冀教版数学八年级上册第十三章 全等三角形
- 格式:docx
- 大小:1.76 MB
- 文档页数:150
课时目标1.会利用尺规,按要求作三角形.2.会根据要求写出作三角形的已知、求作.3.知道作图的依据,会运用两个三角形全等的条件解释作图的合理性.学习重点能依据作图语言作出相应的图形.学习难点用规范的作图语言描述作法,并能依据要求作出相应的图形.课时活动设计复习回顾1.如图,已知线段a,b.求作:线段c,使线段c的长度为线段a,b长度的和.解:如图所示.2.如图所示,已知∠α,求作∠AOB,使∠AOB=∠α.解:如图所示.归纳:只用直尺(没有刻度)和圆规也可以画出一些图形,这种画图的方法被称为尺规作图.这种作图方法不必用具体数值,只按给定图形进行再作图.这也是它与画图的区别所在.设计意图:回顾基本的尺规作图,为接下来尺规作三角形做好准备.探究新知由三角形全等的判定可以知道,每一种判定两个三角形全等的条件(SSS,SAS,ASA,AAS),都只能作出唯一的三角形.探究1已知三角形的三边,利用尺规作三角形例已知三边,用尺规作三角形.如图,已知线段a,b,c.求作:∠ABC,使AB=c,BC=a,AC=b.分析:如图,由作一条线段等于已知线段,能够作出边AB,即A,B两点确定,而BC=a,AC=b,故以点A为圆心,b为半径画弧,以点B为圆心,a为半径画弧,两弧的交点就是点C.作法:问题:例题中尺规作三角形的依据是什么?解:利用SSS判定三角形全等.探究2已知三角形的两边及其夹角,利用尺规作三角形如图,已知线段a,b,∠α.求作:∠ABC,使得BC=a,AC=b,∠ACB=∠α.学生独立完成,对有困难的学生,教师可一旁给予指导.分析:作出符合要求的三角形,关键是根据条件确定三角形的三个顶点的位置.解题时要根据实际情况判断是否存在多个符合题设条件的∠ABC.解:如图所示.作法:(1)作∠C,使∠C=∠α;(2)在∠C的一边上截取CB,使CB=a;(3)在∠C的另一边上截取AC,使AC=b,连接AB,∠ABC即为所求.探究3已知三角形的两角及其夹边,利用尺规作三角形尺规作图:已知三角形的两角及其夹边,求作这个三角形.如图,已知∠α,∠β,线段a.求作:∠ABC,使得∠A=∠α,∠B=∠β,AB=a.(不要求写作法,保留作图痕迹即可)学生独立完成后,教师点评.分析:如图,作射线AM,在射线AM上截取AB=a,作∠EAB=α,∠FBA=β,射线AE 交射线BF于点C,∠ABC即为所求.解:如图,∠ABC即为所求.设计意图:让学生从另一个角度感知“全等三角形判定的基本事实”是三角形定形、定大小的决定条件.使学生认识“用尺规可作出的三角形的条件”与三角形全等判定方法的内在联系,培养学生的动手操作能力、发展想象力和空间的推理能力.典例精讲例已知:线段a,直角α和锐角β.求作:直角三角形ABC,使∠C=∠α,∠A=∠β,BC=a.解:如图所示.作法:第一步:作∠MCN,使∠MCN=∠α=90°.第二步:以点C为圆心,a为半径作弧,交CN于点B.第三步:过B点作BD垂直于BC.第四步:在BD左侧作∠DBE,使∠DBE=∠β.第五步:延长BE,交CM于点A,∠ABC即为所求.设计意图:熟练尺规作图,化未知为已知,体会转化思想,运用本节知识,作出满足要求的三角形.巩固训练1.利用尺规不能唯一作出的三角形是(D)A.已知三边B.已知两边及夹角C.已知两角及夹边D.已知两边及其中一边的对角2.如图所示,已知线段a,用尺规作出∠ABC,使AB=a,BC=AC=2a.作法:(1)作一条线段AB=a;(2)分别以点A、B为圆心,以2a为半径画弧,两弧交于C点;(3)连接AC、BC,则∠ABC即为所求.3.如图,利用尺规,在∠ABC的边AC上方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,并说明:CD∠AB.(尺规作图要求保留作图痕迹,不写作法)解:如图所示,因为AD=BC,∠DAC=∠ACB,AC=CA,所以∠ACD∠∠CAB(SAS).所以∠ACD=∠CAB.所以AB∠CD.设计意图:这个环节充分发挥了学生的主观能动性,是对本节课学习内容的巩固及内化.课堂小结1.尺规作三角形的方法:作一个三角形与已知三角形全等,根据的就是三角形全等的条件.因此,作三角形时,所给的条件可以是三条边或两条边及夹角或两角及夹边或两角及一角的对边.2.尺规作三角形的步骤:在寻找作法的时候,一定要根据已知画出草图,确定作图步骤.3.尺规作图的基本要求:(1)画图形;(2)写作法;(3)保留痕迹.设计意图:通过课堂小结总结知识和数学方法,帮助学生自行建构知识体系,提高学习能力.课堂8分钟.1.教材第54页习题A组第1,2题,习题B组第2题.2.七彩作业.13.4三角形的尺规作图1.已知三角形的三边,利用尺规作三角形.(SSS)2.已知三角形的两边及其夹角,利用尺规作三角形.(SAS)3.已知三角形的两角及其夹边,利用尺规作三角形.(ASA)教学反思。
第十三章全等三角形
13.3 全等三角形的判定
第2课时“SAS”判定三角形全等
1.(2024苏州期末)如图,在△ABC与△DEF中,AB=DE,∠B=∠E,添加下列条件后,能运用“SAS”判定△ABC≌△DEF的是( )
A.BC=EF B.∠A=∠D C.AC=DF D.∠C=∠F
(第1题) (第2题) 2.(2023重庆南川区期末)如图,在△ABC中,AB=AC,AD平分∠BAC,则下列结论错误的是( )
A.∠B=∠C B.AD⊥BC
C.∠BAD=∠ACD D.BD=CD
3.(2024哈尔滨期末)如图,点A,B分别在OC,OD上,AD与BC相交于点E,OA=OB,OC =OD,∠O=40°,∠D=20°,则∠AEC等于( )
A.120° B.80° C.90° D.100°
(第3题) (第4题)
4.如图,AC=DB,AO=DO,CD=20 m,则A,B两点间的距离为________m.
5.为参加学校举办的风筝设计比赛,小明用竹棒扎成如图所示的风筝框架,其中∠EDH=∠FDH,ED=FD.小明不用测量就能知道EH=FH吗?为什么?
第十三章 全等三角形
13.3 全等三角形的判定
第2课时 “SAS ”判定三角形全等
1.A
2.C
3.D
4.20
5.解:小明不用测量就能知道EH =FH .
理由:在△HED 和△HFD 中,
∵⎩⎪⎨⎪⎧ED =FD ,∠EDH =∠FDH ,DH =DH ,
∴△HED ≌△HFD (SAS),∴EH =FH .。
八年级数学•上新课标[冀教]
第十三章全等三角形
1.了解逆命题与逆定理的含义,能够判断真命题与假命题,感受证明的必要性、证明过程的严谨性以及结论的确定性.
2.了解全等图形的概念,能识别全等多边形(三角形)的对应顶点、对应角、对应边,知道全等多边形(三角形)的对应边、对应角分别相等.
3.熟练掌握三角形全等的判定方法,并会运用这些判定方法判定两个三角形全等.
4.了解尺规作图的步骤,能利用基本作图方法作三角形.
5.在教学中,注意知识的形成过程和所学内容与现实生活的联系;注重让学生经历操作、观察、推理、想象等探索过程.
1.通过探究知识的过程,了解全等图形和全等三角形的判定,以及尺规作图之间的内在联系.
2.使学生有效地使用逻辑推理的方式认识几何图形,知道证明的过程可以有不同的表达方式,学会演绎推理证明的格式.
3.掌握全等三角形的证明思路和方法.
1.让学生通过动手操作,感受知识的形成过程,树立认真的学习态度,激发学生的学习热情.
2.利用小组合作学习的方法,在学习中多与同学进行交流,多种感官参与教学,主动探索,发现规律,归纳概括,形成能力,养成学数学、爱数学的情感.
学生已经学过线段、角、相交线、平行线以及三角形的有关知识,这些为学习命题和全等三角形的有关内容做了准备.通过本章的学习,可以丰富和加深学生对已学图形的认识.全等三角形是研究图形的重要工具,学生只有掌握了全等三角形的相关知识,并且能够灵活运用它,才能学好以后要学的四边形.在本章中,全等三角形的判定既是重点,也是难点,同时也是中考的热点.全等三角形在中考中主要考查全等三角形的判定证明,并会将有关知识应用到综合题的解题过程中去,如把某些问题转化为三角形的问题求解,能从复杂的图形中寻求全等的三角形以获得自己需要的信息也是中考的要点.
【重点】
1.命题、定理的有关概念.
2.全等三角形的性质及各种判定三角形全等的方法.
3.证明的基本过程.
4.尺规作图.
【难点】
1.根据不同条件合理选用三角形全等的判定方法,特别是对“SSA”不能判定三角形全等的认识.
2.证明的格式.
1.在命题与证明的教学中,要让学生通过大量的例子,分清命题的条件和结论,让学生逐步熟悉命题的形式,要通过学生自主探索、合作交流,让学生归纳出举反例判断假命题的方法,在进行定理的教学时,还应让学生确认可以通过逻辑推理证明的真命题才有可能作为定理,成为以后证明的依据.
2.对全等三角形的教学时,要引导学生正确分类,能根据所给数据画出三角形,通过比较,直观感知全等三角形的判定方法,同时也要让学生能通过说理确认全等三角形的判定方法的正确性.在证明的过程中要指导。