有趣的数学行程问题——追及问题,变量下的思考
- 格式:docx
- 大小:15.40 KB
- 文档页数:1
小学数学行程问题的解题思路在小学数学教学活动中,教师对于行程类问题的讲解不仅仅在于让学生熟记公式,更重要的是让学生形成一种属于自己的解题思维。
行程类问题的难点在于对题目中各种变量的分析,将线段应用在行程类问题的解答中可以帮助学生理清楚行程类问题中存在的各种变量关系。
一、一般相遇追及问题在小学数学行程类问题的解题教学环节中,学生最先接触到的是一般性质的相遇追及问题。
一般性的相遇追及问题是题目中所给出来的已知项中,将多个变量变成了定量,减少了学生中间的思考环节,帮助学生在做题环节中减少中间变量时产生的条件干扰。
解决一般类型的相遇追及问题时,要让学生注意寻找题干中出现“一人或者两人”“同时或者不同时”“同向或者异向”等这些字眼来画图解决。
[1]在小学数学行程问题的教学实践中,要科学全面地提升学生的学习质量,不断优化学生的数学素养,教师应该注重创新以及变革行程问题的具体教学思路,更好地优化学生的学习质量。
对于学生而言,一般相遇追及问题是相对比较简单的。
在具体的教学实践中,教师可以为学生提供必要的教学指导,同时不断优化学生的解题思路,真正帮助学生建构起完善且系统化的学习体系。
当学生再遇到这类相遇问题时,能够快速找到解题的切入点,也能够快速高效地进行解答。
在相遇追及问题的教学讲解过程中,为帮助学生更加直观地进行认知,也为了引导学生来展开思考,教师可以着重引导学生来进行画图辅助。
依托于数形结合的方式,能够简化学生的解题思路,同时也能够有效地帮助学生理解与认知。
例如,在小学数学题目中,问:小明的家、小红的家以及学校是在同一条路上,学校在小明和小红家的中间,小明的速度是30 米/ 分,小红的速度是20米/分,已知小明和小红同时从家里向学校出发,经过十分钟之后,两人在学校门口相遇,求小明家和小红家相距多少米?学生在这一道题目的作图上,可以先画一条线段,然后在线段上标出三个点,三个点分别就是题目中所说的小明的家、学校、小红的家,小明家到小红家的距离就是小明家到学校加上小红家到学校的距离,也就是说根据路程的计算公式,小明家到学校的距离是30×10=300 米,小红家到学校的距离是20×10=200 米,然后小明家到小红家的距离就是300+200=500 米。
初中数学行程问题归纳总结数学是一门需要大量实践和思考的学科,特别是在初中阶段,数学的行程问题给了我们很多练习的机会,也考验了我们的逻辑思维和解决问题的能力。
本文将对初中数学中的行程问题进行归纳总结,帮助读者更好地理解和应用相关知识。
一、行程问题的基本概念行程问题,简单来说就是关于时间、速度和距离之间的关系问题。
在实际生活中,我们经常遇到各种行程问题,比如两车相向而行、追及问题等。
解决行程问题,关键在于建立数学模型、设立变量并列方程,推导出解析式,最终解得问题的答案。
二、相遇问题相遇问题是行程问题中常见的一种类型,也是初中阶段数学考试的常见题型之一。
相遇问题有两种典型情况:1. 两车同时出发,同向行驶在这种情况下,我们需要设立变量表示其中一个车辆的行驶时间,列出两个车辆的行程表达式,然后通过解方程求得相遇点的时间和位置。
例如,A车和B车同时从A地和B地出发,A车以v1的速度行驶,B车以v2的速度行驶,相遇于C点,求C点的位置和时间。
解决这类问题的思路是设立相遇时间t和相遇点的距离x,列出A车和B车的行程表达式,然后通过解方程求解出t和x的值。
2. 两车相向而行相向而行的行程问题可以分为两种情况:(1)两车同时出发在这种情况下,我们可以设立相遇时间t和相遇点的距离x,列出A车和B车的行程表达式,然后通过解方程求解出t和x的值。
(2)两车不同时出发在这种情况下,我们需要先找到两车相遇时的公共行驶时间,然后再求出相遇点的位置。
设A车和B车的出发时间分别为t1和t2,速度分别为v1和v2,相遇于C点,求C点的位置。
解决这类问题的思路是先设立公共行驶时间t,再设立A车和B车的行程表达式,然后通过解方程求解出t和x的值。
三、其他常见的行程问题除了相遇问题外,还有一些其他常见的行程问题,包括但不限于:1. 超车问题超车问题是行程问题中较为复杂的一类,常常涉及到多个车辆的行驶速度和距离。
解决超车问题的关键在于找到相互超越的点和时间,建立相应的方程并进行求解。
1. 行程问题的定义和常见类型行程问题指的是在特定条件下,物体的位置或移动轨迹的计算问题。
常见类型包括直线运动、曲线运动、圆周运动等。
在实际生活中,我们经常会遇到行程问题,比如汽车行驶路径的规划、飞机航线的设计、机器人的路径规划等。
2. 行程问题的深度分析对于行程问题的深度分析,我们需要从数学、物理和工程学等多个角度进行思考。
在数学上,行程问题涉及到直线方程、曲线方程、参数方程等。
在物理上,行程问题需要考虑速度、加速度、位移等因素。
而在工程学中,行程问题关乎到路径规划、轨迹设计、机器人运动控制等方面。
3. 行程问题的解题方法针对行程问题,常见的解题方法包括数学建模、仿真模拟、优化算法等。
数学建模是将实际问题抽象成数学模型,通过求解模型来得到问题的解。
仿真模拟是利用计算机模拟真实场景,通过模拟运动过程来分析和优化路径规划。
而优化算法则是通过数学优化方法,寻找最优路径或最优轨迹。
4. 对行程问题的个人观点和理解在处理行程问题时,我认为综合运用数学建模、仿真模拟和优化算法是非常有效的。
数学建模可以帮助我们把复杂的实际问题简化成数学模型,从而更容易进行分析和求解。
仿真模拟可以让我们在计算机上进行多次实验,得出最优的解决方案。
优化算法则可以帮助我们在复杂的情况下找到最佳的路径或轨迹。
5. 总结回顾通过深度分析行程问题的定义、常见类型、解题方法和个人观点,我们可以更全面、深刻地理解和应用行程问题。
在实际应用中,可以根据具体情况选择合适的解题方法,如数学建模、仿真模拟或优化算法,来解决行程问题,从而实现路径规划、轨迹设计和运动控制等应用需求。
在处理行程问题时,多角度思考和综合运用不同方法是非常重要的。
只有通过综合应用数学、物理和工程学等知识,才能更好地理解和解决行程问题。
希望本文对行程问题有所启发,也希望读者在实际应用中能够灵活运用所学知识,解决实际问题。
6. 结束语行程问题是一个涉及多个领域知识的综合性问题,深入理解和解决行程问题需要我们综合运用数学建模、仿真模拟和优化算法等多种方法。
六年级奥数专题:追及问题的要点及解题技巧一、多人相遇追及问题的概念及公式多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。
所有行程问题都是围绕""这一条基本关系式展开的,比如我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系转化.由此还可以得到如下两条关系式:多人相遇与追及问题虽然较复杂,但只要抓住这两条公式,逐步表征题目中所涉及的数量,问题即可迎刃而解。
二、多次相遇追及问题的解题思路所有行程问题都是围绕""这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.多次相遇与全程的关系1。
两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。
即甲第1次如果走了N米,以后每次都走2N米。
2。
同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差奥数行程:追及问题例题及答案(一)例1。
一条街上,一个骑车人和一个步行人相向而行,骑车人的速度是步行人的3倍,每个隔10分钟有一辆公交车超过一个行人。
每个隔20分钟有一辆公交车超过一个骑车人,如果公交车从始发站每隔相同的时间发一辆车,那么间隔几分钟发一辆公交车?A。
10 B。
8 C。
6 D。
4【解答】我们知道这个题目出现了2个情况,就是(1)汽车与骑自行车的人的追击问题,(2)汽车与行人的追击问题追击问题中的一个显著的公式就是路程差=速度差×时间我们知道这里的2个追击情况的路程差都是汽车的间隔发车距离。
行程问题(四)——追及问题例1、甲乙两辆汽车从同一个地方同向行驶,甲车每小时行驶50千米,比乙车快1/4 。
如果乙车先行1.5小时,甲乙两车再同时行驶几个小时,两车还相距60千米的距离?例2、甲乙分别从AB两地同时出发,甲乙两人步行的速度比是7:5。
如果是相向而行,那么0.5小时后就可相遇;如果按照从A到B的方向同向而行,请问甲追上乙需要多长时间呢?例3、某人坐上了公共汽车后,发现一个小偷向相反方向步行。
10秒后,他下车去追小偷,如果他的速度比小偷快上一倍,比汽车速度慢4/5,则追上小偷需要多少秒?例4、某小学组织学生排队去郊游。
队伍的步行速度是1米/秒,队尾的老师以2.5米/秒的速度赶到排头,然后立即返回队尾,一共用了10秒钟。
请问队伍的长度是多少?例5、甲乙丙三个人进行1000米赛跑。
当甲到达终点时,乙距终点还有50米;如果乙到达终点时,丙离终点100米。
那么甲到达终点时,丙离终点还有多少米?例6、甲、乙、丙三辆车中,甲车的速度是每小时行驶50千米,乙车每小时行驶60千米,丙车的速度是每小时行驶70千米,甲、乙两车从北镇,丙车从南镇同时相向出发,丙车遇到乙车后2小时再遇到甲车。
两镇相距多少千米?例7、在一条公路上汽车从A城出发以不变的速度朝西边的B城开去。
这时B城有甲、乙、丙三人骑自行车同时出发,甲、乙的速度相同,丙的速度是甲的速度的2倍,甲向东而行,乙、丙向西而行。
甲行驶了5千米恰好与汽车相遇,相遇以后汽车又用了15分钟追上了乙,再过15分钟追上了丙,求汽车的速度为每小时多少千米?A、B两城相距多少千米?例8、甲乙两个人沿着一个边长9米正方形花坛的四周散步。
甲每分钟走30米,乙每分钟走18米,两人每绕过一个顶点都要花6秒钟。
甲在出发后多少分钟,在什么地点刚好追上乙?A例9、甲乙两人同时从山脚开始爬山,到达山顶后立即下山。
他们两人下山的速度都是各自上山速度的2倍,甲到达山顶时乙距山顶还有400米,甲回到山脚时乙刚好下到了半山腰。
行程问题——追及问题【知识引入】追及问题也是行程问题的一种情况,这类应用题的特点是:两个物体同时向同一方向运动,出发的地点不同(或者从同一地点不同时出发,向同一方向运动),慢者在前,快者在后,因而快者离慢者越来越近,最后终于可以追上。
【知识要点讲解】解答这类问题时,关键是要明确速度差的含义(即单位时间内快者追上慢者的路程)。
其常用公式有:速度差×追及时间=路程差路程差÷速度差=追及时间路程差÷追及时间=速度差速度差=快者速度-慢者速度快者速度=速度差+慢者速度慢者速度=快者速度-速度差【基本例题】1、一辆汽车和一辆摩托车同时从甲乙两城出发,向同一个方向前进。
汽车在前,每小时行40千米;摩托车在后,每小时行75千米。
经过3小时摩托车追上汽车。
甲乙两城相距多少千米?2、弟弟出门购物,出行的速度是每小时6千米,2小时后,妈妈有事要通知弟弟,所以安排哥哥骑车去追弟弟。
已知哥哥骑车的速度是每小时30千米,那么,多少个小时后,哥哥能追上弟弟?3、一辆慢车在上午9点钟以每小时49千米的速度由甲城开往乙城,另外有一辆快车在上午11点钟每小时67千米的速度也从甲城开往乙城,铁路部门规定,同时行驶的两列火车之间的距离不能小于8千米,问:这列慢车最迟应该在什么时候停下让快车超过?4、一个人步行平均每秒行1.5米。
一列货车从他后面开过来,从车头遇到他到车尾离开他一共用了9秒钟,已知列车长153米,求列车速度。
5、一架敌机侵犯我领空,我机立即起飞迎击。
若两机相距50千米时,敌机扭转机身以每分钟14千米的速度逃跑,我机以每分钟20千米的速度追击。
当我机追至距敌机2千米时,与敌机激战,结果用1分钟将敌机击落。
问我机从起飞到击落敌机共用了多少分钟?6、甲乙两人以每分钟60米的速度同时同地同向步行出发,走了12分钟以后,甲返回取东西,而乙继续前进,甲取东西用了6分钟,然后改骑自行车以每分钟360米的速度去追乙,甲骑多少分钟才能追上乙?【巩固提高】7、甲乙二人同时从相距10千米的AB两地出发,同向而行,乙在前,甲在后。
小学奥数知识点趣味学习——行程问题之追及问题追及问题的要点及解题技巧1、多人相遇追及问题的概念及公式多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。
所有行程问题都是围绕这一条基本关系式展开的,比如我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系转化。
由此还可以得到如下两条关系式:多人相遇与追及问题虽然较复杂,但只要抓住这两条公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.2、多次相遇追及问题的解题思路所有行程问题都是围绕""这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.多次相遇与全程的关系1.两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。
即甲第1次如果走了N米,以后每次都走2N 米。
2.同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差例题精讲:例1:甲、乙两人在相距16千米的A、B两地同时出发,同向而行。
甲步行每小时行4千米,乙骑车在后,每小时速度是甲的3倍,几小时后乙能追上甲?【分析】此题是两人同向运动问题,乙追甲,利用追及问题的关系式,就可以解决问题。
解:16÷(3×4-4)=2(小时)答:2小时后乙能追上甲。
例2:名士小学一条环形跑道长400米,甲骑自行车平均每分钟骑300米,乙跑步平均每分钟跑250米,两人同时同地同向出发,经过多少分钟两人相遇?【分析】当甲、乙同时同地出发后,距离渐渐拉大再缩小,最终甲又追上乙,这时甲比乙要多跑1圈,即甲乙的距离差为400米,而甲乙两人的速度已经知道,用环形跑道长除以速度差就是要求的时间。
小学奥数之行程问题综合型详解教案行程问题综合性详解一、知识详解行程问题核心公式:S=V×T,因此总结如下:1、当路程一定时,速度和时间成反比2、当速度一定时,路程和时间成正比3、当时间一定时,路程和速度成正比从上述总结衍生出来的很多总结如下:4、追及问题:路程差÷速度差=时间5、相遇问题:路程和÷速度和=时间6、流水问题:顺水速度=船速+水流速度;逆水速度=船速-水流速度水流速度=(顺水速度-逆水速度)÷2船速=(顺水速度+逆水速度)÷27、电梯问题:S=(人与电梯的合速度)×时间8、平均速度:V平=总路程S总÷总时间T总二、典例分析基础1、北京到天津的距离是138千米,甲、乙两人同时从两地出发,甲每小时行48千米,乙每小时行44千米,他们几小时能相遇?2、一辆汽车,从甲地到乙地。
如果每时行45千米,就要晚0.5时到达,如果每时行50千米,就可提前0.5时到达。
问甲、乙两地相距多少千米?4.4时,乘大客车要用几时?4、甲、乙两列火车同时从A、B两城相向开出,4小时相遇。
相遇时,两车所行路程的比是3:4,已知乙车每时行60千米,求A、B 两城相距多少千米?5、李明开车从甲地到乙地,3时行驶330千米,照这样计算,还需5时就可以到达乙地,甲乙两地相距多少千米?拔高6、邮递员早晨7时出发送一份邮件到对面的山坳里,从邮局开始要走12千米的上坡路,8千米的下坡路。
他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地后停留1小时,又从原路返回,邮递员什么时候可以回到邮局?(核心公式:时间=路程÷速度)解法一:逐步考虑去时:T=返回:T’=T总=解法二:整体思考全程共计:去时的上坡变成返回时的下坡,去时的下坡变成返回时的上坡因此来回走的时间为:所以总的时间为:7、小明从甲地到乙地,去时每小时走6千米,回时每小时走9千米,来回共用5小时。
小学奥数行程问题之追及问题本文介绍了奥数第七讲行程问题中的追及问题,给出了解决追及问题的基本关系式和公式,并通过三个例子进行了讲解。
在解决追及问题时,需要注意追赶者和被追赶者所用时间相等的不变量,以及“追及距离”和“追赶者追上被追赶者所走的距离”这两个量之间的区别。
通过例子的讲解,学生可以熟练掌握追及问题的三个公式,并灵活运用公式求解问题。
例子中涉及了同时出发的同向而行的追及问题和先后出发的追及问题,需要画出线段图进行分析,求解速度差和追及时间,最终得出答案。
1、哥哥和弟弟同时在学校上学。
弟弟先走,以每分钟80米的速度,3分钟后,哥哥以每分钟200米的速度骑车向学校骑去。
问哥哥几分钟后能追上弟弟?2、姐妹在同一小学上学。
妹妹以每分钟50米的速度从家走向学校,姐姐比妹妹晚10分钟出发,为了不迟到,她以每分钟150米的速度从家跑步上学。
结果两人同时到达学校。
求家到学校的距离有多远?追及问题的基本公式为:路程差=速度差×追及时间,速度差=路程差÷追及时间,追及时间=路程差÷速度差。
教学目标为掌握不同形式的追及问题的解题思路和基本规律。
教学重点为通过图形分析追及问题,难点为找准解决环形路程的追及问题的突破口。
例4为一条环形跑道长400米的问题。
甲骑自行车平均每分钟骑300米,乙跑步,平均每分钟跑250米。
两人同时同地同向出发,经过多少分钟两人相遇?甲乙的速度差为50米每分钟,甲追上乙所用的时间为8分钟,因此经过8分钟两人相遇。
例5为在周长400米的圆的一条直径的两端,甲、乙两人分别以每分钟60米和50米的速度,同时同向出发,沿圆周行驶。
问2小时内,甲追上乙多少次?路程差为200米,甲追上乙一次所用的时间为4小时,因此2小时内甲追上乙的次数为1次。
2小时本文主要介绍了环形跑道的追及问题和和差问题的综合运用。
文章中给出了两个例子,分别是在圆形跑道上,甲、乙两人分别以每秒7米,每秒5米的骑车速度同时顺时针方向行驶,20分钟内甲追上乙几次?以及在480米的环形跑道上,甲、乙两人同时同地起跑,如果同向而行3分钟20秒相遇,如果背向而行40秒相遇,已知甲比乙快,求甲、乙的速度?文章给出了详细的解题方法和答案,并提供了课后练和小结。
把行程问题、相遇问题、追及问题的解题思路和解题方法说一下(一)相遇问题两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题.它的特点是两个运动物体共同走完整个路程. 小学数学教材中的行程问题,一般是指相遇问题.相遇问题根据数量关系可分成三种类型:求路程,求相遇时间,求速度.它们的基本关系式如下:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和-已知的一个速度(二)追及问题追及问题的地点可以相同(如环形跑道上的追及问题),也可以不同,但方向一般是相同的.由于速度不同,就发生快的追及慢的问题.根据速度差、距离差和追及时间三者之间的关系,常用下面的公式:距离差=速度差×追及时间追及时间=距离差÷速度差速度差=距离差÷追及时间速度差=快速-慢速解题的关键是在互相关联、互相对应的距离差、速度差、追及时间三者之中,找出两者,然后运用公式求出第三者来达到解题目的.(三)二、相离问题两个运动物体由于背向运动而相离,就是相离问题.解答相离问题的关键是求出两个运动物体共同趋势的距离(速度和).基本公式有:两地距离=速度和×相离时间相离时间=两地距离÷速度和速度和=两地距离÷相离时间流水问题顺流而下与逆流而上问题通常称为流水问题,流水问题属于行程问题,仍然利用速度、时间、路程三者之间的关系进行解答.解答时要注意各种速度的涵义及它们之间的关系. 船在静水中行驶,单位时间内所走的距离叫做划行速度或叫做划力;顺水行船的速度叫顺流速度;逆水行船的速度叫做逆流速度;船放中流,不靠动力顺水而行,单位时间内走的距离叫做水流速度.各种速度的关系如下:(1)划行速度+水流速度=顺流速度(2)划行速度-水流速度=逆流速度(3)(顺流速度+ 逆流速度)÷2=划行速度(4)(顺流速度-逆流速度)÷2=水流速度流水问题的数量关系仍然是速度、时间与距离之间的关系.即:速度×时间=距离;距离÷速度=时间;距离÷时间=速度.但是,河水是流动的,这就有顺流、逆流的区别.在计算时,要把各种速度之间的关系弄清楚是非常必要的.。
数学行程追赶问题教案反思教案标题:数学行程追赶问题教案反思教案反思是教师在教学过程中对教案设计、教学方法和学生学习情况进行分析和总结的过程。
通过反思,教师可以发现教学中的问题和不足,并提出改进和优化的建议。
下面是对数学行程追赶问题教案的反思:1. 教案设计:- 教学目标:教案中是否明确了学生需要达到的具体目标?是否与课程标准和学生的学习需求相匹配?- 教学内容:教案中是否将数学行程追赶问题的相关概念、公式和解题方法进行了详细介绍?是否有足够的例题和练习题?- 教学步骤:教案中的教学步骤是否清晰明确?是否能够引导学生逐步理解和掌握数学行程追赶问题的解题思路?2. 教学方法:- 激发学生兴趣:教案中是否采用了多样化的教学方法,如引入问题情境、启发式教学等,以激发学生的兴趣和主动性?- 合作学习:教案中是否鼓励学生进行合作学习,通过小组讨论、互助学习等方式,促进学生之间的合作和交流?- 多媒体辅助:教案中是否利用多媒体教具或技术手段,如投影仪、电子白板等,增强教学效果和学生的理解力?3. 学生学习情况:- 学习困难:教案中是否考虑到学生可能遇到的学习困难和问题?是否提供了相应的辅导和指导措施?- 学习反馈:教案中是否设置了学习反馈环节,如课堂练习、小测验等,以及时了解学生的学习情况和掌握程度?- 学习效果:教案中的教学目标是否能够有效地达到?学生在学习过程中是否能够理解和应用数学行程追赶问题的解题方法?根据对教案的反思,可以提出以下改进和优化的建议:- 在教学目标中,明确列出学生需要达到的具体能力和知识点,以便更好地指导教学。
- 增加一些生动有趣的例子和情境,以提高学生对数学行程追赶问题的兴趣和理解。
- 引入合作学习的方式,让学生在小组中共同解决问题,促进彼此之间的合作和交流。
- 在教学过程中,及时发现学生的学习困难,并提供个别辅导和指导,帮助学生克服困难。
- 设计一些形式多样的学习反馈方式,如课堂练习、小测验等,及时了解学生的学习情况和掌握程度。
行程问题7大经典题型归纳总结拓展引言行程问题是数学中常见的问题之一,主要研究物体在不同速度、时间、距离条件下的运动情况。
本文将对行程问题中的7大经典题型进行归纳总结,并进行拓展分析。
题型一:相遇问题定义相遇问题是指两个或多个物体从不同地点出发,以不同的速度相向而行,最终在某一点相遇的问题。
公式设A、B两点相距( d ),甲从A点出发,速度为( v_a );乙从B点出发,速度为( v_b )。
若甲乙相遇于C点,则相遇时间为( t ),有:[ t = \frac{d}{v_a + v_b} ]拓展可以拓展到多物体相遇问题,考虑物体间的速度差和相对运动。
题型二:追及问题定义追及问题是指一个物体追赶另一个物体,两者以不同速度运动,最终追上的问题。
公式设甲从A点出发,速度为( v_a );乙从B点出发,速度为( v_b ),甲追上乙所需时间为( t ),则:[ t = \frac{d}{v_a - v_b} ]拓展考虑追及过程中的加速、减速情况,以及追及的临界条件。
题型三:往返问题定义往返问题是指物体在两点间来回运动,可能涉及速度变化的问题。
公式设A、B两点相距( d ),物体速度为( v ),往返一次所需时间为( t ),则:[ t = \frac{2d}{v} ]拓展考虑物体在往返过程中速度的变化,以及往返次数与时间的关系。
题型四:流水行船问题定义流水行船问题是指船只在有水流的河流中航行,需要考虑船速与水流速度的问题。
公式设船在静水中的速度为( v_s ),水流速度为( v_r ),船顺流而下的速度为( v_{up} ),逆流而上的速度为( v_{down} ),则:[ v_{up} = v_s + v_r ][ v_{down} = v_s - v_r ]拓展考虑船只在不同水流速度下的航行策略,以及如何最优化航行时间。
题型五:环形跑道问题定义环形跑道问题是指物体在环形跑道上运动,可能涉及速度和圈数的问题。
数学专项复习行程问题专项专题2追及问题在我们的日常生活和数学学习中,行程问题是一个常见且重要的部分。
其中,追及问题更是让许多同学感到头疼。
但别担心,让我们一起来深入了解一下追及问题,掌握解决它的方法。
追及问题,简单来说,就是两个物体在同一直线上运动,速度快的在后面追赶速度慢的,最终追上的过程。
为了更好地理解追及问题,我们先来看一个简单的例子。
假设小明和小红在操场上跑步,小明的速度是 5 米每秒,小红的速度是 3 米每秒。
一开始,小红在小明前面 10 米的位置。
那么经过多长时间小明能够追上小红呢?我们来分析一下,小明每秒比小红多跑 5 3 = 2 米。
而他们之间的初始距离是 10 米,所以小明追上小红所需的时间就是 10 ÷ 2 = 5 秒。
从这个简单的例子中,我们可以总结出追及问题的基本公式:追及时间=追及路程 ÷速度差。
接下来,我们再来看一个稍微复杂一点的例子。
一辆汽车以每小时 60 千米的速度行驶,在它后面 80 千米处有一辆摩托车以每小时 80 千米的速度追赶。
请问摩托车需要多长时间才能追上汽车?首先,我们需要把单位统一,将汽车的速度转换为米每秒:60 千米/小时= 60×1000÷3600 ≈ 1667 米每秒,摩托车的速度为 80×1000÷3600 ≈ 2222 米每秒。
两者的速度差为 2222 1667 = 555 米每秒,追及路程是 80×1000 =80000 米。
那么追及时间=80000 ÷ 555 ≈ 1441441 秒≈ 4 小时。
在解决追及问题时,我们还需要注意一些特殊情况。
比如,当两个物体同时出发时,追及时间就等于追及路程除以速度差;但如果不是同时出发,我们就需要先计算出两者出发的时间差,然后再根据实际情况进行计算。
再比如,如果两个物体是在环形跑道上运动,那么追及问题就会变得更加复杂。
因为在环形跑道上,追上可能意味着多跑了一圈或者几圈。
行程问题解题技巧行程问题在行车、走路等类似运动时,已知其中的两种量,按照速度、路程和时间三者之间的相互关系,求第三种量的问题,叫做“行程问题”。
此类问题一般分为四类:一、相遇问题;二、追及问题;三、相离问题;四、过桥问题等。
行程问题中的相遇问题和追及问题主要的变化是在人(或事物)的数量和运动方向上。
相遇(相离)问题和追及问题当中参与者必须是两个人(或事物)以上;如果它们的运动方向相反,则为相遇(相离)问题,如果他们的运动方向相同,则为追及问题。
相遇问题两个运动物体作相向运动,或在环形道口作背向运动,随着时间的延续、发展,必然面对面地相遇。
这类问题即为相遇问题。
相遇问题的模型为:甲从A地到B地,乙从B地到A地,然后甲,乙在途中相遇,实质上是两人共同走了A、B之间这段路程,如果两人同时出发,那么:A,B两地的路程=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间基本公式有:两地距离=速度和×相遇时间相遇时间=两地距离÷速度和速度和=两地距离÷相遇时间二次相遇问题的模型为:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。
则有:第二次相遇时走的路程是第一次相遇时走的路程的两倍。
相遇问题的核心是“速度和”问题。
利用速度和与速度差可以迅速找到问题的突破口,从而保证了迅速解题。
相离问题两个运动着的动体,从同一地点相背而行。
若干时间后,间隔一定的距离,求这段距离的问题,叫做相离问题。
它与相遇问题类似,只是运动的方向有所改变。
解答相离问题的关键是求出两个运动物体共同趋势的距离(速度和)。
基本公式有:两地距离=速度和×相离时间相离时间=两地距离÷速度和速度和=两地距离÷相离时间相遇(相离)问题的基本数量关系:速度和×相遇(相离)时间=相遇(相离)路程在相遇(相离)问题和追及问题中,必须很好的理解各数量的含义及其在数学运算中是如何给出的,这样才能够提高解题速度和能力。
小学奥数行程问题之追及问题奥数第七讲行程问题(一)——追及问题四年级奥数教案第七讲行程问题(一)——追及问题解决追及问题的基本关系式是:路程差=速度差×追及时间;速度差=路程差÷追及时间;追及时间=路程差÷速度差在解决追及问题中,我们要抓住一个不变量,即追赶者所用时间与被追赶者所用的时间是相等的,都等于追及时间。
大家还要注意区别“追及距离”与“追赶者追上被追赶者所走的距离”这两个量之间的区别。
就像刚才的例子,“追及距离”为150米,而狗追上兔一共走了3×150=450(米)二、新授课:【例1】甲、乙两人相距150米,甲在前,乙在后,甲每分钟走60米,乙每分钟走75米,两人同时向南出发,几分钟后乙追上甲?【思路分析】这道问题是典型的追及问题,求追及时间,根据追及问题的公式:追及时间=路程差÷速率差150÷(75-60)=10(分钟)答:10分钟后乙追上甲。
【小结】提醒学生闇练掌握追及问题的三个公式。
【例2】骑车人与行人同一条街同方向前进,行人在骑自行车人前面450米处,行人每分钟步行60米,两人同时出发,3分钟后骑自行车的人追上行人,骑自行车的人每分钟行多少米?【思路阐发】这道问题,是同时动身的同向而行的追及问题,请求其中某个速率,就必须先求出速率差,按照公式:速率差=路程差÷追及时间:速度差:450÷3=150(千米)自行车的速度:150+60=210(千米)答:骑自行车的人每分钟行210千米。
【小结】这道题目在于灵活运用追及问题的三个基本公式求其中任意三个量。
【例3】两辆汽车从A地到B地,第一辆汽车每小时行54千米,第二辆汽车每小时行63千米,第一辆汽车先行2小时后,第二辆汽车才出发,问第二辆汽车出发后几小时追上第一辆汽车?【思路阐发】按照题意可知,第一辆汽车先行2小时后,第二辆汽车才动身,画线段图分析:从图中可以看出第一辆行2小时的路程为两车的路程差,即54×2=108(千米),两车相差108米,第二辆车去追第一辆车,第二辆车去追第一辆车,第二辆车每小时比第一辆车每多行63-54=9(千米),即为速度差,用追及时间=路程差÷速率差。
行程问题辶追及问题解题方法摘要:一、行程问题概述二、追及问题解题方法1.基本公式2.分类讨论a.直线追及b.曲线追及c.多人追及3.解题步骤4.实例分析正文:一、行程问题概述行程问题是指在一定时间内,物体之间的相对位置和速度发生变化的问题。
它主要包括直线行程问题和曲线行程问题两大类。
行程问题中的关键是理解速度、时间和距离之间的关系,以及掌握恰当的解题方法。
二、追及问题解题方法1.基本公式在追及问题中,常用的基本公式有:(1)追及时间= 追及距离/ 相对速度(2)追及距离= 追及时间× 相对速度2.分类讨论(1)直线追及当两个物体在同一直线上运动时,追及问题的解题思路如下:a.判断追及情况:若初始位置满足追及条件,则追及成功;否则,追及失败。
b.计算追及时间:根据公式计算追及时间。
c.计算追及距离:根据公式计算追及距离。
(2)曲线追及当两个物体在曲线轨道上运动时,追及问题的解题思路如下:a.分析物体运动轨迹,找出相对速度最大和最小的位置。
b.在相对速度最大和最小的位置,分别计算追及时间。
c.根据追及时间,计算追及距离。
(3)多人追及当多个物体之间发生追及时,解题方法如下:a.分析各物体之间的相对速度和位置关系。
b.确定第一个追及对象,按照直线追及或曲线追及的方法计算追及时间。
c.计算第一个追及距离,然后依次计算其他追及距离。
三、解题步骤1.分析题目,确定物体运动类型(直线或曲线)。
2.计算相对速度:分析物体间的速度关系,找出相对速度。
3.判断追及情况:根据相对速度和初始位置,判断追及可能性。
4.计算追及时间:根据公式计算追及时间。
5.计算追及距离:根据公式计算追及距离。
6.实例分析:将解题步骤应用于具体问题,进行实例分析。
通过以上方法,我们可以轻松解决行程问题中的追及问题。
在实际解题过程中,关键是掌握基本公式,灵活运用分类讨论方法,并遵循解题步骤。
有趣的数学行程问题——追及问题,变量下的思考
提到行程问题,在我们的脑海中,马上就可以浮现出三个要素:路程、速度和时间,而提到追及问题的时候,我们又可以想到的是路程差是个定值。
比如:
(1)直接的追及问题:甲、乙两人分别从A、B两地同时出发,同向而行,几分钟后甲追到乙。
这儿的A、B两地的距离差是个定值,同时出发,到追到乙,两者用的时间相等,变量为速度。
(2)环形跑道追及问题:甲乙二人同时出发,同向而行,多少分钟后甲追上乙。
这儿的变量仍是速度,距离差值为环形跑道的周长。
(3)乙从A地出发,多少分钟后甲也从A地出发,到相距多远的B地与A相遇。
……
以上这些都是比较经典的行程追及问题,时间×速度差=追及的距离,这个公式相信大家早已心有定数,当然,如果有兴趣的话,可以留言告知于小编,以后的几个专题就专门就行程问题作以讲解。
而我们今天所要分析的是,变量下的追及问题:
例:在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明。
已知公共汽车从始发站每次间隔同样的时间发一辆车,问:相邻两车间隔几分发车?
分析:初看此题,是不是感觉有点麻烦了,变量太多,还没有直接的数据。
那么,除了设未知数,别无他法。
先设车的速度为x米/分,再设小光的速度为y米/分,则小明的速度为3y米/分,刚刚写出的公式还记得吗?时间×速度差=追及的距离,便可列出等式:
10(x-y)=20(x-3y)
可得出 x=5y 这个结论,意即:车速是小光速度的5倍,
也就意味着,小光走10分钟,相当于车行驶2分钟,再结合,每10分钟有一辆车超过小光,那么相邻两车的发车间隔时间就为8分钟。
看懂了吗?。