工程流体力学教学课件ppt作者闻建龙工程流体力学习题+答案(部分)
- 格式:docx
- 大小:2.45 MB
- 文档页数:26
第一章绪论1-1.20℃的水2.5m3,当温度升至80℃时,其体积增加多少?[解] 温度变化前后质量守恒,即又20℃时,水的密度80℃时,水的密度则增加的体积为1—2.当空气温度从0℃增加至20℃时,运动粘度增加15%,重度减少10%,问此时动力粘度增加多少(百分数)?[解]此时动力粘度增加了3。
5%1-3.有一矩形断面的宽渠道,其水流速度分布为,式中、分别为水的密度和动力粘度,为水深。
试求时渠底(y=0)处的切应力。
[解]当=0.5m,y=0时1-4.一底面积为45×50cm2,高为1cm的木块,质量为5kg,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s,油层厚1cm,斜坡角22.620(见图示),求油的粘度.[解]木块重量沿斜坡分力F与切力T平衡时,等速下滑1-5.已知液体中流速沿y方向分布如图示三种情况,试根据牛顿内摩擦定律,定性绘出切应力沿y方向的分布图。
[解]1—6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
已知导线直径0。
9mm,长度20mm,涂料的粘度=0。
02Pa.s。
若导线以速率50m/s拉过模具,试求所需牵拉力。
(1。
O1N)[解]1—7.两平行平板相距0。
5mm,其间充满流体,下板固定,上板在2Pa的压强作用下以0.25m/s匀速移动,求该流体的动力粘度。
[解]根据牛顿内摩擦定律,得1-8.一圆锥体绕其中心轴作等角速度旋转。
锥体与固定壁面间的距离=1mm,用的润滑油充满间隙.锥体半径R=0.3m,高H=0。
5m.求作用于圆锥体的阻力矩.(39.6N·m)[解]取微元体如图所示微元面积:切应力:阻力:阻力矩:1—9.一封闭容器盛有水或油,在地球上静止时,其单位质量力为若干?当封闭容器从空中自由下落时,其单位质量力又为若干?[解] 在地球上静止时:自由下落时:第二章流体静力学2-1.一密闭盛水容器如图所示,U形测压计液面高于容器内液面h=1.5m,求容器液面的相对压强.[解]2—2.密闭水箱,压力表测得压强为4900Pa。
工程流体力学闻德课后习题答案 第五章 实际流体动力学基础5—1设在流场中的速度分布为u x =2ax ,u y =-2ay ,a 为实数,且a >0。
试求切应力τxy 、τyx 和附加压应力p ´x 、p ´y 以及压应力p x 、p y 。
解:0y x xy yx u u x y ττμ∂⎛⎫∂==+= ⎪∂∂⎝⎭24xxu p a x μμ∂'=-=-∂,24y y u p a yμμ∂'=-=∂, 4x x p p p p a μ'=+=-,4y y p p p p a μ'=+=+5-2 设例5-1中的下平板固定不动,上平板以速度v 沿x 轴方向作等速运动(如图所示),由于上平板运动而引起的这种流动,称柯埃梯(Couette )流动。
试求在这种流动情况下,两平板间的速度分布。
(请将d 0d px=时的这一流动与在第一章中讨论流体粘性时的流动相比较)解:将坐标系ox 轴移至下平板,则边界条件为 y =0,0X u u ==;y h =,u v =。
由例5-1中的(11)式可得2d (1)2d h y p y yu v h x h h μ=-- (1) 当d 0d p x =时,yu v h=,速度u为直线分布,这种特殊情况的流动称简单柯埃梯流动或简单剪切流动。
它只是由于平板运动,由于流体的粘滞性带动流体发生的流动。
当d 0d px≠时,即为一般的柯埃梯流动,它是由简单柯埃梯流动和泊萧叶流动叠加而成,速度分布为(1)u y y yp v h h h=-- (2) 式中2d ()2d h pp v xμ=- (3)当p >0时,沿着流动方向压强减小,速度在整个断面上的分布均为正值;当p <0时,沿流动方向压强增加,则可能在静止壁面附近产生倒流,这主要发生p <-1的情况.5-3 设明渠二维均匀(层流)流动,如图所示。
若忽略空气阻力,试用纳维—斯托克斯方程和连续性方程,证明过流断面上的速度分布为2sin (2)2x gu zh z r q m=-,单宽流量3sin 3gh q r q m=。
工程流体力学习题及答案(1)1 某种液体的比重为3,试求其比容。
(答:3.3×10-4米3/公斤)2 体积为5.26米3的某种油,质量为4480公斤,试求这种油的比重、密度与重度。
(答:0.85;851公斤/米3;8348牛/米3)3 若煤油的密度为0.8克/厘米3,试求按工程单位计算的煤油的重度、密度与比容。
(答:800公斤力/米3;81.56公斤力·秒2/米4;1.25×10-3米3/公斤力)4 试计算空气在温度t=4℃,绝对压力P=3.4大气压下的重度、密度与比容。
(答:42.4牛/米3;4.33公斤/米3;0.231米3/公斤)5 试计算二氧化碳在温度为t=85℃,绝对压力P=7.1大气压下的重度、密度与比容。
(答:104牛/米3;10.6公斤/米3;0.09厘米3/公斤 )6 空气在蓄热室内于定压下,温度自20℃增高为400℃,问空气的体积增加了多少倍? (答:1.3倍)7 加热炉烟道入口烟气的温度900=t 入℃,烟气经烟道及其中设置的换热器后,至烟道出口温度下降为500=t 出℃,若烟气在0℃时的密度为28.10=ρ公斤/米3,求烟道入口与出口处烟气的密度。
(答:298.0=ρ人公斤/米3;452.0=ρ出公斤/米3) 8 试计算一氧化碳在表压力为0.3大气压、温度为8℃下的重度。
(答:15.49牛/米3)9 已知速度为抛物线分布,如图示 y=0,4,8,12,17厘米处的速度梯度。
又若气体的绝对粘性系数为1013.25-⨯=μ牛·秒/米3,求以上各处气体的摩擦切应力。
9 题图10 夹缝宽度为h ,其中所放的很薄的大平板以定速v 移动。
若板上方流体的粘性系数为μ,下方流体的粘性系数为K μ,问应将大平板放在夹缝中何处,方能使其移动时阻力为最小?(答:h kk kh =++11或)11 如图所示,一正方形b ×b=67×67厘米2、质量为12公斤的平板,在厚3.1=δ毫米的油膜支承下,以匀速v=0.18米/秒沿一斜面滑下,问油的粘性系数是多少?10 题图 11 题图(答:0.728牛·秒/米2)12 如图所示,气缸直径D 1=16厘米,活塞直径D 2=16厘米,质量0.97公斤,若活塞以匀速0.05米/秒在气缺内下降,试求油的粘性系数是多少?12 题图 15 题图(答:0.63牛·秒/米2)13 直径为150毫米的圆柱,固定不动。
⼯程流体⼒学课后习题答案第⼀章绪论1-1.20℃的⽔,当温度升⾄80℃时,其体积增加多少 [解] 温度变化前后质量守恒,即2211V V ρρ= ⼜20℃时,⽔的密度31/23.998m kg =ρ 80℃时,⽔的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ则增加的体积为3120679.0m V V V =-=?1-2.当空⽓温度从0℃增加⾄20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动⼒粘度µ增加多少(百分数) [解] 原原ρννρµ)1.01()15.01(-+==Θ原原原µρν035.1035.1==035.0035.1=-=-原原原原原µµµµµµΘ此时动⼒粘度µ增加了%1-3.有⼀矩形断⾯的宽渠道,其⽔流速度分布为µρ/)5.0(002.02y hy g u -=,式中ρ、µ分别为⽔的密度和动⼒粘度,h 为⽔深。
试求m h 5.0=时渠底(y =0)处的切应⼒。
[解] µρ/)(002.0y h g dydu-=Θ)(002.0y h g dydu-==∴ρµτ当h =,y =0时)05.0(807.91000002.0-??=τPa 807.9=1-4.⼀底⾯积为45×50cm 2,⾼为1cm 的⽊块,质量为5kg ,沿涂有润滑油的斜⾯向下作等速运动,⽊块运动速度u=1m/s ,油层厚1cm ,斜坡⾓(见图⽰),求油的粘度。
[解] ⽊块重量沿斜坡分⼒F 与切⼒T 平衡时,等速下滑yuATd sinµθ= = 001 .0145 .0 4.0 62 .22 sin 8.9 5 sin==δθµuA mg s Pa 1047 .0?1-5.已知液体中流速沿y⽅向分布如图⽰三种情况,试根据⽜顿内摩擦定律yuddµτ=,定性绘出切应⼒沿y⽅向的分布图。
第一章 绪论1-1.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度μ增加了3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当h =0.5m ,y =0时)05.0(807.91000002.0-⨯⨯=τ Pa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yu AT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y 方向的分布图。
[解]1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
第3章流体运动学选择题:【3.1】 用欧拉法表示流体质点的加速度a 等于:(a )22d d t r ;(b )v t ∂∂;(c )()v v ⋅∇;(d )()t ∂+⋅∇∂vv v。
解:用欧拉法表示的流体质点的加速度为()d d t t∂==+∇∂v va v v (d ) 【3.2】 恒定流是:(a )流动随时间按一定规律变化;(b )各空间点上的运动要素不随时间变化;(c )各过流断面的速度分布相同;(d )迁移加速度为零。
解:恒定流是指用欧拉法来观察流体的运动,在任何固定的空间点若 流体质点的所有物理量皆不随时间而变化的流动.(b )【3.3】 一元流动限于:(a )流线是直线;(b )速度分布按直线变化;(c )运动参数是一个空间坐标和时间变量的函数;(d )运动参数不随时间变化的流动。
解:一维流动指流动参数可简化成一个空间坐标的函数。
(c )【3.4】 均匀流是:(a )当地加速度为零;(b )迁移加速度为零;(c )向心加速度为零;(d )合加速度为零。
解:按欧拉法流体质点的加速度由当地加速度和变位加速度(亦称迁移加速度)这两部分组成,若变位加速度等于零,称为均匀流动 (b )【3.5】 无旋运动限于:(a )流线是直线的流动;(b )迹线是直线的流动;(c )微团无旋转的流动;(d )恒定流动。
解:无旋运动也称势流,是指流体微团作无旋转的流动,或旋度等于零的流动。
(d ) 【3.6】 变直径管,直径1320mm d =,2160mm d =,流速1 1.5m/s V =。
2V 为:(a )3m/s ;(b )4m/s ;(c )6m/s ;(d )9m/s 。
解:按连续性方程,22112244V d V d ππ=,故2212123201.56m/s160d V V d ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭(c )【3.7】 平面流动具有流函数的条件是:(a )理想流体;(b )无旋流动;(c )具有流速势;(d )满足连续性。
(完整版)工程流体力学习题及答案一、习题1. 一个直径为0.2米的管道,输送密度为800kg/m³的水,流速为2 m/s。
求管道中的流量和动能。
2. 一管道突然扩大,进口直径为0.1米,出口直径为0.2米。
若进口处流速为3 m/s,求出口处的流速。
3. 一水平管道,直径为0.5米,输送20℃的水。
已知进口处的压力为0.2 MPa,流速为1 m/s。
求管道出口处的压力。
4. 一管道中的流体在收缩段突然减小,进口直径为0.3米,出口直径为0.2米。
已知进口处流速为2m/s,求收缩段处的流速。
5. 一管道系统中有两个测压点,分别为A和B。
测得A点的压力为0.1 MPa,流速为1 m/s;B点的压力为0.08 MPa,流速为1.5 m/s。
求管道两点的能量损失。
二、答案1. :根据流量公式 Q = A * v,其中A为管道截面积,v为流速。
管道截面积 A = π * (d/2)²,其中d为管道直径。
管道截面积 A = π * (0.2/2)² = 0.0314 m²流量 Q = A * v = 0.0314 * 2 = 0.0628 m³/s动能 E = 1/2 * ρ * v² * A,其中ρ为流体密度。
动能 E = 1/2 * 800 * (2)² * 0.0314 = 100.48 J答案:流量为0.0628 m³/s,动能为100.48 J。
2. :根据连续方程,流量在管道中保持不变,即进口流量等于出口流量。
进口流量 Q1 = A1 * v1,出口流量 Q2 = A2 * v2A1 = π * (d1/2)²,A2 = π * (d2/2)²0.1 * 3 = 0.2 * v2v2 = 1.5 m/s答案:出口处的流速为1.5 m/s。
3. :根据伯努利方程,管道中任一截面的总能量保持不变,即进口总能量等于出口总能量。
工程流体力学教学课件ppt作者闻建龙工程流体力学习题+答案(部分)闻建龙主编的《工程流体力学》习题参考答案第一章绪论1-1 物质是按什么原则分为固体和液体两大类的?解:从物质受力和运动的特性将物质分成两大类:不能抵抗切向力,在切向力作用下可以无限的变形(流动),这类物质称为流体。
如空气、水等。
而在同等条件下,固体则产生有限的变形。
因此,可以说:流体不管是液体还是气体,在无论多么小的剪应力(切向)作用下都能发生连续不断的变形。
与此相反,固体的变形与作用的应力成比例,经一段时间变形后将达到平衡,而不会无限增加。
1-2 何谓连续介质假设?引入连续介质模型的目的是什么?在解决流动问题时,应用连续介质模型的条件是什么?解:1753年,欧拉首次采用连续介质作为流体宏观流动模型,即不考虑流体分子的存在,把真实的流体看成是由无限多流体质点组成的稠密而无间隙的连续介质,甚至在流体与固体边壁距离接近零的极限情况也认为如此,这个假设叫流体连续介质假设或稠密性假设。
流体连续性假设是流体力学中第一个根本性假设,将真实流体看成为连续介质,意味着流体的一切宏观物理量,如密度、压力、速度等,都可看成时间和空间位置的连续函数,使我们有可能用数学分析来讨论和解决流体力学问题。
在一些特定情况下,连续介质假设是不成立的,例如:航天器在高空稀薄气体中飞行,超声速气流中激波前后,血液在微血管(1μm)内的流动。
1-3 底面积为25.1m 的薄板在液面上水平移动(图1-3),其移动速度为s m 16,液层厚度为mm 4,当液体分别为C 020的水和C 020时密度为3856m kg 的原油时,移动平板所需的力各为多大?题1-3图解:20℃ 水:s Pa ??=-3101μ20℃,3/856m kg =ρ,原油:s Pa ??='-3102.7μ水: 233/410416101m N u=??=?=--δμτ N A F 65.14=?=?=τ油: 233/8.2810416102.7m N u =??=?'=--δμτ N A F 2.435.18.28=?=?=τ1-4 在相距mm 40=δ的两平行平板间充满动力粘度s Pa ?=7.0μ液体(图1-4),液体中有一边长为mm a 60=的正方形薄板以s m u 15=的速度水平移动,由于粘性带动液体运动,假设沿垂直方向速度大小的分布规律是直线。
1)当mm h 10=时,求薄板运动的液体阻力。
2)如果h 可改变,h 为多大时,薄板的阻力最小?并计算其最小阻力值。
题1-4图解:1) 23/35010)1040(157.0m N h u =?-?=-?=-δμτ上 23/10501010157.0m N h u =??=?=-μτ下 N 04.510601050350A )(23=)()=(下上-??+?+=ττF2) hh u h h h h u h u h u )()()(-?=--+?=+-+δδμδδμδμτττ)(==下上要使τ最小,则分母最大,所以:02][])[(2=-='-='-h h h h h δδδ, 2δ=h233/1050)102015102015(7.0)2/2/(m N u u =?+?=+=--δδμτ N A F 78.3)1060(105023=??=?=-τ1-5 直径mm d 400=,长m l 2000=输水管作水压试验,管内水的压强加至Pa 6105.7?时封闭,经h 1后由于泄漏压强降至Pa 6100.7?,不计水管变形,水的压缩率为19105.0--?Pa ,求水的泄漏量。
解:dpdVV 1-=κ 19105.0--?=Pa κ,26/105.0m N dp ?-=,32251202000441m V =?=π36928.6105.025120105.0m Vdp dV ==-=-κ1-6 一种油的密度为3851m kg ,运动粘度为s m 261039.3-?,求此油的动力粘度。
解:s Pa ??=??==--361088.21039.3851ρυμ1-7 存放34m 液体的储液罐,当压强增加MPa 5.0时,液体体积减少L 1,求该液体的体积模量。
解:1963105.0105.0101411----?==-=Pa dp dV V κ Pa k 9102/1?==κ1-8 压缩机向气罐充气,绝对压强从MPa 1.0升到MPa 6.0,温度从C 020升到C 078,求空气体积缩小百分数为多少。
解:MRT pV =111MRT V p =,222MRT V p =)20273(101.016+=?MR V ,)78273(106.026+=?MR V MR V 311093.2-?=,MR V 3210585.0-?=%808.01093.210585.01093.2333121==??-?=----V V V第二章流体静力学2-1 如图所示为一复式水银测压计,用来测水箱中的表面压强0p 。
试求:根据图中读数(单位为m )计算水箱中的表面绝对压强和相对压强。
题2-1图解:加0-0,1-1,2-2三个辅助平面为等压面。
表压强:0)2.13.2()2.15.2()4.15.2()4.10.3(0=汞水汞水---+---+g g g g p ρρρρ )4.15.2(81.910006.13)4.10.3(81.910000---??+p0)2.13.2(81.910006.13)2.15.2(81.91000=---??+ Pa p 2.2650660=绝对压强(大气压强Pa p a 101325=)Pa p 2.3663912.2650661013250=+=2-2 如图所示,压差计中水银柱高差m h 36.0=?,A 、B 两容器盛水,位置高差m z 1=?,试求A 、B 容器中心压强差B A p p -。
题2-2图解:作辅助等压面0-0,1-1。
h g h z x g p gx p B A ?+?+?+-=-汞水水ρρρ)(Pah g h z g p p B A36.6137136.098106.13)36.01(9810)(=??++?=?+?+?=-汞水ρρ2-3 如图2-45所示,一开口测压管与一封闭盛水容器相通,若测压管中的水柱高出容器液面m h 2=,求容器液面上的压强。
题2-3图解:Pa gh p 19620298100=?==ρ 米水柱2/0=g p ρ2-4 如图所示,在盛有油和水的圆柱形容器的盖上加荷重N F 5788=。
已知:cm h 301=,cm h 502=,m d 4.0=,3800m kg =油ρ。
求U 形测压管中水银柱高度H 。
题2-4图解:油表面上压强:Pa AF p 8.460824.041578820===π 列等压面0-0的方程:gH gh gh p 汞水油ρρρ=++210H 9.81100013.60.59.8110000.39.8180046082.8=??+??+ m H 4.0=2-5 如图所示,试根据水银测压计的读数,求水管A 内的真空度及绝对压强。
已知:m h 25.01=,m h 61.12=,m h 13=。
题2-5图解:a A p h h g h h g p =-+--)()(3212汞水ρρ)()(3212h h g h h g p p a A ---+=汞水ρρ)161.1(81.910006.13)25.061.1(81.91000101325---??+=Pa 84.33282=Pa p 6804284.33282101325=-=γ2-6 如图所示,直径m D 2.0=,高度m H 1.0=的圆柱形容器,装水32容量后,绕其垂直轴旋转。
1)试求自由液面到达顶部边缘时的转速1n ;2)试求自由液面到达底部中心时的转速2n 。
题2-6图解:(1)4222222D g gR H ?==ωω由旋转抛物体体积=相应柱体体积的一半g D D g D H D x D 644281412141242222 2ωπωπππ=??== gD x 1622ω=又 H g D H x H 31163122+=+=?ω H g D D g 3116422222+=?ωω H g D 311622=ω 4.112.031.081.91631622===D gH ω 602n πω=min /10914.324.1160260r n =??==πω (2)'+?'-=?='')()(2 21])2([4132411 2222222H R H R D H D H gR πππω原体积抛物体外柱体抛物体式(2)H R H R H D H D 222221413241'+'-=?ππππ H R H D 22213141'=?ππ 6D/R ='代入(1)H D g =?'6222ω16.172.01.081.91212=??=='D gH ω min /9.16314.3216.1760260r n =??==πω2-7如图所示离心分离器,已知:半径cm R 15=,高cm H 50=,充水深度cm h 30=,若容器绕z 轴以等角速度ω旋转,试求:容器以多大极限转速旋转时,才不致使水从容器中溢出。
题2-7图解:超高 gR H 222ω=由:原体积=旋转后的柱体体积+抛物体体积H R H H R h R ??+?-=22221)(πππH R H R H R h R ??+?-=222221ππππ4.0)3.05.0(2)(2=-=-=?h H H由gR H 222ω=得s rad R Hg /6.1815.04.081.922=??=?=ωmin /7.17714.326.1860260r n =??==πω 空的体积=)(2h H R ?-π空的旋转后体积=有水的旋转抛物体体积=gR R 221222ωπ2-18 如图所示,一盛有液体的容器以等加速度a 沿x 轴向运动,容器内的液体被带动也具有相同的加速度a ,液体处于相对平衡状态,坐标系建在容器上。
液体的单位质量力为a f x -=,0=y f ,g f z -=求此情况下的等压面方程和压强分布规律。
题2-8图1)等压面方程0=++dz f dy f dx f z y x0=--gdz adxc gz ax =+ga dx dz tg -==θ 2)压强分布规律)()(gdz adx dz f dz f dx f dp z y x --=++=ρρc gz ax p +--=ρρ又00p pz x ===,0p c =gz ax p p ρρ--=02-19 如图所示矩形闸门AB 宽m b 3=,门重N G 9800=,0 60=α,m h 11=,m h 73.12=。