地系统的整改案例 (8)5.1 案例1——大陈基站存在的问题及改造方案 (8)5.2 案例2——大港头基站存在的问题及改造方案 (9)5.3 案例分析3——皇家地基站存在的问题及改造方案 (12)5.4 案例分析4——长坑基站存在的问题及改造方案 (15)5.5 案例分析5——石铺基站存在的问题及改造方案 (18)总结 (22)致谢 (23)参考文献 (24)第一章移动基站防雷与接地系统简介1.1 防雷与接地原理1.2 基站防雷与接地系统1.防雷与接地系统的组成(1)雷电接受装置:直接或间接接受雷电的金属杆(接闪器),如避雷针、避雷带(网)、架空地线及避雷器等;(2)接地线(引下线):雷电接受装置与接地装置连接用的金属导体。
它的作用是把雷电接受装置上的雷电流传递到接地装置上,接地线一般采用圆钢或扁钢组成;(3)接地体:包括接地装置和装置周围的土壤或混凝土,作用是把雷击电流有效地泄入大地,现在常用的接地装置有水平接地极、垂直接地极、延长接地极和基础接地极。
德国EPCOS 等进口元器件泄放大雷电流能力强、残压低专利插拔不断线技术双接触保证插拔过程中信号的连续性专利可靠性接地技术全包围式紧固型导轨接触面色标识别模式(指示)信号类型快速识别核心技术-信号电涌可靠的温控脱扣技术过载响应能力进一步提升高质量外壳可靠的模块鉴别锁及释放按钮全胶封内芯保证器件结构稳定支持热插拔便于产品更换及检查核心技术-电源电涌故障指示,遥信触点便于产品更换及检查特有电弧隔断技术提升电气性能关于优倍安全栅国家标准主编单位中石化安全栅框架协议单位工信部两化融合贯标单位工信部智能工厂标准化示范验证单位江苏省电涌保护器工程技术研究中心南京优倍电气有限公司成立于2002年,江苏省高新技术企业。
公司致力于安全栅、隔离器、温度变送器、电涌保护器、安全继电器等工业信号接口仪表的研发制造,并为以上产品国标组组长单位,主持起草《隔离式安全栅》等国家标准。
优倍电气是国内该专业市场的主要供应商之一,品牌及品质享受盛誉。
公司为工信部两化融合体系贯标试点单位、工信部智能工厂标准化示范验证单位、江苏省、南京市首批示范智能工厂。
先后被江苏省省委、省政府授予百家江苏省优秀企业、江苏制造突出贡献奖优秀企业、江苏科技小巨人企业等光荣称号。
公司总部及新建并投产运营的优倍智造园均位于南京江宁经济技术开发区,占地面积30亩,全公司现有员工160余名,建有江苏省研究生工作站、江苏省电涌保护器工程技术研究中心、南京市工程应用研究中心,在工业测控领域有着深厚的科研基础及广泛的应用经验,产品获得多项国内、国际认证。
SILIEC 61508I目录Contents雷电电涌防护知识新能源石油石化电网建设智能安防176通信系统电涌保护T 系列通信系统电涌保护器55电源系统电涌保护P 系列电源系统电涌保护器测量、控制系统电涌保护S-FLT 系列热插拔信号电涌保护器S-FLS 系列超薄型信号电涌保护器S-FLP 系列现场管式信号电涌保护器73147附录测量、控制系统应用指南83III V VII型号代码的含义交流电源类产品保护系统:2P :单相TN-S 系统 ; 3P :TN-C 、IT 系统 P+N :单相TT 系统 ; 3P+N :TN-S 、TT 系统工作电压/电涌电流:385/40:385VAC/40kA ; 255/40:255VAC/40kA 385/60:385VAC/60kA ; 255/60:255VAC/60kA 385/80:385VAC/80kA ; 260/25:260VAC/25kA 440/25:440VAC/25kA ; 760/25:760VAC/25kA . . . . . .产品类型:FL 防雷产品系列:P :P 系列PFLx xxx--例:型号为P-FL-385/40×2P 的产品为优倍电气的P 系列的电源T 2类防雷产品,产品的最大工作电压为385V ,产品的泄放电流能力为40kA ,是由2片S P D 保护模块组成,适用于单相220VAC 交流电源TN-S 系统。
目录第一章项目概况 (1)第二章技术标准和规范 (1)第三章防雷概述 (1)第四章雷电对电气设备的影响 (2)4。
1 直击雷 (2)4。
2 雷电波侵入 (2)4.3 电磁感应 (2)4。
4 地电位反击 (3)4。
5 开关过电压 (3)第五章项目内容及要求 (3)5.1 光伏方阵及箱变接防雷接地工程 (3)5。
2 光伏方阵接地系统 (3)5。
3 接地材料要求 (4)第六章设计方案 (4)6。
1 防雷类别及电子信息系统雷电防护等级 (4)6.2 光伏方阵及箱变防雷接地设计方案 (4)6。
2.1 防直击雷设计 (4)6。
2.2 防闪电涌设计 (4)6.2。
3 接地等电位连接 (4)6.2。
4 光伏发电系统的相关设备浪涌过电压保护示意图 (4)6。
3 光伏场区防直击雷方案 (4)6。
4 光伏场区防直击雷措施 (5)6。
5 光伏场区防雷接地方案 (5)6.6 光伏场区防雷接地具体措施 (7)6。
7 光伏场区环形闭合地网的接地电阻计算 (9)第七章施工方法 (10)第八章工期及资源配置 (12)第一章项目概况本项目位于光伏电站位于,地形较开阔,坡度在 5°~25°不等之间,海拔高程伏电站场址所在区域是云南省太阳能资源可开发区域之一,年太阳总辐射为5328。
0MJ/m2·a,年日照时数为 2111。
3hr,根据《太阳能资源评估方法》(QX/T 89-2008)判定其太阳能资源属于很丰富地区,资源具备较好的开发条件。
太阳总辐射值最高月与最低月之比为 1。
68,年内月太阳总辐射值变化基本平稳,工程开发利用价值较高,有利于太阳能能源的稳定输出。
场址所在区域降雪天气很少,无沙尘天气,气温年内变化不大,目标区域内风速不大,气候条件有利于太阳能资源开发.全站光伏方阵电能经逆变升压至35kV后送入110kV升压站,汇集并网光伏电站电力后,以1回110kV线路接入220kV沙林变电站。
第二章技术标准和规范下列标准所包含的条文,通过在本技术规范中引用而构成本规范的条文。
防雷工程中地等电位连接问题"引言我们在进行防雷检测时,往往只是用接地电阻测试仪测一测各个接地点地接地电阻是否符合有关规范要求,接地电阻低于规范要求则认为合格,否则为不合格,经常忽视了检查等电位连接.即使检查了,也很少作记录,很少在检测报告中体现.在设计防雷工程时,设计人员最关注地是在电源、信号等线路上适当地部位安装多少级避雷器,对等电位连接措施只做一点简单地说明.在防雷工程施工时,由于工作条件所限,经常因难以实现而省去等电位连接工序.%等电位与等电位连接等电位是指需要防雷地空间和设备,遭雷击产生雷电过电压时系统各部位保持电位相等,设备之间不存在电位差.实际上达到不存在电位差很难,只能做到电位差相对小到低于介质击穿地程度.等电位连接是把建筑物内以及附近所有地大金属物,如混凝土钢筋、自来水管、煤气管及其它金属管道、机器基础金属物,以及其它大型埋地金属物、电缆金属屏蔽层、电力系统地保护接地、建筑物地接地线等,统统用电气连接地方法连接起来,焊接或者可靠地电气连接0,使整座建筑物成为一个良好地等电位体.当遭雷击产生雷电过电压时在建筑物内部大体上是等电位地,因而不会发生设备被高电位反击和人被雷击地事故.此外,在电力线、电话线、电视信号电缆、电子计算机信号传输线等一切与外界有联系地金属线,都要接上合适地过电压保护装置,避雷器0,并且接地端要与建筑物地避雷接地装置直接进行电气连接,使之成为等电位,实际上是准等电位,因为雷击时避雷器两端存在雷电残压0.!等电位连接在防雷工程中地作用自然界地雷击主要有直接雷击和雷电电磁脉冲!类.直接雷击声光并发,电闪雷鸣,它以强大地电流、炽热地高温、猛烈地冲击波等,击坏放电通道上地建筑物、输电线、树木和人畜等.而雷电电磁脉冲则悄然发生,不易察觉,后果严重,它是由于雷雨云地静电感应或放电时地电磁感应,使建筑物上地金属部件,如管道、钢筋、电源线、信号线等,感应出过电压,造成放电,其主要是通过电源线、信号线、天馈线以及地电位反击等引入室内破坏电子设备.直接雷击地防护技术历经!""1以上地历史已经成熟,并得到了广泛认可.对现代社会影响更深、造成地损失更大地感应雷击便成为摆在防雷技术人员面前一个主要难题.目前,雷电电磁脉冲地防护措施主要是屏蔽、导流,在雷电流入侵通道上将雷电过电压、过电流提前逐级泄放入地,从而达到保护电子设备地目地0和等电位连接.等电位连接是避雷和电工技术地一项重要内容.由于采用等电位连接,不但使建筑物及其内部设备地避雷能力大大提高,而且还降低了防雷设计中对接地电阻地要求,使建设投资减少,施工难度降低,尤其是对土壤电阻率高地地区,意义更加重大. 我们经常遇到防雷设计中对接地电阻地要求是小于%!,姑且不论这%!是工频电阻还是冲击接地电阻,就按%!工频电阻等于%!冲击接地电阻考虑.建筑物内!!"2+)"3地用电设备,其绝缘耐冲击电压按国际电工委员会地规定为’43.当建筑物地避雷装置遭直接地电阻雷击时,雷电流幅值为+(56,它在与%!接地电阻上产生+(56地电压,这为上述耐冲击电压’43地’-)倍.在共用接地地·!"·山西气象!##$年第!期条件下防止用电设备绝缘击穿地最主要措施是在带绝缘层地导体与共用接地系统之间装设过电压保护器.过电压保护器是用来限制存在于两物体之间地电压冲击地一种设备,如果装设了过电压保护器,共用接地装置地接地电阻地大小对建筑物来说是次要地,因为只要过电压值大于过电压保护器地动作电压,该过电压均能在瞬间使过电压保护器动作而不管电压值大出多少,并使其两侧物体在瞬间短接而达到等电位,从而达到防雷地目地.大量实践证明,只要把等电位连接做好,即使实际接地电阻比规范规定地大,也能起到很好地防雷作用.%防雷工程中地等电位连接%&’防直击雷、侧击雷中地等电位连接()利用建筑物本身地钢筋作为防雷装置,与大楼内外地各种外露地大金属物体*暖气、煤气、自来水管道、玻璃墙幕等)做可靠地电气连接*等电位连接),且引下线越多越好.引下线越多,相对流经各条引下线地雷电流就越小,相应地减小了各条引下线周围产生地电磁感应强度.同样,雷电流地减小,也使得引下线上可能产生反击地瞬间电压值降低.+)利用钢柱或柱子钢筋作为防雷装置引下线,外围圈梁地主筋作水平均压环*其主要作用是将各引下线在水平方向上做等电位连接),钢构架和混凝土地钢筋应相互连接,形成一个大地法拉第等势体,水平均压环垂直距离越小越好.水平均压环既可以防侧击雷,又起着均衡各层内电位地作用:一是均衡了引下线流过不同强度地雷电流而产生地电位差;二是均衡了因各条引下线及金属管道存在分布参数而感应生成地雷电高压.,)高于滚球半径!"#高度外墙上地栏杆、门窗等较大地金属物应与防雷装置等电位连接. -)天面上所有可能遭受雷击地金属装置,应就近与避雷带、避雷网格进行等电位连接. %.!防感应雷中地等电位连接%.!&’防雷区地划分国际电工委员会在/01’%’!—’*雷电电磁脉冲地防护)中提出了按界面分区设置保护装置地雷电防护原则.23456区:本区内地各物体都可能遭受直击雷击,因此各物体都可能导走全部雷电流,本区内地电磁场没有衰减.23457区:本区内地各物体不可能遭到直击雷击,但本区内电磁场没有衰减.234’区:本区内地各物体不可能遭到直击雷击,流往各导体地电流比23457区进一步减小.本区内地电磁场也可能衰减,这取决于屏蔽措施. 234!等:为后续防雷区,按照需要保护地系统所要求地环境区选择,用以进一步减小所导引地电流和电磁场.%.!&!防雷区间外部与界面地等电位连接()防止雷电波从导线输入最有效地办法是把电线、电缆全线穿金属管埋地引入,穿金属管长度应"!!*!为当地土壤电阻率),金属管地两端应做良好接地.+)在导线采用屏蔽电缆引入时,它们地屏蔽层至少应在两端,以及防雷区交界处与地网做等电位连接.,)通信线不得与交流线穿在同一金属管内.电源线相与相之间、相与地之间,都要分别接避雷器,而通信线地信号线与地线必须接相应地避雷器. %.!&%防雷区间内部等电位连接()各防雷区间内部应设有闭合环形地等电位连接带.该连接带至少应有!处与大楼主钢筋相连,还应与电源接地线、直流接地线、安全接地线、屏蔽接地线等连成一体,使得防雷区间内实现良好地等电位.+)所有大尺寸地内部导电物,如电梯轨道、吊车、金属地板、金属门框架、设施管路、电缆桥架地等电位连接,应以最短地路线连到最近地等电位连接带,或其它已做了等电位连接地金属物上.,)为进一步减轻防雷区间内导线地雷电感应,布线时应将重要地电缆尽量短接,并布置于大楼中间部位,垂直布线时应尽量远离大楼立柱,特别是大楼外墙地立柱.这些信号电缆可用全密封式金属电缆槽管进行屏蔽,金属槽管两端应与等电位连接带做好等电位连接.%.%接地中地等电位连接()由于一般建筑物都把接闪器装在建筑物地顶层或制高点,并且利用建筑物地钢筋作为引下线,所以实际上是通信系统接地、电力工作接地、安全接地、防雷接地8大系统共地.+)大楼地基础宜作为大楼地网地主要组成部分.在基础承台,应将桩筋、柱筋、梁筋都焊接连通.在离大楼基础约$9处沿基础四周作一环形接地体,并每隔$9作一垂直接地体与环形接地体互连.大楼外侧每个立柱主钢筋在地下#&:9处均与环形接地体相连.,)地网应与附近地下地各种金属管道、金属构件在地下连接.-)各防雷区间地等电位连接带应以最短地途!##$年%月王军平,等:防雷工程中地等电位连接问题·!"·径连接到地网上,&’()*+!—)中建议采用星型结构与其附近地金属体之间地电位差近于零.当雷电袭,-型.和网状结构,/型.等电位连接方法,或采用-击地时候,各处电位同时升高,建筑物内部和附近大型与/型联合地方法.体上是等电位地,特别是同一防雷区间内,由于等电0结语位连接实现了高精度地等电位,从根本上消除了旁当建筑物做好了等电位连接后,整座建筑物成侧闪络地产生.因此,等电位连接对防雷系统工程为一个统一地等电位体.发生雷击时,电子设备各地好坏起着关键性地作用,充分体现着现代防雷技部件地电位差远小于不连接地状态,特别是金属体术地精髓.!"#$%&’(#)&*+,-.($&/#0/1.(2&03-04/1&0105#*#06!"-06#%$%&3#4/7.089-0:108;<7#0910(1;<=->#?#0@<A1-B&08’&;<C.1D1,10EF;G$%#H#0/108 !"-06#%.06I#6-410851J.J/#%JK**14#&*L".0M1$%&H104#<!.1N-.0L".0M1< OEOOO@P@GL".0M1K’J#%H./&%N< !.1N-.0L".0M1< OEOOOQPEG=1.08*#02&-0/NR#/#&%&(&814.( C-%#.-&*L".0M1$%&H104#<=1.08*#0L".0M1<OS@TOOUV’J/%.4/W 122345678939:;<435=296373>5;>;759:=75;4;?<;49@37;A=BC<39;796BC237D=729637<43EC;FGB75;?<;46;72;3>5;>;75678 9:=75;4>34FB7HH;B4@G9:6@<B<;4FB5;9:;;FE;55;556@2=@@637 379:;<43EC;F3>;A=BC<39;796BC 237D=729637G B75<435=2;5@3F;I6;J<3679B75B5I62;3>;A=BC<39;796BC 237D=729637 E;9J;;75;@687B75237@94=29637 675;>;759:=75;4<43D;29K>#N?&%6JW 5;>;759:=75;4<43D;29L<39;796BC237D=729637L5;@687B75237@94=29637(上接第!0页)观测模式+.时,从雷达基数据文件生成开始到NON中显示出请求地!#种产品,一次请求最多可以请求!#种产品.,大约需要*F67左右,处理观测模式!地P层体扫时,大约需要+F670$@左右.软件生成地各种产品总体来说比较适合业务使用,但是由于地区差异和气候差异,因此产品中地适配数据不一定全部适合山西,需要在使用过程中不断总结、不断实践、不断调整,从而总结出适合软件运行稳定可靠.在处理,实时和非实时.+0层地山西气候特点地各种参数,使该软件在业务使用中体扫,《新一代天气雷达观测规定,试行.》中规定地发挥更大地作用.!"#V::(14./1&0&*R10J"16.R#/#&%&(&814L&*/?.%#$.4X.8#&0L/%&082&0H#4/1&07#./"#%910D13-0;<Y".&7#1@<D19-0M1.;<I#0=1.&M1.;<$#1Y"#0;F;G7#./"#%R&61*14./1&0 K**14#&*L".0M1$%&H104#<!.1N-.0L".0M1< OEOOE@P@GL".0M1R#/#&%&(&814.( C-%#.-<!.1N-.0L".0M1< OEOOO@UV’J/%.4/W &:6@<B<;4B7BCHQ;5B@94378237I;29637J;B9:;4933R<CB2;67@:B7?6G 679435=2;5 9:;B<<C62B9637 3>/67@:65BF;9;343C3862BC @3>9JB4;<B2RB8;37@94378237I;29637J;B9:;4GJ:62:J;4;94B7@<CB79;5 67/B42:3>!##*K>#N?&%6JWF;9;343C3862BC @3>9JB4;<B2RB8;L@94378237I;29637J;B9:;4LB<<C62B9637图M!+时+%分!"#版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理。
铜仁民航雷达站雷击事故原因分析周道刚;杨红新;吴安坤;任达盛【摘要】高山雷达站雷电地电位反击是一个容易被忽视的雷击事故隐患,事故主要特征是弱电系统设备大面积设备信号端口损坏,主要原因是雷达站场地面积小,弱电系统独立接地装置安全距离不够,采取埋地线路屏蔽措施是一个妥当的解决方法.【期刊名称】《价值工程》【年(卷),期】2018(037)023【总页数】3页(P140-142)【关键词】民航雷达站;雷击事故;地电位反击【作者】周道刚;杨红新;吴安坤;任达盛【作者单位】贵州省防雷减灾中心,贵阳550081;铜仁市防雷中心,铜仁554300;贵州省防雷减灾中心,贵阳550081;贵州省防雷减灾中心,贵阳550081【正文语种】中文【中图分类】P4290 引言近年来,随着《民用航空通信导航监视设施防雷技术规范》MH/T 4020-2006)、《新一代天气雷达站防雷技术规范》QX/T 2-2016颁布实施,基本上解决了雷达站遭受直击雷击和线路雷击电磁脉冲侵入危害问题,然而,由于雷达站场地面积较小,独立接地装置安全距离不足,易出现大面积设备接口损坏的雷电地电位反击事故。
本文介绍民航铜仁雷达站雷击事故原因分析及整改成功的雷电防护经验,供今后雷达站或高山气象站进行雷电防护设计施工借鉴。
1 雷达站基本情况铜仁民航雷达站2012年6月投入使用。
该雷达站(平面示意图如图1所示)占地面积约1000m2,土壤电阻率约700Ω.m;站内有雷达天线楼(高约35m)、办公楼两栋建筑物、两座高约30m的VHF通讯铁塔。
雷达天线楼楼顶平台立有对称的四支玻璃钢避雷针,避雷针引下线、接地装置共用雷达楼柱筋及基础钢筋;办公楼长30m,宽12m,高13m,雷达主控机房位于二楼,总配电房、视频监控主机房设于一楼,视频监控摄像头电源、信号线路穿PVC管埋地进入一楼监控机房。
站内南北两面、靠近围墙地面处,各安装5支避雷针阵列;围墙上安装一圈脉冲式电子围栏,其控制箱设于西南面围墙墙面,控制线路穿PVC管埋地敷设到电子围栏控制箱;大院周边避雷针阵列、VHF天线塔、电子围栏、视频监控系统各采用独立接地装置,雷达天线楼及办公楼采用共用地网。
通信基站遭雷击事故分析及其防雷改进措施摘要:通信基站是由电源系统、接受发射系统、天馈线系统、中继传输系统等构成的一个综合系统。
由于各个系统内部复杂,所使用的仪器设备一般是由大规模集成电路组成的高精密仪器。
本文通过一次通信基站雷击实例,从防护直击雷、雷电感应、雷电波侵入和地电压反击方面,分析了基站雷击事故原因及改进措施。
关键词通信基站;雷击事故;防护措施中图分类号: tu856 文献标识码: a 文章编号:引言雷电灾害被联合国有关部门列为“最严重十种自然灾害之一”。
当发生雷电时,带电云层在通信设施天线上产生感应电荷或雷电感应通过通信和电力线路侵入,如果天线和通信线缆与大地之间直流通路不畅,在天线和线缆与大地之间产生高电位而引起过电压,致使通信设施无法承受强电流的入侵而损害。
雷击事故分析现场情况概述2011年夏,位于丰城市福泽公司办公楼旁的中国联通通信基站被雷击中(基站顶端有明显接闪痕迹)。
此基站采用独立接地方式,办公楼利用基础钢筋作自然接地体,基站机房位于办公楼二楼,一楼是公司机房。
基站内供电线路与通信线路用金属走线架入基站机房。
两机房内电源线路均装有某型号过电压保护器。
此次雷击事故损害此次雷击导致基站变压器被击坏;基站机房某型号spd损坏;基站旁的福泽公司办公楼一楼与二楼间楼板被击穿;一楼机房交换机、路由器、计算机等设备严重损坏;很多业务中断;直接经济损失数万元。
地域情况分析江西省丰城市地处该省中南部,雷暴集中出现在6—9月,年均雷暴日约为61天,雷暴强度在江西属中等偏上。
雷电侵入方式主要有五种:直接雷击、雷电波侵入、感应过电压、系统内部过电压、地电位反击。
雷击事故原因分析此通信基站建设之初未进行雷电风险评估。
防雷设计及施工中一些具体环节或措施没做到位,未形成完整一体的雷电防护体系。
基站与福泽公司办公楼的安全距离问题据测,该基站距福泽办公楼约3.4m,地网面积比建筑物面积大,因此两地网间实际距离小于3.4m。
等电位连接器是一种利用临时系统中各独立相绝缘的部分实现等电位连接,有效防止地电位反击损坏设备和保护设备安全作用的设备。
那么等电位连接器的工作原理大家了解多少呢?下面小编为大家介绍一下吧。
工作原理:当连接器两端的电位差大于所限峰值电压时,连接器导通,迫使连接器两端不同接地体电位基本相等,消除接地体间放电现象,从而避免了由于地电位差值过高危及人身及设备安全。
等电位连接器常态工作情况下为开路,从而连接了不同接地体之间的相互干扰,遇雷击地电位不等时导通,迫使地电位基本相等。
PD等电位连接器主要用于接地系统的等电位连接,具有限制电压低、响应快、残压低、无续流、安装方便等特点,可保护各种设备不便直接接地又可以避免来自各种感应雷击和浪涌电压带来的危害。
扩展资料:安装及维护:1、用安装尺寸:孔距120mm2、本产品串联在设备地线和防雷地线之间。
3、等电位连接器串接时无方向,导线截面应≥10 mm,且尽可能短。
4、本保护器免维护,雷雨后应及时检查和记录等电位连接器的工作状况。
连接器工作原理:连接器英文名为Electrical Connector,是电子设备中必不可少的电子部件,是指连接两个有源器件的电子器件,作用是传输信号或电流。
连接器的基本性能主要可分为机械性能、电气性能和环境性能。
连接器是指液面以下相互连通、液面上压力相等的两个以上容器,其液面高度相等并且是同个液体。
1.连接器盛有相同的液体,但液面上压力不相等。
2.连接器液面上压力相等,但连接器两侧盛有不同密度不同材质的液体。
一般来说,连接器是通过接口进行对接以实现传输电流或信号的功能,所以接口处的设计是连接器成功连接的关键部分。
连接器接口处分为接触面和接触涂层。
1.接触面:连接器接触面分为固定和分离界面,连接器主要是通过机械方式使得要连接的线路进行相通,使得两个界面直接产生金属性接触。
2.接触涂层:连接器接触涂层上有个接触弹簧,通常是由铜合金制作成的,这个弹簧将在线路桥接过程中将起着很重要的作用。
地电位反击的防护
来源:作者:
地电位反击:就是在交流地、直流地、防雷地、静电地等,按照国家相关标准做单独接地的时候,又没有达到一个有效的安全距离,20米,当雷电流流经这些接地体的时候,从另外的接地体回流至设备,从而损坏设备。
直击雷防护装置(避雷针)在引导强大的雷电流流入大地时,在它的引下线、接地体以及与它们相连接的金属导体上产生非常高的瞬时电压,对周围与他们靠得近而又没与它们连接的金属物体、设备、线路、人体之间产生巨大的电位差,这个电位差引起的电击就是地电位反击。
这种反击不仅足以损坏电器和设备,也可能造成人身伤害或火灾爆炸事故。
1、地电位反击简述
地电位反击通常是指:建筑物的外部防雷系统(如避雷针、避雷网等)遭受直接雷击,则在接地电阻的两端产生危险的过电压,此过电压由设备的接地线、建筑物或附近的其他建筑物的外部防雷系统或其他自然接闪物(各种管道、电缆屏蔽管等)引入设备,造成设备的损坏的现象。
地电位的反击通常存在两中形式:A、雷电流流入大地时,由于接地电阻的存在,产生较大的压降,使地电位抬高,反向击穿设备;B、两个地网之间,由于没有离开足够的安全距离,其中一个地网接受了雷电流,产生高电位,则向没有接受雷击的地网产生反击,使得该接地系统上带有危险的电压。
建筑物在遭受直接雷击时,雷电流将沿建筑物防雷系统中各引下线和接地体入地,在此过程中,雷电流将在防雷系统中产生暂态高电压,如果引下线与周围网络设备绝缘距离不够,且设备的电源系统PE线接地及信号系统逻辑接地与避雷系统不共地,则将在两者之间出现很高的电压,并会发生放电击穿,导致设备严重损坏,甚至人身安全。
这种由于接地技术处理不当引起地电位的反击,造成整个网络系统设备全部击毁。
地电位暂态高电位不仅危害本建筑物内的设备,还会危及到相邻建筑物内的设备。
该相邻建筑物内的设备虽然没有遭直接雷击,但在附近建筑物遭雷击后,暂态高电位将沿地下管道传至相邻建筑物内的设备接地系统中对线路发生反击,使得与这些线路相连接的设备受到暂态高电位的损害。
地电位反击可感生出几KV到几十KV至数百KV的反击电压,这种反击会沿着电力系统的零线,保护接地线和各种形式的接地线,以波的形式传入室内或传播到更大的室内范围,造成大面积的危害。
国家标准GB 50057-94(2000)《建筑物防雷设计规范》第三章,第3.4.8条规定:为防止雷电流流经引下线和接地装置时产生的高电位对附近金属物或线路的反击,则其间的最小安全距离应按下列表达式计算:
当 lx<5 Ri时,sa3 ≥ 0.2kc(Ri+0.1lx )
当lx≥5 Ri 时,s a3≥ 0.05kc(Ri +lx )
2、地电位反击解决方案
A、对于使用对立接地的系统,也就是说在一个机房内有两个以上各自独立的接地网,比如一个地网使用建筑物框架内钢筋做接地网,另一系统做独立地网,那么当两地网之间的距离小于防地电位反击的安全距离时,则需要在两地网之间用“等电位连接器”做等电位连接。
等电位连接器的作用是保证正常工作状态下两接地网不连通,没有相互干扰,当一个接地系统遭受雷击时,经GI 1000-5
等电位连接器使两地网在瞬间形成等电位,消除此暂态高电位在设备内由于线间电压差而造成的损害。
B、按照GB 50057-94(2000)《建筑物防雷设计规范》第六章的要求,金属水管、通讯电缆线及电力电缆铠装外皮或电缆金属管等外来管线,所有的水管和电缆应埋地进入机房,水管和电缆铠装外皮和保护金属管应在进入机房时接地,电缆应选用铠装电缆或穿金属管埋地进入机房电缆相线和中线应通过电涌保护器接地。
对于在建筑内布线距离较长的接地线,比如电源PE线,在要求较高的机房内,可使用“机房等电位连接器”将交流工作接地、直流工作接地、防静电及保护接地在机房内进行等电位连接,以确保精密系统设备在正常工作状态下不受干扰,在存在暂态过电压时,不发生设备内击穿。
接地模块的工作原理和作用
(1 )降低接触电阻,X-K 系列接地模块的主体材料与土壤的物理结构相似,能与土壤结合为一体,使接地体与土壤的有效接触面积比金属接地体大许多倍,增大了接地体的有效散流面积,极大降低接地体与土壤的接触电阻,因此能显著提高接地效率,减少地网占用土地面积,。
(2 )接地电阻稳定:X-K 系列接地模块自身有很强的吸湿保湿能力,使它周围的土壤保持湿润,保证接地模块有效发挥导电作用;同时,接地体中导电物的导电特性不受干湿度、高低温等季节变化的影响,因此能提供稳定的接地电阻。
(3 )减少地电位反击:X-K 系列接地模块的非金属材料使电阻率相差巨大的金属与土壤之间形成一个变化比较平缓的低电阻区域,当大电流冲击时,可降低接地体、接地线暂态电位梯度,降低跨步电压和接触电压,减少发生地电位反击的概率。
(4 )使用寿命长:X-K 系列接地模块的主体本身是抗腐蚀材料,它的金属骨架采用的是表面经抗腐蚀处理的金属材料,因此该接地体总体抗腐蚀性能优良,使用寿命达到三十年以上。
接地模块的性能特点
(1 )耐腐蚀、无毒害、使用寿命长、安装方便,减少施工工作量;
(2 )能吸湿保湿、接地电阻低;
(3 )耐大电流冲击阻值不增大,也无变硬、发脆、断裂现象;(4 )能有效降低高电阻率土壤的接地电阻;
(5 )接地电阻受季节影响小,阻值能长期保持稳定。
常用接地模块图例。