期末复习有理数运算
- 格式:doc
- 大小:49.50 KB
- 文档页数:4
有理数及其运算复习【知识回顾】1、有理数的分类:2、数轴三要素:(1)________________(2)______________(3)______________3、__________的相反数等于它本身;__________的相反数大于它本身;__________的相反数小于它本身;__________的相反数不大于它本身;__________的相反数小于它本身.4、若0>a ,则=a ;若0<a ,则=a ;若0=a ,则=a .5、_________的绝对值等于它本身;__________的绝对值等于它的相反数; __________的绝对值不等于它本身;绝对值最小的数是 ;绝对值相等的两个数的关系_____________6、运算顺序:先算 ,再算 ,最后算 ,如果有 ,就先算7、有理数乘方:求n 个相同因数积的运算,叫做乘方,用字母表示: an na a a a a 个=⨯⨯⨯⨯,其中,a 为 ,n为 ,乘方的结果叫做 .乘方的符号规律:正数的任何次幂都是 ,负数的奇次幂是 .负数的偶次幂是________;正数的任何次幂都是_______.8、平方数等于它本身的数________;立方等于它本身的数________;平方相等的两个数的关系___________ 9、有理数运算的常见简便方法(1)一般把 的数加在一起. (2)遇有分数可把 结合起来相加. (3)遇有小数应当把相加得 的小数结合起来. (4)互为 两个数加在一起.(5)在有理数乘法运算中,常把小数化成 ,带分数化成 ,以简化运算.【有理数练习】一、填空题1.下列说法中,正确的是( )A 、整数集合中仅包括正整数和负整数B 、零是正整数C 、分数都是有理数D 、正整数都是自然数 2. 下列说法正确的是( )A a 表示一个正数B a 表示一个负数C a 表示一个整数D a 可以表示一个负数3 一个数的相反数是非负数,这个数是( )A 负数B 非负数C 正数D 非正数 4. 下列各式中,正确的是( )A -|-16|>0 B |0.2|>|-0.2| C -47>-57D |-6|<05、有理数22-,3)2(-,2--,)21(+-按从小到大的顺序排列是( ) A. 3)2(-<22-<2--<)21(+- B. )21(+-<2--<22-< 3)2(-C. 2--<)21(+-<22-<3)2(- D. 22-<3)2(-<)21(+-<2--6. 若|a|+|b|=0,则a 与b 的大小关系是( )A a=b=0B a 与b 不相等C a,b 异号D a,b 互为相反数 7. 绝对值等于其相反数的数一定是( )A 负数B 正数C 负数或零D 正数或零 8 下列叙述正确的是( )A 若|a|=|b|,则a=bB 若|a|>|b|,则a>bC 若a<b|,则|a|<|b|D 若|a|=|b|,则a=±b 9 绝对值大于2,而小于5的所有正整数之和为( ) A 7 B 8 C 9 D 1010. 下列说法① 如果a=-13,那么-a=13, ② 如果a=-1,那么-a=-1, ③ 如果a 是负数,那么-a 是正数, ④如果a 是负数,那么1+a 是正数, 其中正确的是( )A ①③B ①②C ②③D ③④ 11.一个数的相反数小于它本身,这个数是( )A 任意有理数B 零C 负有理数D 正有理数 12 如果a 和2b 互为相反数,且b ≠0,那么a 的倒数是( )A -12bB 12bC -2bD 2b13.已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水( ) A. 3瓶 B. 4瓶 C. 5瓶 D. 6瓶 14、有理数c b a ,,在数轴上的位置如图所示,则化简b a c b a --++的结果是( ) A 、c B 、a C 、a c 2- D 、c b -2二 填空题1. 如果a -3与a+1互为相反数,那么a= .2. -323的相反数是 , -(-12)的相反数是 , 是13的相反数, 是13的倒数.3. 如果|2x -4|=2,则x= ;4. 绝对值小于2.5的整数有 ,它们的积为 ;5. 12的相反数的绝对值是 ,|-12|的倒数的相反数是 , -12的绝对值的相反数是 . 6. 一个点从原点开始,先向右移动1个单位,再向左移动5个单位后到达终点,这个终点表示的数是 .7. 某次数学测验共20道选择题,规则是:选对一道的5分,选错一道的-1分,不选得零分,王明同学的卷面成绩是:选对16道题,选错2道题,有2道题未做,他的得分是 . 8若a 与b 互为相反数,则代数式73a+73b -5= .a bc9.小名在写作业时不甚将一滴钢笔水滴在数轴上,根据图中的数值,判断墨迹盖住的整数之和为10. 如图是一个正方体盒的展开图,若在其中的三个正方形A 、B 、C 内分别添入适当的数,使得他们折成正方体后相对的面上的两个数互为相反数,则添入正方形A 、B 、C 内的三个数之积为 .(第9题图) (第10题图)11某音像社对外出租光盘的收费方法是:每张光盘在租出后的头两天每天收0.8元,以后每天收0.5元,那么一张光盘在租出后的第n 天(n 是大于2的自然数)应收租金__________元。
六年级上册数学期末复习知识梳理第二章有理数及其运算2.1 有理数重点:有理数的意义,用正负数表示相反数意义的量难点:按不同的标准对有理数进行分类解题技巧在用正数和负数表示一对具有相反意义的量时,“正”和“负”是相对而言的,用“正”来表示其中的一个量,就用“负”来表示另一个与之意义相反的量,但我们一般把“增加”“上涨”“盈利”“高于”等记为“正”,把与它们有相反意义的量记为“负”此外,在用正负数表示一对具有相反意义的量时,不要少了后面的单位。
知识点拨。
③相反意义的量包含两个要素:一是它们的意义要相反;二是它们都是数量。
④意义相反的量中的两个量必须是同类量,如节约汽油3t与浪费1t水就不是具有相反意义的量。
2.2 数轴重点:用数轴表示有理数难点:利用数轴表示有理数的大小解题方法1.在数轴上表示有理数的方法:在数轴上,对于不为零的有理数,可以先由这个数的符号确定它在数轴上原点的哪一边,再在相应的方向上确定它与原点相距几个单位长度,然后标上相应的点。
2.找出数轴上的点对应的有理数的步骤:(1)确定点与原点的位置关系(负左正右);(2)确定点与原点的距离。
知识方法要点:1.数轴上表示的两个数,右边的总是比左边大。
2.正数大于0,负数小于0,正数大于负数。
2.3 绝对值重点:相反数和绝对值的概念及应用。
难点:利用绝对值的概念比较两个负数的大小。
a (a>0)|a| 0 (a=0)互为相反数的两个数绝对值等于0a (a<0)解题方法1.利用数轴确定一个数的绝对值时,首先确定这个数在数轴上表示的点,然后确定这个点到原点的距离即可。
2.对于绝对值的计算,首先要判断这个数是正数、零,还是负数.如果绝对值里面的数是非负数,那么这个数的绝对值就是它本身;如果绝对值里面的数是负数,那么这个数的绝对值就是它的相反数。
知识点拨比较两个负数的大小,可以运用绝对值法,根据“两个负数,绝对值大的反而小”来比较大小;也可以运用数轴法,把要比较大小的两个负数在数轴上表示出来,右边的数总大于左边的数”来判断。
有理数十六大必考点【华东师大版】➢题型先知【考点1 相反意义的量】【考点2 有理数的概念及分类】【考点3 相反数】【考点4 绝对值】【考点5 根据数轴化简绝对值】【考点6 相反数、绝对值、倒数综合】【考点7 有理数的混合运算】【考点8 新定义中的有理数运算】【考点9 科学计数法】【考点10 有理数乘方的应用】【考点11 有理数的大小比较】【考点12 阅读材料中的有理数运算】【考点13 有理数的实际应用】【考点14 正负数的实际应用】【考点15 有理数中的规律探究】【考点16 数轴与绝对值、动点的综合探究】➢ 举一反三【考点1 相反意义的量】【例1】(河北省保定市新秀学校2022-2023学年七年级上学期期中考试数学试题)在我国古代著名的数学专著《九章算术》中,首次引入负数,如果收入100元记作+100元,则-50元表示( ) A .支出50元 B .收入50元 C .支出60元 D .收入60元【答案】A【分析】根据正负数的相反意义即可得出答案.【详解】解:收入100元记作+100元,则−50元表示支出50元, 故选:A .【点睛】此题考查了正负数表示一对相反意义的量,正确理解正负数的意义是解题的关键. 【变式1-1】(重庆市育才中学校2022-2023学年七年级上学期期中数学试题)如果水库的水位高于正常水位4m 时,记作+4m ,那么低于正常水位5m 时,应记作( ) A .5m B .-5mC .+15mD .-15m【答案】B【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,据此可求解.【详解】解:如果水库的水位高于正常水位4m 时,记作+4m ,那么低于正常水位5m 时,应记作-5m . 故选:B .【点睛】此题主要考查正负数的意义,关键是掌握正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.【变式1-2】(山西省吕梁市交城县2022-2023学年七年级上学期期中数学试题)如果电梯上升5米,记作+5米,那么-3米表示 _______________________________ . 【答案】电梯下降3米【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示. 【详解】解:“正”和“负”相对, ∵电梯上升5米,记作+5米, ∴-3表示电梯下降3米. 故答案为:电梯下降3米.【点睛】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.【变式1-3】(2022·全国·七年级上学期期中数学试题文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店西边100米处,小明从书店沿街向东走了40米,接着又向西走了60米,此时小明的位置在()A.文具店B.玩具店C.文具店西边40米D.玩具店西边60米【答案】A【分析】根据题意以书店为原点,向东方向为正方,10米为单位长度,画出数轴,根据数轴分析即可得出答案.【详解】如图,根据题意一书店为原点,向东方向为正方,10米为单位长度,画出数轴,则文具店表式的数是−20,玩具店所表示的数是−100,依题意,40−60=−20故此时小明的位置在文具店故选A【点睛】本题考查了数轴的应用,具有相反意义的量,有理数的加减的应用,根据数轴分析是解题的关键.【考点2 有理数的概念及分类】【例2】(2022·湖北·公安县教学研究中心七年级上学期期中数学试题)把下列有理数填入它所属于的集合圈内.−3,1,3.5,0,−2,44【答案】见解析【分析】利用负数、分数、正整数和非负数的定义即可区分作答.【详解】解:【点睛】本题考查了负数、分数、正整数和非负数的的定义,理解相关定义是解答本题的关键.注意:有限小数和无限循环小数都属于分数即他们都是有理数.,−4.3,【变式2-1】(2022·江苏·泰州市姜堰区第四中学七年级上学期期中数学试题)在230.25,0,1.23,1.01001000100001…,π中,非负有理数的数有___________________.2【分析】根据有理数的定义及分类:整数与分数统称为有理数,逐个判定即可得到结论. 【详解】解根据有理数的定义及分类可知,23符合题意;−4.3是负数,不合题意;0.25符合题意;0符合题意;1.23符合题意;1.01001000100001…是无理数,不合题意;π2是无理数,不合题意;故答案为:23,0.25,0,1.23.【点睛】本题考查有理数的定义及分类,掌握有理数的分类是解决问题的关键.【变式2-2】(2022·黑龙江·肇源县超等蒙古族乡学校期中)在下列数中:−|−3|,0.23,(−2)2,0,(−3)3,−(−20062),−15,−(−10.2),该正整数的个数为m ,非负数的个数为n ,则m −n的值为________. 【答案】−2【分析】根据正整数的概念知所给数中(−2)2,−(−20062),−(−10.2)为正整数,得到m =3;根据非负数的概念知所给数中0.23,(−2)2,0,−(−20062),−(−10.2)为非负数,得到n =5,代入求值即可.【详解】解:−|−3|=−3,0.23,(−2)2=4,0,(−3)3=−27,−(−20062)=20062,−15,−(−10.2)=5,∴正整数有:(−2)2,−(−20062),−(−10.2),即m =3,非负数有:中0.23,(−2)2,0,−(−20062),−(−10.2),即n =5, ∴m −n =3−5=−2, 故答案为:−2.【点睛】本题考查代数式求值,掌握有理数概念及分类是解决问题的关键.【变式2-3】(2022·陕西·白水县田家炳实验中学七年级上学期期中数学试题)把下列各数填入它所属的集合内:15,−19,﹣5,215,0,﹣5.32,2.3·,π,80%,5. (1)分数集合{ …}; (2)自然数集合{ …}; (3)非正整数集合{ …}; (4)非负有理数集合{ …}.【分析】根据有理数的相关定义及分类方法解答即可. (1)解:分数集合{﹣19,215,﹣5.32,2.3,80%}; 故答案为:﹣19,215,﹣5.32,2.3,80%;(2)解:自然数集合{15,0,5}; 故答案为:15,0,5; (3)解:非正整数集合{﹣5,0}; 故答案为﹣5,0; (4)解:非负有理数集合{15,215,0,2.3,80%,5}; 故答案为:15,215,0,2.3,80%,5.【点睛】本题考查了有理数的分类,熟记有理数的分类方法是解题的关键. 【考点3 相反数】【例3】(2022·黑龙江·同江市第三中学七年级期中)下列各组数中,互为相反数的是( ) A .2与12 B .(﹣1)2与1 C .﹣1与(﹣1)2 D .2与|﹣2|【答案】C【分析】两数互为相反数,它们的和为0,可对四个选项进行一一分析,看选项中的两个数和是否为0,如果和为0,则那组数互为相反数. 【详解】解:A 、2+12=52; B 、(﹣1)2+1=2; C 、﹣1+(﹣1)2=0; D 、2+|﹣2|=4. 故选:C .【点睛】此题考查相反数的定义及性质:互为相反数的两个数的和为0,以及有理数的加法计算法则.【变式3-1】(2022·河北保定·七年级期中)如图,在数轴上表示互为相反数的两数的点是_____.【答案】A 和C .【分析】根据只有符号不同的两个数互为相反数,可得答案.【详解】解:由题意得:点A表示的数为:2,点B表示的数为:1,点C表示的数为:-2,点D表示的数为:-3,则A与C互为相反数,故答案为:A和C.【点睛】本题考查了数轴和相反数的定义,知道数轴上某点表示的数,并熟练掌握相反数的定义即可.【变式3-2】(2022·宁夏·银川市第三中学七年级期中)下列各组数中:①﹣32与32;②(﹣3)2与32;③﹣(﹣2)与﹣(+2);④(﹣3)3与﹣33;⑤﹣23与32,其中互为相反数的共有()A.4对B.3对C.2对D.1对【答案】C【分析】两数互为相反数,它们的和为0.本题可对各选项进行一一分析,看选项中的两个数和是否为0,如果和为0,则那组数互为相反数.【详解】解:根据相反数的定义可知:①﹣32与32;③﹣(﹣2)与﹣(+2)互为相反数.故选:C.【点睛】此题考查相反数的概念.解题的关键是掌握相反数的概念,明确两数互为相反数,它们的和为0.【变式3-3】(2022·山东威海·期中)若m,n互为相反数,则下列各组数中不是互为相反数的是()A.﹣m和﹣n B.m+1和n+1C.m+1和n﹣1D.5m和5n【答案】B【详解】分析:直接利用互为相反数的定义分析得出答案.详解:A、∵m,n互为相反数,∴-m和-n也是互为相反数,故此选项错误;B、∵m,n互为相反数,∴m+1和n+1不是互为相反数,故此选项正确;C、∵m,n互为相反数,∴m+1和n-1是互为相反数,故此选项正确;D、∵m,n互为相反数,∴5m和5n也是互为相反数,故此选项错误;故选B.点睛:此题主要考查了互为相反数,正确把握定义是解题关键.【考点4 绝对值】(2022·黑龙江·哈尔滨市第一二四中学校期中)若|a|=1【例4】,且a<0,则a+1=_______.2##0.5【答案】12则x+y的值等于_____.【答案】±3【分析】根据绝对值的意义,求得x,y的值,进而根据xy<0,确定x,y的值,进而求得代数式的值.【详解】解:∵|x|=8,|y|=5,∴x=±8,y=±5,又∵xy<0,∴x=8,y=﹣5或x=﹣8,y=5,当x=8,y=﹣5时,原式=8+(﹣5)=3,当x=﹣8,y=5时,原式=﹣8+5=﹣3,综上,x+y的值为±3,故答案为:±3.【点睛】本题考查了绝对值的意义,代数式求值,注意分类讨论是解题的关键.【变式4-2】(2022·广东·肇庆市颂德学校七年级期中)绝对值小于3的正整数有________.【答案】1,2##2,1【分析】根据绝对值的性质,即可解答.【详解】绝对值小于3的正整数有1,2,故答案为:1,2.【点睛】本题考查了绝对值,解决本题的关键是熟记一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零.【变式4-3】(2022·辽宁本溪·七年级期中)化简:|3−π|−|4−π|=____________.【答案】2π−7【分析】根据绝对值的定义即可得.【详解】解:|3−π|−|4−π|=π−3−4+π=2π−7;故答案为:2π−7【点睛】此题考查了绝对值,掌握绝对值的定义:数轴上某个数与原点的距离叫做这个数的绝对值是解题的关键.【考点5 根据数轴化简绝对值】【例5】(2022·四川广安·七年级期末)有理数a,b,c在数轴上的对应点如图所示,化简:−|b|−|c+b|+|b−a|=________.【答案】a+b+c【分析】根据数轴得出a>0,b<0,c<0,据此将绝对值化简即可得到答案.【详解】由图知:a>0,b<0,c<0,∴c+b<0,b−a<0,∴−|b|−|c+b|+|b−a|=b+c+b−b+a=a+b+c.故答案为:a+b+c.【点睛】本题考查数轴的点的大小关系与绝对值的性质,属于基础题.【变式5-1】(2022·广东·广州市真光中学七年级期中)如图,点A和B表示的数分别为a 和b,若c是绝对值最小的数,d是最大的负整数.(1)在数轴上表示c=,d=.(2)若|x+3|=2,则x的值是多少?(3)若﹣1<x<0,化简:|x﹣b|+|x+a|+|c﹣x|.【答案】(1)0,−1;(2)−1或−5;(3)b−a−3x【分析】(1)根据c是绝对值最小的数,d是最大的负整数,即可得到c=0,d=1;(2)由|x+3|=2,则x+3=±2,由此求解即可;(3)根据数轴上的位置可得−1<a<0=c<1<b,则x−b<0,x+a<0,c−x>0,由此进行化简即可.【详解】解:(1)∵c是绝对值最小的数,d是最大的负整数,∴c=0,d=−1,故答案为:0,−1;(2)∵|x+3|=2,∴x+3=±2,∴x=−3+2=−1或x=−3−2=−5;(3)根据数轴上的位置可得−1<a<0=c<1<b,∵−1<x<0,∴x−b<0,x+a<0,c−x>0,∴|x−b|+|x+a|+|c−x|=|x−b|+|x+a|+|−x|=b−x−(x+a)−x=b−a−3x.【点睛】本题主要考查了根据数轴上点的位置化简绝对值,解绝对值方程,解题的关键在于能够熟练掌握化简绝对值的相关方法.【变式5-2】(2022·山东德州·七年级期中)有理数a,b,c在数轴上的位置如图,解答下列问题:(1)若a=2,将a表示的点沿数轴方向平移5个单位,得到的点表示的数为;(2)数b与其相反数相距10个单位长度,则b表示的数是;(3)化简:|b﹣c|+|a+b|+|c﹣a|.【答案】(1)7或-3;(2)-5;(3)-2c.【分析】(1)分两种情况,一种情况是向右平移,另一种是向左平移,根据数轴表示数的意义,通过计算即可解答;(2)根据题意得出方程,求出方程的解即可;(3)根据数轴可得c<b<0<a,a+b<0,b−c>0,c−a<0,再根据绝对值的性质去绝对值,然后合并同类项即可.【详解】解:(1)将a表示的点沿数轴向右平移5个单位即2+5=7,得到的点表示的数为7;将a表示的点沿数轴向左平移5个单位即2−5=−3,得到的点表示的数为-3;(2)数b的相反数为−b,根据数b与其相反数相距10个单位长度可得−b−b=10,解得:b=−5;(3)由数轴可得c<b<0<a,a+b<0,b−c>0,c−a<0,则|b﹣c|+|a+b|+|c﹣a|=b−c−a−b+a−c=−2c.【点睛】本题考查了数轴,相反数,绝对值,两点间的距离的应用,解题关键是能根据题意列出算式和方程.【变式5-3】(2022·湖南·李达中学七年级期中)如图,数轴上有点a,b,c三点.(1)c−b0;c−a0(填“<”,“>”,“=”);(2)化简|c−b|−|c−a|+|a−1|(3)求a|a|+b|b|+c|c|+abc|abc|的值【答案】(1)<;<;(2)b−1;(3)0.【分析】(1)由a,b,c在数轴上的位置可得a、b、c的大小关系,再估算c−b,c−a的值,得出答案;(2)结合(1),再由a,b,c在数轴上的位置可以判断a−1的符号,再化简绝对值即可;(3)根据a,b,c在数轴上的位置可得a、b、c的正负情况,再化简绝对值.(1)解:根据数轴上的点得:c<a<b;∴c−b<0,c−a<0;故答案为:<;<;(2)解:|c−b|−|c−a|+|a−1|=b−c−(a−c)+a−1=b−c−a+c+a−1=b−1;(3)解:∵c<0<a<b,a |a|+b|b|+c|c|+abc|abc|=aa+bb+c−c+abc−abc =1+1−1−1=0.【点睛】本题考查数轴表示数的意义和方法,化简绝对值、解题的关键是通过数形结合来求解.【考点6 相反数、绝对值、倒数综合】【例6】(2022·全国·七年级课时练习)若m、n互为相反数,则|m−5+n|=______ .【答案】5【分析】根据互为相反数的两个数的和为0,可得−5的绝对值,根据负数的绝对值是它的相反数,可得答案.【详解】解:m、n互为相反数,|m−5+n|=|−5|=5,故答案为:5.【点睛】本题考查了绝对值,先算m+n的值,再算绝对值.【变式6-1】(2022·广东·揭西县宝塔实验学校七年级期中)−3的绝对值加上−3的倒数等于______.【变式6-2】(2022·湖南·李达中学七年级期中)−的倒数的绝对值是________2【答案】2【分析】先求出的倒数,再求其绝对值即可.的倒数是-2,-2的绝对值是2,【详解】−12即−1的倒数的绝对值是2,2故答案为:2.【点睛】本题考查有理数的倒数和绝对值,乘积为1的两个数互为倒数,正数和0的绝对值等于它本身,负数的绝对值等于它的相反数.【变式6-3】(2022·湖北十堰·七年级期中)已知a,b互为相反数,c,d互为倒数,e的绝对值为1,求3a+3b+cd+e2的值.【答案】2【分析】根据题意求得a+b,cd,e等各式的值,代入求解即可.【详解】解:∵a,b互为相反数,∴a+b=0,∵c,d互为倒数,∴cd=1,∵e的绝对值为1,∴e=±1,∴e2=1,∴3a+3b+cd+e2=3(a+b)+1+1=0+1+1=2【点睛】此题考查了有理数的有关概念,以及乘方和加减运算,解题的关键是根据题意求得各式子的值.【考点7 有理数的混合运算】【例7】(2022·黑龙江·兰西县崇文实验学校期中)计算:(1)(-7)-(-10)+(-8)-(+2);(2)3×(-1)-4÷(-2);(3)(23+34−56)×(−12);(4)−14−(1−0.5)×13×[2−(−3)2]【答案】(1)-7(2)-1(3)-7(4)16【分析】(1)先去括号再计算加减法,即可求解;(2)先计算乘除,再计算减法,即可求解;(3)直接运用乘法的分配律计算,即可求解;(4)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的,即可求解.(1)解:(-7)-(-10)+(-8)-(+2)=-7+10-8-2=3-8-2=-5-2=-7(2)解:3×(-1)-4÷(-2)=-3-(-2)=-3+2=-1(3)解:(23+34−56)×(−12)=23×(−12)+34×(−12)−56×(−12)=−8−9+10=-7(4)解:−14−(1−0.5)×13×[2−(−3)2]法.(1)(−13)−15+(−23)(2)(−2)×31×(−0.5)(3)−9+2×(−4)+(−6)÷(−12)(4)(−1)2021×2+(−2)2÷4 【答案】(1)−16 (2)31 (3)−5 (4)−1【分析】(1)先把−13与−23相加,再计算减法即可; (2)先把−2与−0.5相乘,再与31相乘即可; (3)按有理数运算顺序法则计算即可; (4)按有理数运算顺序法则计算即可. (1)解:原式=(−13)+(−23)−15=−1−15=−16; (2)原式=(−2)×(−0.5)×31=1×31=31; (3)原式=−9−8+12=−5; (4)原式−1×2+4÷4=−2+1=−1.【点睛】本题考查有理数的混合运算,掌握相关公式与法则是解题的关键. 【变式7-2】(2022·天津市红桥区教师发展中心七年级期中)计算:(1)(−3)×(−4)−15÷32(2)(34−718+49)×36(3)−14−|−7|+3−2×(−112)(4)−22÷43−[22−(1−12×13)]×12【答案】(1)2(2)29(3)-2(4)-41【分析】(1)根据有理数四则混合运算法则进行计算即可;(2)利用乘法分配律进行计算即可;(3)先化简绝对值,然后根据含乘方的有理数混合运算法则进行计算即可;(4)根据含乘方的有理数混合运算法则进行计算即可.(1)解:(−3)×(−4)−15÷32=12−15×2 3=12−10=2(2)解:(34−718+49)×36=34×36−718×36+49×36=27−14+16=29(3)解:−14−|−7|+3−2×(−112)=−1−7+3−2×(−3 2 )=−8+3−(−3)=−8+3+3=−2(4)解:−22÷43−[22−(1−12×13)]×12=−4×34−[4−(1−16)]×12=−3−(4−56)×12=−3−196×12=−3−38=−41【点睛】本题主要考查了有理数的混合运算,熟练掌握有理数混合运算法则和绝对值意义,是解题的关键.【变式7-3】(2022·安徽·七年级期中)计算:(1)(12+56-712)×(-24);(2)(-81)÷94×49÷(-8).【例8】(2022·河南驻马店·七年级期中)对于有理数a,b,定义一种新运算”⊙”,规定a ⊙b=|a+b|+|a﹣b|.(1)计算:2⊙(﹣3)的值;(2)当a,b在数轴上的位置如图所示时,化简:a⊙b.【答案】(1)6;(2)﹣2b【分析】(1)利用题中的新定义计算即可得到结果;(2)根据数轴得出b<0<a,且|a|<|b|,再计算即可.【详解】解:(1)根据题中的新定义得:2⊙(﹣3)=|2+(﹣3)|+|2﹣(﹣3)|=1+5=6;(2)从a,b在数轴上的位置可得a+b<0,a﹣b>0,∴a⊙b=|a+b|+|a﹣b|=﹣(a+b)+(a﹣b)=﹣2b.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.【变式8-1】(2022·山东·招远市教学研究室期中)现定义运算“*”,对于任意有理数a,b,都有a*b=a2−ab−b,例如:5*3=52−5×3−3=25−15−3=7,由此算出2*(-4)=_________.【答案】16【分析】根据题目定义的运算规则将式子列出计算即可.【详解】解:由题意得:2*(-4)=22−2×(−4)−(−4)=4+8+4=16.故答案为:16.【点睛】本题考查了有理数的混合运算,新定义的理解和运用.理解新定义是解题关键.【变式8-2】(2022·吉林长春·七年级期中)完成下列各题.(1)定义新运算:对于任意有理数a、b,都有a⊕b=a(a−b)+1.计算如下:2⊕5= 2×(2−5)+1=2×(−3)+1=−6+1=−5.求(−2)⊕3的值.(2)对于有理数a、b,若定义运算:a⊗b=a−ba+b,求(−4)⊗3的值.【答案】(1)11(2)7【分析】(1)根据新定义的运算方法进行计算即可;(2)在理解新定义运算:a⊗b=a−ba+b的意义和转换方法,然后类推计算即可.【详解】(1)(−2)⊕3=(−2)×(−2−3)+1=11(2)(−4)⊗3=−4−3−4+3=−7−1=7【点睛】考查有理数的运算,新定义运算的意义,理解新定义的运算方法是正确解答的关键.【变式8-3】(2022·辽宁沈阳·七年级期中)定义一种新运算:a⊗m=a×|m|.如5⊗(﹣3)=5×|﹣3|=15,﹣8⊗4=﹣8×|4|=﹣32.(1)计算:65⊗0=,﹣43⊗|﹣2|=;(2)若n<0,化简48⊗(﹣3n);(3)若a,m,n为任意有理数,等式a⊗(m+n)=a⊗m+a⊗n一定成立吗?请说理由.【答案】(1)0,-86.(2)-144 n;(3)不一定成立;理由见解析【分析】(1)根据新定义进行运算即可;(2)根据新定义进行运算即可;(3)根据新定义分别进行运算验证即可;【详解】解:(1)65⊗0=65×|0|=0,﹣43⊗|﹣2|=﹣43×2=﹣86,故答案为:0,-86.(2)48⊗(﹣3n)=48×|﹣3n |,∵n<0,∴48×|﹣3n |=-144 n;即48⊗(﹣3n)=-144 n;(2)不一定成立;a⊗(m+n)=a×| m+n |,a⊗m+a⊗n=a×| m |+a×| n |= a×(| m |+| n |),当| m+n |=| m |+| n |时,即m,n为同号或m,n中至少有一个为0时,等式a⊗(m+n)=a⊗m+a⊗n一定成立;当| m+n |≠| m |+| n |时,即m,n为异号时,等式a⊗(m+n)=a⊗m+a⊗n不成立;【点睛】本题考查了新定义运算,解题关键是理解题目给出的新定义运算,熟练进行转化与计算.【考点9 科学计数法】【例9】(2022·山东济南·七年级期中)我国的北斗卫星导航系统中有一颗中高轨道卫星高度大约是21500000米.将数字21500000用科学记数法表示为()A.2.15×107B.0.215×108C.2.15×106D.21.5×106【答案】A【分析】绝对值大于1的数可以用科学记数法表示,一般形式为a×10n,n为正整数,且比原数的整数位数少1,据此可以解答.【详解】解:21500000=2.15×107.故选:A.【点睛】本题考查用科学记数法表示较大的数,熟练掌握科学记数法表示较大的数一般形式为a×10n,其中1≤|a|<10,n是正整数,正确确定a的值和n的值是解题的关键.【变式9-1】(2022·北京市陈经纶中学分校七年级期中)2020年国庆档电影《我和我的家乡》上映13天票房收入达到21.94亿元,并连续10天拿下票房单日冠军.其中21.94亿元用科学记数法可表示为()A.21.94×108元B.2.194×108元C.0.2194×1010元D.2.194×109元【答案】D【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】解:21.94亿元用科学记数法可表示为2.194×109元,故D正确.故选:D.【点睛】本题考查用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,n可以用整数位数减去1来确定.用科学记数法表示数,一定要注意a的形式,以及指数n的确定方法.【变式9-2】(2022·河北·廊坊市第四中学七年级期中)整数613550⋯0用科学记数法表示为8.1555×1010,则原数中“0”的个数为()A.4B.6C.5D.10【答案】B【分析】写出原数,数出原数中0的个数即可.【详解】8.1555×1010=81555000000,0的个数为6.故选:B.【点睛】本题主要考查根据科学记数法写出原数,熟记科学记数法的概念是解题关键.【变式9-3】(2022·广东·广州四十七中七年级期中)过度包装既浪费资源又污染环境,据测算如果全国每年减少十分之一的包装纸用量那么能减少3.12×106吨二氧化碳的排放量,把3.12×106写成原数是()A.312000B.3120000C.31200000D.312000000【答案】B【分析】本题考查科学记数法的逆过程,科学记数法的表示形式为:a×10n的形式,关键是根据n的大小向右移动小数点得到原数.【详解】∵n=6,∴小数点需要向右移动6位故3.12×106=3120000故选B.【点睛】本题考查科学记数法的逆过程,科学记数法还可表示较小的数,注意,此刻小数点的移动方向与较大数表示时移动方向刚好相反.【考点10 有理数乘方的应用】【例10】(2022·全国·七年级期中)我们平常用的是十进制,如:1967=1×103+9×102+6×101+7,表示十进制的数要用10个数码:0,1,2,3,4,5,6,7,8,9.在计算机中用的是二进制,只有两个数码:0,1.如:二进制中111=1×22+1×21+1相当于十进制中的7,又如:11011=1×24+1×23+0×22+1×21+1相当于十进制中的27.那么二进制中的1011相当于十进制中的()A.9B.10C.11D.12【答案】C【分析】根据题意得出1011=1×23+0×22+1×21+1,求出即可【详解】1011=1×23+0×22+1×21+1=11,即二进制中的1011相当于十进制中的11.故答案选C.【点睛】考查了有理数的乘方,结合计算机教学,主要考查学生的理解能力、阅读能力和计算能力.【变式10-1】(2022·广东·东莞市光大新亚外国语学校七年级期中)将一根绳子对折一次后从中间剪一刀,绳子变成3段;对折两次后从中间剪一刀,绳子变成5段:将这根绳子对折n次后从中间剪一刀,绳子变成_____段.【答案】2n+1【分析】根据分析可得:将一根绳子对折1次从中间一刀,绳子变成3段;有21+1=3.将一根绳子对折2次,从中间一刀,绳子变成5段;有22+1=5.依此类推,将这根绳子对折n次后从中间剪一刀,绳子变成(2n+1)段.【详解】解:∵对折1次从中间剪一刀,有21+1=3对折2次,从中间剪一刀,有22+1=5.∴对折n次,从中间剪一刀全部剪断后,绳子变成(2n+1)段.故答案为:(2n+1).【点睛】本题主要考查通过观察、归纳、抽象得出规律,正确得出对折次数与绳子段数的规律是解题的关键【变式10-2】(2022·河南郑州·七年级期中)你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如下面草图所示.这样捏合到第____次后可拉出64根细面条.【答案】6.【分析】根据有理数的乘方的定义解答.【详解】解:∵26=64,∴捏合到第6次后可拉出64根细面条,故答案为6.【点睛】此题考查了有理数的乘方,是基础题,理解乘方的定义是解题的关键.【变式10-3】(2022·全国·七年级期中)一质点P从距原点1个单位的A点处向原点方向跳动,第一次跳动到OA的中点A1处,第二次从A1点跳动到O A1的中点A2处,第三次从A2点跳动到O A2的中点A3处,如此不断跳动下去,则第5次跳动后,该质点到原点O的距离为_____________.【答案】132【分析】根据题意分析可得:每次跳动后,到原点O的距离为跳动前的一半.【详解】解:依题意可知,第n 次跳动后,该质点到原点O 的距离为12n , ∴第5次跳动后,该质点到原点O 的距离为132. 故答案为132.【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的. 【考点11 有理数的大小比较】【例11】1.(2022·湖北·老河口市第四中学七年级阶段练习)下列有理数的大小关系正确的是( ) A .10.01->- B .010>-C .33-<+D .11910⎛⎫-->-- ⎪⎝⎭、|1||0.01|->-,该选项错误;、|10|10-=,|10|<-,该选项错误;、3||3-=,3|3=,3|=|3|+,该选项错误;、1()9--=1)|9->--故选:D .【点睛】此题考查了有理数大小比较的法则:①正数都大于于一切负数;④两个负数,绝对值大的其值反而小.系是( ) A .a >-b >-a >b B .-b >a >-a >b C .a >b >-a >-b D .a >-b >b >-a【答案】D【分析】由于b <0,a +b >0,则a 必为正数,-b 为正数,并且a >|b |,则a >-b ,-a <b ,易得a ,b ,-a ,-b 的大小关系. 【详解】解:∵b <0,a +b >0, ∴a >0,-b >0,a >|b |,∴a>-b>0,-a<0,-a<b<0,∴a,b,-a,-b的大小关系为a>-b>b>-a.故选:D.【点睛】本题考查了有理数的加法法则、有理数的大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数反而越小.由加法法则确定a与b的符号及两数绝对值的大小关系是解题的关键.【变式11-2】(2022·天津市红桥区教师发展中心七年级期中)有理数a,b在数轴上的位置如图所示,试比较a,b,-a,-b四个数的大小关系:_____<_____<_____<_____.【答案】-b a-a b【分析】根据相反数的意义,把a,b,-a,-b,0分别表示在数轴上,然后根据数轴表示数的方法即可得到它们之间的大小关系.【详解】解:根据表示a与-a,b与-b的数关于原点对称,把a,b,-a,-b,0分别表示在数轴上,如图所示:-<<-<,由数轴可得,b a a b故答案为:-b,a,-a,b.【点睛】本题考查了有理数的大小比较,先把数在数轴上表示出来,然后根据数轴上右边的点表示的数比左边的点表示的数要大进行大小比较,用“<”连接是本题的易错点.【变式11-3】(2022·全国·七年级专题练习)探索研究:(1)比较下列各式的大小(用“<”、“>”、“=”连接)①|2|+|3||2+3|;②|﹣2|+|﹣3||﹣2﹣3|;③|2|+|﹣3||2﹣3|;④|2|+|0||2+0|.(2)a、b为有理数,通过比较、分析,归纳|a|+|b|与|a+b|的大小关系.(用“<”、“>”、“=”、“≥”、“≤”连接)当a、b同号时,|a|+|b||a+b|;当a、b异号时,|a|+|b||a+b|;当a=0或b=0时,|a|+|b||a+b|;综上,|a|+|b||a+b|.(3)根据(2)中得出的结论,当|x|+2015=|x﹣2015|时,则x的取值范围是.x≤【答案】(1)①=;②=;③>;④=;(2)=,>,=,≥;(3)0【分析】(1)分别计算①②③④题两边,即可比较大小;(2)根据绝对值的性质结合有理数的加法法则即可判断大小;(3)将|x|+2015化为|x|+|-2015|结合(2)中结论进行分析即可得出结论.【详解】解:(1)①|2|+|3|=5,|2+3|=5,所以|2|+|3|=2+3|;②|﹣2|+|﹣3|=5,|﹣2﹣3|=5,所以|﹣2|+|﹣3|=|﹣2﹣3|;③|2|+|﹣3|=5,|2﹣3|=1,所以|2|+|﹣3|>|2﹣3|;④|2|+|0|=2,|2+0|=2,所以|2|+|0|=|2+0|.故答案为:①=,②=,③>,④=;(2)当a、b同号时,|a|+|b|=|a+b|;当a、b异号时,|a|+|b|>|a+b|;当a=0或b=0时,|a|+|b|=|a+b|;综上,|a|+|b|≥|a+b|.故答案为:=,>,=,≥;(3)因为|x|+2015=|x|+|﹣2015|=|x﹣2015|,所以由(2)可知x≤0.故答案为:x≤0.【点睛】本题考查了绝对值,有理数的加法法则,有理数的大小比较等知识,熟知相关知识,学会寻找规律解题是解题关键.【考点12 阅读材料中的有理数运算】【例12】(2022·浙江·余姚市高风中学七年级期中)阅读下列材料:对于排好顺序的三个数:x1,x2,x3称为数列x1,x2,x3.将这个数列如下式进行计算:x1,x1−x2,x1−x2+x3,所得的三个新数中,最大的那个数称为数列x1,x2,x3的“理想数值”.例如:对于数列1,-2,3,因为1,1-(-2)=3,1-(-2)+3=6,所以数列1,-2,3的“理想数值为6,进一步发现:当改变这三个数的顺序时,所得的数列都可以按照上述方法求出“理想数值”,如:数列-2,1,3的“理想数值”为0……而对于“1,-2,3”这三个数,按照不同的排列顺序得到的不同数列中,“理想数值”的最大值为6.(1)数列-5,4,-3的“理想数值”为;(2)将-5,4,-3这三个数按照不同的顺序排列,可得到若干个不同的数列,这些数列的“理想数值”的最大值是,取得“理想数值”的最大值的数列是;(3)将“-1,7,a(a<0)”这三个数按照不同的顺序排列,可得到若干个不同的数列,这些数列的“理想数值”的最大值是10,求a的值,并写出取得“理想数值”最大值的数列.【点睛】本题考查了数字变化类规律问题和有理数运算,解决本题的关键是理解阅读材料内容,能把材料中的定义和所学数学知识结合起来.【变式12-1】(2022·山东威海·期中)【数学阅读】高斯上小学时,有一次数学老师让同学们计算“从1到100这100个正整数的和”.许多同学都采用了依次累加的计算方法,计算起来非常繁琐,且易出错.聪明的高斯经过探索后,给出了下面的解答过程:解:设S=1+2+3+…+100,①则S=100+99+98+…+1.②①+②,得(即左右两边分别相加):2S=(1+100)+(2+99)+(3+98)+…+(100+1)=100×101.所以,S=100×101.2所以,1+2+3+…+100=5050.后来人们将高斯的这种解答方法概括为“倒序相加法”.【问题解决】利用“倒序相加法”解答下面的问题:(1)计算:1+2+3+ (101)(2)猜想:1+2+3+…+n=;(3)利用(2)中的结论,计算:1001+1002+ (2000)【答案】(1)5151(2)n(n+1)2(3)1500500【分析】(1)根据题目中的例子可以求得所求式子的值;(2)根据题目中的例子,可以写出猜想的结果;(3)根据(2)中结论即可得到结果.(1)解:设S=1+2+3+…+100+101①则S=101+100+…+3+2+1②①+②,2S=102+102+102+102+102+…+102=101×102.=5151,所以,S=101×1022所以,1+2+3+…+100+101=5151;(2)解:解:设S=1+2+3+…+n①则S=n+…+3+2+1②①+②,2S=(n+1)+…+(n+1)=(n+1)×n.。
期末复习二有理数的运算要求知识与方法了解有理数加、减、乘、除、乘方的运算法则倒数的概念,会求一个数的倒数乘方、幂、指数、底数的概念计算器的简单使用理解有理数的混合运算的运算顺序,能进行有理数的混合运算用科学记数法表示较大的数说出一个由四舍五入法得到的有理数的精确位数及根据精确度取近似值运用合理运用运算律简化有理数混合运算的过程利用有理数的混合运算解决简单的实际问题一、必备知识:1.若两个有理数的乘积为____________,就称这两个有理数____________.2.有理数的各种运算律:加法交换律、加法结合律、乘法交换律、乘法结合律、分配律.3.有理数混合运算的法则是:先算____________,再算____________,最后算____________.如有括号,先进行____________运算.4.把一个数表示成____________与____________的幂相乘的形式叫做科学记数法.二、防范点:1.倒数不要和相反数混淆,倒数符号不变,相反数要变号.2.乘方运算不要和乘法运算混淆,如23和32不相等.3.有理数混合运算中注意运算顺序,特别是乘、除同级运算时,注意从左到右的运算顺序.4.求用科学记数法表示的数及带单位的有理数的精确位数时要注意单位及10的幂的位数.倒数的概念例1 (1)2017的倒数为( )A .-2017B .2017C .-12017D .12017(2)已知a 与b 互为倒数,m 与n 互为相反数,则12ab -9m -9n 的值是________. 【反思】互为倒数的两个数乘积为1,注意互为倒数的两数符号是相同的,不要与相反数混淆起来.有理数运算法则及运算顺序例2 下列计算错在哪里?应如何改正?(1)74-22÷70=70÷70=1;(2)(-112)2-23=114-6=-434; (3)23-6÷3×13=6-6÷1=0.【反思】乘方运算是初中阶段新学的一种运算,要弄清楚它的法则,不要和乘法混淆起来;运算顺序也是学生的一个易错点,特别是乘、除同级运算过程中要遵循从左到右的运算顺序.有理数的混合运算例3 计算:(1)(-2)2+3×(-2)-1÷(14)2; (2)-32-[-(12)2-116]×(-2)÷(-1)2017.【反思】有理数的混合运算要注意运算的顺序不要搞错,-32的求值也是学生的一个易错点.有理数的简便计算例4 用简便方法计算:(1)(-6134)-(-512)+(134)-(+8.5); (2)19999899×(-11); (3)(-5)×713+7×(-713)-(+12)×713.【反思】合理地利用加法和乘法的运算律可以加快速度,分配律和分配律的逆向使用也是简便计算的一种重要的方法.近似数及科学记数法例5 (1)数361000000用科学记数法表示,以下表示正确的是( )A .0.361×109B .3.61×108C .3.61×107D .36.1×107(2)下列近似数精确到哪一位?①4.7万 ②17.68(3)用四舍五入法按要求取下列各数的近似数:①0.61548(精确到千分位);②73540(精确到千位).【反思】求带单位的近似数的精确度时,要注意单位也是有效的.有理数混合运算的应用例6 出租车司机王师傅从上午8:00~9:00在某市区东西向公路上营运,共连续运载八批乘客.若规定向东为正,向西为负,王师傅营运八批乘客里程如下:(单位:千米)+5,-6,+3,-7,+5,+4,-3,-4.(1)将最后一批乘客送到目的地时,王师傅在第一批乘客出发地的什么位置?(2)已知王师傅的车在市区耗油成本约为0.6元/千米,若出租车的收费标准为:起步价8元(不超过3千米),若超过3千米,超过部分按每千米2元收费,则王师傅在上午8:00~9:00扣除耗油成本后赚了多少元?【反思】用有理数的运算解决实际问题,主要是要抓住题中各数量之间的关系,弄清是求各数之和还是各数的绝对值之和.1.计算:3×(-1)3+(-5)×(-3)____________.2.已知(x -2)2+||2y +6=0,则x +y =____________.3.如图,数轴上A 、B 两点分别对应实数a 、b ,则a 与b 之间的关系是____________.(写出一个正确关系式即可)第3题图4.由四舍五入得到的近似数0.50,精确到____________位,它表示大于或等于____________且小于____________的数.5.数轴上A 、B 两点位于原点O 的两侧,点A 表示的实数是a ,点B 表示的实数是b ,若||a -b =2016,且AO =2BO ,则a +b 的值是____________.6.计算:(1)(34-112+13)×(-60);(2)(-3)2÷92+(-1)2017-|-2|.7.已知x ,y 为有理数,现规定一种新运算※,满足x ※y =xy +1.(1)求2※3的值;(2)求(3※5)※(-2)的值;(3)探索a ※(b +c)与a ※b +a ※c 的关系,并用等式把它们表达出来.参考答案期末复习二 有理数的运算【必备知识与防范点】1.1 互为倒数 3.乘方 乘除 加减 括号里的 4.a(1≤a<10) 10【例题精析】例1 (1)D (2)12例2 (1)运算顺序错.改正为:74-22÷70=74-4÷70=74-235=733335; (2)运算法则错.改正为:(-112)2-23=94-8=-234; (3)运算法则和运算顺序都错.改正为:23-6÷3×13=8-6×13×13=8-23=713.例3 (1)-18 (2)-838例4 (1)-63 (2)-2199989(3)-176 例5 (1)B (2)①千位 ②百分位 (3)①0.615 ②7.4×104例6 (1)正西方向3千米处 (2)67.8元【校内练习】1.12 2.-1 3.答案不唯一,如a >b4.百分 0.495 0.505 5.±6726.(1)(34-112+13)×(-60)=-60×34+60×112-60×13=-45+5-20=-60. (2)(-3)2÷92+(-1)2017-|-2|=9×29-1-2=-1. 7.(1)7 (2)-31 (3)∵a ※(b +c)=a(b +c)+1=ab +ac +1,a ※b +a ※c =ab +1+ac +1.∴a ※(b +c)+1=a ※b +a ※c.。
七年级数学上册期末复习要点第一章有理数一、正数和负数1、大于0的数叫做正数,在正数前面加一个“—”的数叫做负数,0既不是正数,也不是负数;2、表示相反意义的量:盈利与亏损,存入与支出,增加与削减,运进与运出,上升与下降等3、正、负数所表示的实际意义:例题:北京冬季里某天的温度为—3°c~3°c,它确实切含义是什么?这一天北京的温差是多少?吐鲁番盆海拔—155米,世界最顶峰珠穆朗玛海拔8848.13米二、有理数2.1有理数的分类2.2 数轴1、定义:用一条直线上的点表示数,这条直线就叫做数轴。
2、满意的条件:〔1〕在直线上取一个点表示数0,这个点叫做原点;〔2〕通常规定直线从原点向右〔或上〕为正方向,从原点向左〔或下〕为负方向;〔3〕选取适当的长度为单位长度。
2.3相反数定义:只有符号不一样的两个数叫做相反数一般地:a和互为相反数,0的相反数仍旧是0。
在正数的前面添加负号,就得到这个正数的相反数;在分数的前面添加负号,就得到这个数的相反数。
2.4肯定值1、定义:数轴上表示数a的点与原点的距离叫做数a 的肯定值,记作∣a∣由定义可知:一个正数的肯定值是它本身;一个负数的肯定值是它的相反数;0的肯定值是0。
〔1〕当a是正数时,∣a∣= ;〔2〕当a是负数时,∣a∣= ;〔3〕当a=0时,∣a∣= 。
2.5比拟两个数的大小〔1〕正数大于0,0大于负数,正数大于负数;〔2〕两个负数,肯定值大的反而小。
三、有理数的加减法1、加法法那么:〔1〕同号两数相加:取一样的符号,并把肯定值相加;〔2〕异号两数相加:肯定值不相等的异号两数相加,取肯定值较大的加数的符号,并用较大的肯定值减去较小的肯定值,互为相反数的两个数相加得0;〔3〕一个数和零相加:任何数和零相加都等于它本身。
2、加法交换律、结合律〔1〕有理数的加法交换律:两个数相加,交换加数的位置,和不变a+b=b+a〔2〕有理数的加法结合律:三个数相加,先把前面两个数相加,或先把后两个数相加,和不变(a+b)+c=a+(b+c)3、有理数的减法法那么:减去一个数,等于加上这个数的相反数:a-b=a+(-b)四、有理数的乘除法有理数的乘法法那么:1. 两数相乘,同号得正,异号得负,并把它们的肯定值相乘。
2022-2023七年级上期末复习(有理数)知识点1:正数负数有理数知识回顾:(1)大于0的数叫做正数,在正数前加上符号“-”(负)的数叫做负数。
用正、负数可表示一对具有相反意义的量。
(2)0既不是正数,也不是负数。
(3)正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称为有理数。
巩固练习:1.(2022-2023韶关市南雄市七上期末)如果“节约10%”记作+10%,那么“浪费6%”记作: .2.(2022-2023武汉市黄陂区七上期末)如果水位升高2m 时水位变化记作+2m ,那么水位下降3m 时水位变化记作( )A .3m ;B .-3m ;C .5m ;D .-5m 。
3.(2022-2023深圳市龙华新区七上期末)如果节约20元记作+20元,那么浪费10元记作 元.4.(2022-2023阜阳市太和县七上期末)一袋面粉的质量标识为“25±0.25千克”,则下列一袋面粉质量中,合格的是( )A .25.30千克;B .24.70千克;C .25.51千克;D .24.80千克。
5.(2022-2023北京市海淀区七上期末)在“1,-0.3,31 ,0,-3.3”这五个数中,非负有理数是 .(写出所有符合题意的数)知识点2:数轴知识回顾:(1)规定了原点、正方向和单位长度的直线叫做数轴。
一般地,规定向右的方向为正方向,因此数轴上,原点左边表示的数是负数,原点右边表示的数是正数,原点表示的数是0。
(2)设a 是一个正数,那么在数轴上,表示数a 的点与原点的距离为a ;表示数-a 的点与原点的距离为a 。
因此,数轴上与原点的距离是a 的点的两个,它们分别在原点左右,表示的数是-a 和a 。
我们说这两点关于原点对称。
巩固练习:1.(2022-2023广东省深圳市七上期末)数轴的A 点表示﹣3,让A 点沿着数轴移动2个单位到B 点,B 点表示的数是 ;线段BA 上的点表示的数是 .2.(2022-2023天津市和平区七上期末)数轴上的点A 到原点的距离是4,则点A 表示的数为( )A .4;B .﹣4;C .4或﹣4;D .2或﹣2。
期末复习:有理数混合运算专题复习初一 ( ) 班 姓名: 座号:导学一、知识点梳理:复习有理数有关运算的法则 导学二、重温故知1.小试牛刀,填空:(1) 如果运进货物30吨记作+30吨,那么运出50吨记作 。
(2) 某种药品的说明书上标明保存温度是(10±2)℃,由此可知在 ℃~ ℃范围内保存才才合适。
导学三、闯关行动开始,师生共同展示(我倾听,我掌握) 第一关:加减关 2.有理数的加减法:(1) )(-)(-64+= (2) )(-64+ = (3) =)(-64+ (4))(-60+= (5)66+)(-= (6)43+-= (7)34+-= (7) (-3)-(-2)= (8) 0-(-2)= (9)(–14)–(+16)= (10)(+5)–(+9)= (11)0–13= (12)–16–38= 3.填空:(1)比2℃低8℃的温度是 ℃;(2)比-3℃低6℃的温度是 ℃;第二关:乘除关4.有理数的乘除法:直接写出结果(1)4×(-3)= (2) (-0.5)×(-9)= (3) ()()()432-⨯-⨯-= (4)35÷(-5)= (5))41()4(-÷-= (6) 1845-= 第三关:乘方关5.填空:(-2) 2= (-3)3= (-0.1)3= (+21)2= (-1)100 = (-1)101 = 12 = -12 =6.下列各组数中,不相等的一组是( )A.()32-和32- B. ()22-和22- C.-()42-和42- D. 32-和32导学四:一展锋芒(我掌握,我快乐) 7.计算:(1))(-)(-35242516+++ (2)15)7()18(12--+--解:原式= 解:(3)-2×6÷(-4) (4))(-)(-575125÷ 解: 解:(5))12()216141(-⨯-+(6))()(-)(-)(-317563256+⨯+⨯ 解: 解:(7)4)2(5)2(32÷--⨯- (8)[]24)3(53611--⨯-- 解: 解:导学五:学以致用(我努力,我提高)8.国家规定超市里的封闭式冷冻柜至少要达到零下5℃,否则里面的食品不能得到保鲜,现知道某超市的冷冻柜里的温度是零下18℃ ,由于电力紧缺,供电站准备拉闸五小时,已知停电后温度每小时约上升4℃,问超市的冷冻柜里的食品还能不能得到保鲜作用?9.某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正.负数来表示,记录如下表:②若标准质量为450克,则抽样检测的总质量是多少?导学六:课堂小结我们这节课复习了什么?期末复习:有理数混合运算专题复习小测初一( ) 班姓名:座号:综合基础过关(我过关,我收获) 1.填空:(1)___)9()6(=-++ , (2)___)9()6(=--+, (3)___)9()6(=-⨯+, (4)___46=+-, (5)___4716=-, (6)___)14()56(=-÷- (7)____)3(2=-, (8)____32=-, (9)____)2(3=--2.在―2,3,4,―5这四个数中,任取两个数相乘,所得积最大的是( ) A 、20 B 、-20 C 、12 D 、103.(-1)100+(-1)101所得的值是( ) A 、1 B 、-1 C 、0 D 、-1100 4..计算:(1)9+(—7)+10+(—3)—(—9) (2))832143(16+--⨯- 解:原式= 解:原式=期末复习:有理数混合运算专题复习小测初一 ( ) 班 姓名: 座号:综合基础过关(我过关,我收获) 1.填空:(1)___)9()6(=-++ , (2)___)9()6(=--+, (3)___)9()6(=-⨯+, (4)___46=+-, (5)___4716=-, (6)___)14()56(=-÷- (7)____)3(2=-, (8)____32=-, (9)____)2(3=--2.在―2,3,4,―5这四个数中,任取两个数相乘,所得积最大的是( ) A 、20 B 、-20 C 、12 D 、103.(-1)100+(-1)101所得的值是( ) A 、1 B 、-1 C 、0 D 、-1100 4..计算:(1)9+(—7)+10+(—3)—(—9) (2))832143(16+--⨯- 解:原式= 解:原式=。
人教版数学7年级上册期末复习(1)有理数一、考点过关【考点1】正数、负数的判断及意义1.下列数:91-,1.5,23,136,7,0中,负数的个数是( ) A.1个 B.2个 C.3个 D.4个2.(2020·中山市期末)如果把顺时针方向转30°记为+30°,那么逆时针方向转45°,记为 .3.先向南走5 m ,再向南走-4 m 的意义是( )A.先向南走5 m ,再向南走4 mB.先向南走5 m ,再向北走-4 mC.先向北走-5 m ,再向南走4 mD.先向南走5 m ,再向北走4 m【考点2】有理数的分类4.在1+,2,0,5-,133-这几个数中,整数有( ) A.1个 B.2个 C.3个 D.4个5.在有理数0,23,5,3.2,12-中,分数有( ) A.1个 B.2个 C.3个 D.4个【考点3】数轴6.(阳江阳东区期末)如图所示的数轴上,被叶子盖住的点表示的数可能是( )A.-1.3B.1.3C.3.1D.2.37.一只蜗牛在数轴上爬行,从原点出发爬行3个单位长度到达终点,那么这个终点表示的数是 .【考点4】相反数、绝对值、倒数8.(锦州中考)6-的相反数是( )A.6B.-6C.16D.16- 9.(2020·邵阳)2020的倒数是( )A.-2020B.2020C.12020D.12020- 10.若一个数的绝对值是9,则这个数是( )A.9B.-9C.9或-9D.011.检测篮球时,超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,下面最接近标准的是( )12.下列几组数中,不相等的是( ) A.3-+和()3+- B. 5-和5--C.()7+-和()7-- D.()2-+和2-+ 【考点5】有理数的大小比较13.(2020·龙华区期末)下列各数中,最小的一个数是( )A.-3B.-1C.0D.214.(2020·潮阳区期末)比较大小:34-0.8- (填“>”或“<”)【考点6】科学记数法15.(2020·顺德区期末)用科学记数法表示水星的半径24400000m 为 m. 16.2020年11月1日是深圳市第四个“人才日”,截至目前,全市人才总量超过600万人,将600万用科学记数法表示为( )A.2 610⨯B.6 610⨯C.7 0.610⨯D.7 610⨯17.(2020·揭西县期末)华为Mate 30 5G 系列是近期相当火爆的5G 国产手机,它采用的麒麟990 5G 芯片在指甲盖大小的面积上集成了103亿个晶体管,将103亿用科学记数法表示为( )A.91.0310⨯B.910.310⨯C.111.0310⨯D.101.0310⨯【考点7]近似数18.按要求取近似数:(1)12.365≈ (精确到0.1);(2)7.6034≈ (精确到百分位);(3)64900≈ (精确到千位).【考点8】有理数的计算19.(2020·黄埔区期末)计算:(1)()()35-+-= ;(2)()()1215---= ;(3)()()133-⨯-= .20.(2020·封开县期末)()842-+÷-= .21.如果()2130x y -+-=,则()2x y -= . 二、核心考题1.既是负数又是整数的是( )A.1-B.15- C. 1.5- D.+6 2.(2020·坪山区期末)某天最高气温为5℃,最低气温为-1℃,则这天最高气温比最低气温高 ℃.3.(佛山顺德区期末)下列运算结果正确的是( )A.()325---=-B.()239-=- C.527-+=- D 210 533⨯= 4.(2020·天河区期末)计算:()()32212410⨯---÷+.5.(2020·惠城区期末)计算:()()23224133-+---⨯⎡⎤⎣⎦. 6.计算:232146232⎛⎫ ⎪⎝⎭-+-⨯-÷ 7.某冷冻厂的冷库温度是-4 ℃,现有一批食品需要在-28℃的温度下冷藏,如果冷库每小时降温6 ℃,问几小时能达到所需求的温度?8.王先生到市行政中心大楼办事,假定乘电梯向上一楼记作+1,向下一楼记作-1,王先生从1楼出发,电梯上下楼层依次记录如下(单位:层):+6,-3,+10,-8,+12,-7,-10.(1)请你通过计算说明王先生最后是否回到出发点1楼;(2)该中心大楼每层高3 m ,电梯每向上或向下1 m 需要耗电0.2度,根据王先生现在所处位置,请你算算,他办事时电梯需要耗电多少度?9.某市客运管理部门对“十一”国庆假期七天客流变化量进行了不完全统计,数据如下(用正数表示客流量比前一天上升数,用负数表示比前一天下降数):与9月30日相比,10月7日的客流量是上升了还是下降了?变化了多少?10.(茂名高州市期中)某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表: 与标准质量的差值(单位:g )-5 -2 0 1 3 6 袋数 1 4 3 4 5 3(2)标准质量为450 g ,则抽样检测的总质量是多少克?三、满分冲刺1.绝对值大于1而不大于3的整数有( )A.1个B.2个C.3个D.4个 日期1日 2日 3日 4日 5日 6日 7日 变化/万人 20 -3 -10 -3 2 9 32.若x 是-3的相反数,5y =,则x y +的值为( )A.2B.8C.-8或2D.8或-23.若x y =,则x 与y 之间的关系是( )A.相等B.互为相反数C.相等或互为相反数D.无法判断4.(2020·海珠区期末)若 0a b c ++=且a b c >>,则下列几个数中:()22;;;;a b ab ab b ac b c +--+①②③④⑤,一定是正数的有 (填序号).5.(肇庆期中)已知ab o >,则||||||a b ab a b ab++= . 6.观察如图所示的程序,若输出的结果为3,则输入的x 值为( )A.1B.-2C. -1或2D.1或27.定义:α是不为1的有理数,我们把11a-称为α的差倒数.例如:2的差倒数是1 1,112---=的差倒数是111(1)2=--.已知1213a a =,是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,依次类推,解决下列问题:(1)2a = ,3a = ,4a = ;(2)20192000 a a = .8.【数形结合思想】(河北中考)在一条不完整的数轴上从左到右有点A B C ,,,其中21AB BC ==,,如图所示.设点A B C ,,所对应数的和是p .(1)若以B 为原点,写出点A C ,所对应的数,并计算p 的值;若以C 为原点,p 又是多少?(2)若原点О在图中数轴上点C 的右边,且28CO =,求p .9.【分类讨论思想】(2020·福田区期末)已知数轴上两点A B ,对应的数分别为13-,,点Р为数轴上一动点,其对应的数为x .(1)若点Р为AB 的中点,直接写出点Р对应的数;(2)数轴的原点右侧有点Р,使点Р到点A 、点B 的距离之和为8.请直接写出x 的值. x = ;(3)现在点A 、点B 分别以每秒2个单位长度和每秒0.5个单位长度的速度同时向右运动,同时点P 以每秒6个单位长度的速度从表示数1的点向左运动.当点A 与点B 之间的距离为3个单位长度时,点P 所对应的数是多少?人教版数学7年级上册期末复习(1)有理数一、考点过关1.B2.-45°3.D4.C5.C6.D7.+3或-38.B9.C10.C 11.B 12.C 13.A 14.> 15.72.4410⨯ 16.B 17.D 18.(1)12.4 (2)7.60 (3)46.510⨯ 19.(1)-8 (2)3 (3)1 20.-10 21.4二、核心考题1.A2.63.D4.解:原式()214410=⨯--÷+21107=--+=5.解:原式()816193=-+--⨯⎡⎤⎣⎦[]81683=-++⨯840=-+=326.解:原式32166223⎛⎫ ⎪⎝⎭=-+-⨯⨯ 32161223⎛⎫ ⎪⎝⎭=-+-⨯ 16188=-+-6=-7.解:根据题意,得()42864⎡⎤⎣-⎦--÷=(小时),答:4小时能达到所需求的温度.8.解:(1)()()()()()()()6310812710++-+++-+++-+-6310812710=-+-+--=28-28=0∴王先生能回到出发点1楼(2)王先生走过的路程是()36310812710⨯++-+++-+++-+-()36310812710=⨯++++++=3×56=168 (m )∴他办事时电梯需要耗电168×0.2=33.6度.9.解:20310329318---+++=(万人)答:与9月30日相比,10月7日的客流量是上升了.变化了18万人.10.解:(1)()512403143563-⨯+-⨯+⨯+⨯+⨯+⨯ 58041518=--++++1337=-+=24克2420 1.2÷=克答:这批样品的平均质量比标准质量多,多1.2克.(2)24450202490009024+⨯=+=克.答:抽样检测的总质量是9024克.三、满分冲刺1.D2.D3.C4.①④⑤5.3或-16.C7.(1)32 -2 13 (2)23- 8.解:(1)若以B 为原点,则C 表示1,A 表示-2,∴1021p =+-=-若以C 为原点,则A 表示-3,B 表示-1,∴3104p =--+=-(2)若原点O 在图中数轴上点C 的右边,且CO =28,则C 表示-28,B 表示-29,A 表示-31,∴31292888p =---=-.9.解:(1)点P 所对应的数1312x -+== (2)∵点P 在原点右侧,∴1x >-①当点P 在原点和B 点之间时,由题意,得()138x x --+-=方程无解②当点P 在B 点右侧时,由题意,得()138x x --+-=解得x =5故答案为:5(3)设移动的时间为t 秒,①当点A 在点B 的左边,使AB =3时,有()30.5213t t +--= 解得23t = 此时点P 移动的距离为2643⨯= 因此点P 所表示的数为143-=-,②当点A 在点B 的右边,使AB =3时,有()2130.53t t --+= 解得143t =此时点P移动的距离为14628⨯=,3-=-,因此点P所表示的数为12827所以当点A与点B之间的距离为3个单位长度时,点P所对应的数是-3或-27.。
期末总复习二有理数运算复习
温十九中陈迅伟
一.知识目标:有理数加法法则、有理数减法法则、有理数加减混合运算、有理数乘法法则、有理数除法法则、乘方的意义、科学计数法
一、有理数加法法则:
1、同号两数相加,取符号,并把绝对值相加。
2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0.
3、一个数同0相加,仍得这个数
二、有理数减法法则:
减去一个数,等于加上这个数的相反数。
三、有理数加减混合运算
1、加法交换律:a+b=b+a
两个数相加,交换加数的位置,和不变
2、加法结合律:(a+b)+c=a+( b+c )
三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
3、式子简写后的读法和计算过程中的看法
-20+3+5-7
3x-2x+4+2x-1
四、有理数乘法法则:
两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0.
五、有理数除法法则:
1、除以一个不等于0的数,等于乘于这个数的倒数。
2、两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0.
例:用“>”、“=”、“<”填空
1、若ab>0,则____0
2、若ab<0,则____0
3、若ab>0,a+b<0,则a____0,b____0
练习:1、-2-1+3的值等于 ( )
A.0
B.2
C.-2
D.-3
2、把(+5)-(+3)-(-1)+(-5)写成省略括号的和的形式是 ( )
A.-5-3+1-5
B.5-3-1-5
C.5+3+1-5
D.5-3+1-5
3、两个数相加,其和小于每个加数,那么这两个数( )
A.同为负数
B.异号
C.同为正数
D.零或负数
(4)|0-5|-|(-4)+(+6)|-|-7.5+2-(5.5)|
(5)若|x-2|+|y+3|+|z-5|=0。
计算:(1)x,y,z的值.
(2)求|x|+|y|+|z|的值.
1、绝对值最小的数是___,绝对值等于本身的数是__,平方等于它本身的数有__,立方等于它本身的数有___。
2、下列说法中,正确的有()
⑴绝对值相等的两个数必相同或互为相反数
⑵正数和零的绝对值等于它本身
⑶只有负数的绝对值是它的相反数
⑷一个数的绝对值必为正。
A、1个
B、2个
C、3个
D、4个
3、若|x-5|+ |y+3|=0,求2x+3y的值。
乘方的意义:
这种求n个相同因数a的积的运算叫做乘方,乘方的结果叫做幂,a叫做底数,n叫做指数,a n读作a的n次幂(或a的n次方)。
(1)73中底数是,指数是。
(2)在中底数是,指数是。
(3)在(-5)4中底数是,指数是,幂是___.
(4)在中底数是_____,指数是____,幂是____
(5)在中底数是___,指数是____,幂是____
(6)310的意义是个3相乘。
(7)平方等于它本身的数是,立方等于它本身的数是。
规律:
(1)正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。
(2)1的任何次幂都是1,–1的奇次幂是–1,
–1的偶次幂是1。
(3)互为相反数的两个数,它们的偶次幂相等,奇次幂互为相反数。
考考你
试一试(当n为正整数时)
= , (-1)2n= , (-1)2n+1= .
(1)计算:(-3)3, (-1.5)2,
例题
练习:
(2)一个数的平方为16,这个数可能是几?一个数的平方可能是0吗?一个数的平方可能是-4吗?
1、一个数的绝对值是6.5,这个数是____。
2、绝对值小于3的非负整数是_______。
3、 的相反数的倒数是_____。
4、 _____。
5、如果 ,那么 。
6、
7、计算:
(1)
(2)
科学记数法:
把一个大于10的数表示成
的形式。
例 (1)用科学记数法表示下列各数:
230000; 15800 0
(2)下列用科学记数法表示的数,原来各是什么数?
4.315 ×103; 1.02 ×106
(3)计算: (8.1 ×108) ÷ (9 ×105)
对近似数的精确度的两种表述方式:
四舍五入 一个数四舍五入到哪一位,就说这个近似数精确到哪一位 有效数字 从左边第一个不是零的数字起,到末位数字为止的所有数字都叫做有效数字
下列由四舍五入法得到的近似数各精确到哪一位?各有几个有效数字?
(1)11亿 (2)36.8
)
2()3(]2)4[()3()2(223-÷--+-⨯-+-)
2()3(]2)4[()3()2(223-÷--+-⨯-+-)4()21(5)1(1210-⨯-÷+-、3
2)2(9
1)31(|32|2-⨯-----、
(3)1.2万(4)1.20万
用四舍五入法,按括号内的要求对下列各数取近似值:
0.33448(精确到千分位)
64.8(精确到个位)
1.5952(精确到0.01)
0.05069(保留2个有效数字)
84960(保留3个有效数字)
练习:
1、0.03296精确到万分位是,有_____个有效数字,它们是_____
2、数0.8050精确到位,有个有效数字,是______
3、数4.8×105精确到位,有个有效数字,是_____
4、
数5.31万精确到位,有个有效数字,是________
更上一层楼
如图,把一个面积为1的正方形二等分、再二等分……那么,第n次二等分后得到的四边形的面积是多少?这个四边形还是正方形吗?
师:说说你这节课的体会让大家来分享!。