双频段GSM的RF设计
- 格式:pdf
- 大小:214.06 KB
- 文档页数:12
双频段GSM/DCS移动电话射频指标分析2003-7-14[摘要]本文对GSM移动电话的射频指标进行了分析,并讨论了改进办法。
其中一些测试及提高射频指标的方法是从实践经验中总结出来的,有一定的参考价值。
第一部分对各射频指标作了简要介绍。
第二部分介绍了射频指标的测试方法。
第三部分介绍了一些提高射频指标的设计和改进方法。
1 射频(RF)指标的定义和要求1.1 接收灵敏度(Rx sensitivity)(1)定义接收灵敏度是指收信机在满足一定的误码率性能条件下收信机输入端需输入的最小信号电平。
衡量收信机误码性能主要有帧删除率(FER)、残余误比特率(RBER)和误比特率(BER)三个参数。
这里只介绍用残余误比特率(RBER)来测量接收灵敏度。
残余误比特率(RBER)的定义为接收到的错误比特与所有发送的的数据比特之比。
(2)技术要求●对于GSM900MHz频段接收灵敏度要求:当RF输入电平为-102dBm(分贝)时,RBER不超过2%。
测量时可测试实际灵敏度指标。
根据多款移动电话的测试结果来看:当RBER=2%时,若RF输入电平为-l09~-l07dBm,则接收灵敏度为优;若RF输入电平为-l07~l05dBm,则接收灵敏度为良好;若RF输入电平为-105~-l02dBm,则接收灵敏度为一般;若RF输入电平>-l02dBm,则接收灵敏度为不合格。
●对于DCSl800MHz频段接收灵敏度要求:当RF输入电平为-l00dBm,RBER不超过2%。
测量时可测试实际灵敏度指标。
根据多款移动电话的测试结果来看:当RBER=2%时,若RF输入电平为-l08~-105dBm,则接收灵敏度为优;若RF输入电平为-105~ -l03dBm,则接收灵敏度为良好;若RF输入电平为-l03~ -100dBm,则接收灵敏度为一般;若RF输入电平为>-l00 dB mm,则接收灵敏度为不合格。
1.2频率误差Fe、相位误差峰值Pepeak、相位误差有效值PeRMS(1)定义测量发射信号的频率和相位误差是检验发信机调制信号的质量。
GSM900/DCS1800 双频手机RF部分的设计Desige of RF Unit for GSM900/DCS1800 Dual-band Handset李航[摘要]:本文介绍了GSM/DCSl800双频段手机RF部分的基本工作原理和各单元的设计方案、技术指标和参数计算。
对几种不同的双频手机RF方案,在经过分析和比较之后,提出了一种性能价格比较高的技术方案。
[关键词]:GSM/DCSl800 双频手机射频电路电路设计GSM手机属高科技通信产品,其销售对象是千家万户,因此对手机的性能价格比要求特别高,手机的利润只能体现在大批量的生产和销售中。
针对这种情况,在满足欧洲电信标准ETS GSMll.10技术规范的前提条件下,RF部分的设计者必须在先行方案设计中就充分注意到性能价格比,这将对手机在未来的市场上能否有竞争力产生十分重要的影响。
GSM手机的性价比是由各个组成单元的性价比来决定的,所以,对RF部分各个单元电路进行认真、细致的分析和比较,这对于提高整机的性价比是十分重要的。
l GSM900/DCSl800双频手机的特点双频手机与现阶段普及型的单频手机相比,有下面的特点:根据基站的控制信令,双频手机即可以工作在900MHz频段网络,也可以工作在1800MHz频段网格,当一个网络繁忙或信号质量差时,双频手机可自动切换到另一个频段的网络上工作,而且这种切换基本上不影响话音质量。
另外,从近来国际上手机的发展趋势和FTA(full type approval)认证的情况来看,双频手机在将来会是主流产品。
双频手机在两个不同的工作频段上,其基带部分信源编码、信道编码的算法和处理、信令处理的方法和帧格式、调制解调方式、信道间隔等均相同,与单频手机在电路结构上的差别在于射频前端和相对应的控制软件。
2 GSM900/1800双频手机RF部分的主要技术指标和设计要求四类机,阶段2增强型(class IV phase Ⅱ pluse )E—GSM900MHz部分的主要RF指标如下:工作方式:TDMA—TDD工作频率:上行Tx(反向)880MHz-915MHz,下行Rx(正向)925MHz—960MHz 双工频率间隔:45MHz,载波间隔:200kHz每载波时隙数:8(当前全速率)/16(今后半速率)每帧长度:4.615ms,每时隙长:577μs传输速率:270.833kbps(即在每时隙上传156.25bits)调制方式:采用I/Q正交GMSK调制静态参考灵敏度:优于-102dB/RBER(Resiodual BER)<2%动态范围:-47dBm—110dBm频率误差:<1×10-7,相位误差的均方根值<5°,相位误差峰值:<20°射频输出功率:5级(33dBm)--19级(5dBm),级差:Δ=2dB,共有15个功率等级。
RF电路设计与射频解决方案探讨随着无线通信技术的迅猛发展,RF(射频)电路设计和射频解决方案变得越来越重要。
本文将探讨RF电路设计的一些关键要素以及射频解决方案的应用。
首先,RF电路设计的关键要素之一是频率选择。
在射频电路设计中,频率选择是至关重要的。
不同的应用需要不同的频率范围,因此设计师需要根据具体需求选择合适的频率。
频率选择不当可能导致信号干扰、功耗过高等问题。
其次,射频电路设计需要考虑信号的传输和接收。
在无线通信中,信号的传输和接收是至关重要的。
在传输过程中,信号需要经过调制和解调,以确保信号的准确传输。
在接收过程中,信号需要经过放大和滤波,以提高接收信号的质量。
因此,在RF电路设计中,设计师需要考虑这些因素,并选择合适的电路组件。
此外,射频电路设计还需要考虑功率管理。
在无线通信中,功率管理是非常重要的。
功率管理涉及到电源的选择、功率放大器的设计和功率控制等。
设计师需要根据具体应用的功率需求,选择合适的功率管理方案。
在射频电路设计中,还需要考虑抗干扰能力。
由于无线通信环境复杂多变,射频电路容易受到干扰。
设计师需要采取一系列措施来提高电路的抗干扰能力,例如使用合适的滤波器、抑制杂散信号等。
除了RF电路设计,射频解决方案在无线通信中也起着至关重要的作用。
射频解决方案是指为特定应用提供的射频系统设计方案。
射频解决方案包括硬件设计、软件设计和系统集成等。
在射频解决方案中,设计师需要考虑系统的整体性能、可靠性和成本等因素。
射频解决方案的应用非常广泛。
例如,在移动通信领域,射频解决方案可以用于设计和开发手机、基站等设备。
在物联网领域,射频解决方案可以用于设计和开发传感器、无线模块等设备。
在无线电广播领域,射频解决方案可以用于设计和开发收音机、电视等设备。
总之,RF电路设计和射频解决方案在无线通信中起着重要的作用。
设计师需要考虑频率选择、信号传输和接收、功率管理和抗干扰能力等关键要素。
射频解决方案需要综合考虑硬件设计、软件设计和系统集成等因素。
一些厂家专门提供的夹具来进行折装。
从射频与逻辑电路角度看,GSM手机其实是一个相当复杂的系统,下面我们就按射频与逻辑两部分来介绍GSM手机的原理。
GSM手机主要组成如下图:早期GSM手机大都由二块电路板组成,一块负责射频信号的处理--射频板,另一块负责音频信号和逻辑控制信号的处理--音频逻辑板(有时也称为数字板),这二块板之间一般用插座相连(有时也会看到用排线相连的手机)。
随着技术的发展,现在的手机射频板和音频板已合二为一,这样集成度更高,体积也更小,但维修难度也将显著增大。
从射频原理图上可以看到,从天线进来的信号首先进入双工器DUP,然后进入一个低噪声放大器LNA,从GSM手机的原理上看双工器并不是必要的,因为手机的信号接收与发射之间并不是同时进行的,而是相差三个时隙,这一点与模拟TACS手机是有很大不同的,但为了进一步增大收发信号之间的隔离度和消除外界干扰信号,在很多型号的手机中还是在天线前端设置了双工器。
低噪声放大器LNA通常其增益在10~20dB范围,其噪声系数不大于3dB,经过LNA放大的信号将与接收本振混频下变频到中频IF信号,有的型号手机可能只有一级变频电路和一级IF信号,有的手机的接由信号可能会经过二级变频,有二级IF信号,但结构是一样的。
混频后的信号滤波后进入具有自动增益控制的中频放大器AGCIF放大器中放大,尔后滤波后的IF信号送到0.3GMSK调制解调器芯片中解调出I和Q二路信号,I,Q信号可进一步送到DSP芯片中进行自适应均衡等处理,以消除传送过程中的各种衰落与干扰。
有的手机把信道检验,纠错解码等功能也放到DSP芯片中。
当手机开机登录时,它将与当前小区发出的BCH广播控制信道中的同步信号SCH,FCH锁相,以使手机的基础本振锁定在基站的频率基准上。
手机通常有一个基础本振信号,其频率通常为13MHz或其整数倍,手机的接由与发射本振通常由基础本振变频得到,因此一旦基础本振锁定之后Tx/Rx本振也就锁定了。
1. 什么是RF?答:RF 即Radio frequency 射频,主要包括无线收发信机。
2. 当今世界的手机频率各是多少(CDMA,GSM、市话通、小灵通、模拟手机等)?答:EGSM RX: 925-960MHz, TX:880-915MHz;CDMA cellular(IS-95)RX: 869-894MHz, TX:824-849MHz。
3. 从事手机Rf工作没多久的新手,应怎样提高?答:首先应该对RF系统(如功能性)有个系统的认识,然后可以选择一些芯片组,研究一个它们之间的连通性(connectivities among them)。
4. RF仿真软件在手机设计调试中的作用是什么?答:其目的是在实施设计之前,让设计者对将要设计的产品有一些认识。
5. 在设计手机的PCB时的基本原则是什么?答:基本原则是使EMC最小化。
6. 手机的硬件构成有RF/ABB/DBB/MCU/PMU,这里的ABB、DBB和PMU等各代表何意?答:ABB是Analog BaseBand,DBB是Ditital Baseband,MCU往往包括在DBB芯片中。
PMU是Power Management Unit,现在有的手机PMU和ABB在一个芯片上面。
将来这些芯片(RF,ABB,DBB,MCU,PMU)都会集成到一个芯片上以节省成本和体积。
7. DSP和MCU各自主要完成什么样的功能?二者有何区别?答:其实MCU和DSP都是处理器,理论上没有太大的不同。
但是在实际系统中,基于效率的考虑,一般是DSP处理各种算法,如信道编解码,加密等,而MCU处理信令和与大部分硬件外设(如LCD等)通信。
8. 刚开始从事RF前段设计的新手要注意些什么?答:首先,可以选择一个RF专题,比如PLL,并学习一些基本理论,然后开始设计一些简单电路,只有在调试中才能获得一些经验,有助加深理解。
9. 推荐RF仿真软件及其特点?答:Agilent ADS仿真软件作RF仿真。
如何进行GSM手机双频天线的阻抗匹配通常对某个频点上的阻抗匹配可利用SMITH圆图工具举行, 两个器件绝对能搞定, 即通过串+并联或即可实现由圆图上任一点到另一点的阻抗匹配, 但这是单频的。
而手机天线是双频的, 对其中一个频点匹配,必定会对另一个频点造成影响, 因此阻抗匹配只能是在两个频段上折衷.在某一个频点匹配很简单,但是双频以上就复杂点了。
由于在900M彻低匹配了,那么1800处就不会达到匹配,要算一个适合的匹配。
最好用软件或一个点匹配好了,在网络分析仪上的 S11参数下调节,由于双频的匹配点绝对离此处不会太远。
,惟独两个元件匹配是唯一的,但是 pi 型网络匹配,就有很多个解了。
这时候需要仿真来挑,最好用法阅历。
仿真工具在实际过程中几乎没什么用处。
由于仿真工具是不知道你元件的模型的。
你必需要输入实际元件的模型,也就是说各种分布参数,你的结果才可能与实际相符。
一个实际电感器并不是容易用电感量能衡量的,应当是一个等效网络来模拟。
本人通常只会用仿真工具做一些理论的讨论。
实际设计中,要充分明了Smith圆图的原理,然后用网络分析仪的圆图工具多调试。
懂原理让你定性地知道要用什么件,多调是要让你认识你所用的元件会在实际的圆图上怎么移动。
(因为分布参数及元件的频率响应特性的不同,实际件在圆图上的移动和你理论计算的移动会不同的)。
双频的匹配确实是一个折衷的过程。
你加一个件一定是有目的性的。
以GSM、DCS双频来说,你假如想调GSM而又不太想转变DCS,你就应当挑选串连电容、并联电感的方式。
同样假如想调DCS,你应当挑选串电感、并电容。
理论上需要2各件调一个频点,所以实际的手机或者移动终端通常按如下逻辑支配匹配电路:对于容易一些的,天线空间比较大,反射原来就较小的,采纳Pai型(2并一串),如常规直板手机、常规翻盖机;略微复杂些的采纳双L型(2串2并):对于更复杂的,采纳L+Pai型(2串3并),比如用拉杆天线的手机。
移动电话正演变成为一种面向数据的设备,彩色屏幕、数字相机和板上内存等功能也逐渐成为主流,用来支持各种面向数据的应用,包括多媒体消息、移动游戏、上网、收发邮件和移动商务。
为推动此发展趋势,移动电话业者开始为现有的GSM网络增加高速E-GPRS 以及WCDMA 数据功能,并向后兼容于既有的服务。
这种做法使得移动电话必须支持所有GSM/GPRS/EDGE/WCDMA标准,然而支持多种标准将为手机带来许多设计挑战,特别是手机无线电的设计。
多标准带来无线电设计挑战多标准会带来各种不同规范,让手机无线电设计人员必须面对苛刻,有时甚至相互冲突的性能要求。
GSM/GPRS和GSM/EDGE标准采用时分双工技术,因此手机无线电必须透过天线开关模块在发射和接收模式之间切换,让多位用户在不同的时间内共享相同频道。
另一方面,WCDMA则以频分双工技术为基础,发射机和接收机通过双工器同时切换,让多位用户在同样的时间内共享相同频道,再利用正交代码鉴别彼此的传送内容。
为了满足线性要求,WCDMA的信道间隔必须达到5 MHz,EDGE则只要200 kHz频宽。
GSM/GPRS/EDGE的信道位速率是以13 MHz基准时钟[t1]为基础,WCDMA的芯片速率则以19.2 MHz的基准时钟为基础。
无线电性能最佳化三个重要趋势极有可能让多模手机无线电拥有最佳性能:前端模块、高集成度收发器以及能在射频收发器和基带处理器需求之间取得平衡的系统最佳化技术。
前端模块前端模块现有两种集成趋势:把开关/双工器和SAW滤波器集成在一个封装内,或是将功率放大器和开关集成在一起。
如果要集成开关、双工器和SAW滤波器,主要挑战在于将插入损耗减至最少,同时保持良好的阻隔器抑制特性,进而改善接收灵敏度,同时保持线性工作。
双工器对于WCDMA尤其重要,因为它必须在接收频带内提供良好的发射信号隔离。
如果将功率放大器和开关集成在一起,设计人员就能优化调整功率放大器的开关的谐波滤波器,进而让发射机的谐波抑制能力获得改善。
无线产品中的RF部分:外购还是自行开发?随着无线技术的发展,便携式信息产品和RF(射频)技术已经结下了不解之缘。
在开发信息产品时已经不能回避RF的设计问题。
对于RF设计部分,究竟是外购还是自行开发?这个问题从来不能简单地回答。
根据各单位,各人在整个电子无线产品生产上、下游关系中所处的位置的不同,会给出不同的答案。
如果你是一个设计单位的领导,单位内有一些数字技术和软件方面的专家,需要为商用电子产品寻找一种通用的RF设计方案,你会选择一种答案;如果你是大学里设计小组的一位系统设计工程师,需要解决一百台专用的RF装置,这时你会选择另一种答案。
决定这个问题虽然没有严格的规律可以遵循,但是通常的思路却是十分明确的;一般地说要求根据经验,集中考虑和现实经济有关的几个问题。
例如,对于RF设计任务,你们单位是否(诚实地说)真正能够胜任,是否的确有时间可以从容地进行设计,此外,是否有合适的测试设备可以利用等等。
如果对以上问题都能肯定,在这种情况下是值得自行开发设计的。
如果你单位不具备基本的条件,走出去找可以提供现成的、有经验的RF 装置公司外购,应该说是比较划算的。
尤其是在只需要很少的数量时,自行设计所需的经费支出又非常难于准确估计时,更应该考虑外购方案。
在决定自行设计还是外购时,应该考虑生产的批量、成本以及诸如工作距离、功耗和数据传输率等性能指标。
但是需要解决的问题虽然千差万别,最关键的因素是你单位是否具有RF方面的专业人才。
你所需要解决的问题可能是:非RF部分,没有专利保护的IrDA( Infrared Data Association )部分,UHF RF部分(实现起来比较便宜,但需要付专利费),以及扩频部分(先进的产品设计工作在2.4GHz,但没有专利保护)。
它们的解决方案也很不相同,例如,是使用单独的部件?还是使用比较流行的混合电路?这些混合电路是采用通用的IC或模块,还是采用自行设计的线路?等等。
但是不论选择哪种方案,决定性的因素是:你是否具有RF方面的技术专家人才。
双频段GSM/DCS移动电话射频指标分析、测试和改进1 射频(RF)指标的定义和要求1.1 接收灵敏度(Rx sensitivity)(1)定义接收灵敏度是指收信机在满足一定的误码率性能条件下收信机输入端需输入的最小信号电平。
衡量收信机误码性能主要有帧删除率(FER)、残余误比特率(RBER)和误比特率(BER)三个参数。
这里只介绍用残余误比特率(RBER)来测量接收灵敏度。
残余误比特率(RBER)的定义为接收到的错误比特与所有发送的的数据比特之比。
(2)技术要求●对于GSM900MHz频段接收灵敏度要求:当RF输入电平为一102dBm时,RBER不超过2%。
测量时可测试实际灵敏度指标。
根据多款移动电话的测试结果来看:当RBER=2%时,若RF输入电平为-l09一l07dBm,则接收灵敏度为优;若RF输入电平为-l07一l05dBm,则接收灵敏度为良好;若RF输入电平为-105一l02dBm,则接收灵敏度为一般;若RF输入电平>-l02dBm,则接收灵敏度为不合格。
●对于DCSl800MHz频段接收灵敏度要求:当RF输入电平为-l00dBm,RBER不超过2%。
测量时可测试实际灵敏度指标。
根据多款移动电话的测试结果来看:当RBER =2%时,若RF输入电平为一l08一 -105dBm,则接收灵敏度为优;若RF 输入电平为一105-- -l03dBm,则接收灵敏度为良好;若RF输入电平为-l03一 -100dBm,则接收灵敏度为一般;若RF输入电平为>-l00 dB mm,则接收灵敏度为不合格。
1.2频率误差Fe、相位误差峰值Pepeak、相位误差有效值PeRMS(1)定义测量发射信号的频率和相位误差是检验发信机调制信号的质量。
GSM 调制方案是高斯最小移频键控(GMSK),归一化带宽为BT=0.3。
发射信号的相位误差定义为:发信机发射信号的相位与理论上最好信号的相位之差。
理论上的相位轨迹可根据一个己知的伪随机比特流通过GMSK脉冲成形滤波器得到。
频率误差定义为考虑了调制和相位误差的影响以后,发射信号的频率与该绝对射频频道号(ARFCH)对应的标称频率之间的差。
它通过相应误差做线性回归,计算该回归线的斜率即可得到频率误差(因为ω=θ/t)相位误差峰值Pepeak是离该回归线最远的值。
相位误差有效值PeRMS即相位误差均方根值,是所有点的相位误差和其线性回归之间的差的均方根值。
(2)技术要求●对于GSM900MHz频段①频率误差Fe若Fe<40Hz,则频率误差为优;若40Hz≤Fe6≤60Hz,则频率误差为良好;若60Hz≤Fe≤90Hz,则频率误差为一般;若Fe>90Hz,则频率误差为不合格。
②相位误差峰值Pepeak若Pepeak<7de8,则相位误差峰值为优;若7deg≤Pepeak≤l0deg,则相位误差峰值为良好;若10deg≤Pepeak≤20deg则相位误差峰值为一般;若Pepesk>20deg,则这项指标为不合格。
②相位误差有效值PeRMS若PeRMs<2.5deg,则相位误差有效值为优;若2.5deg≤PeRMS≤4deg,则相位误差有效值为良好;若4deg≤PeRMS≤5deg,则相位误差有效值为一般;若PeRMS>5deg,则这项指标为不合格。
●对于沉S1800MHz频段①频率误差Fe若Fe<80Hz,则频率误差为优;若80Hz≤Fe≤100Hz,则频率误差为良好;若100HZ≤Fe≤180Hz,则频率误差为一般:若F e>l 80H z,则这项指标为不合格。
②相位误差峰值Pepeak同GSM900MHz的指标。
②相位误差有效值PeRMS同GSM900MHz的指标。
1.3 射频输出功率Po(1)定义鉴于移动通信组网时的远近效应,在与基站通信过程中必须对移动台的发射功率进行控制(动态调整),以便能保证移动台与基站之间一定的通信质量而又不至于对其它移动台产生明显的干扰。
同样,也可以对基站的发射功率进行射频功率控制。
测试移动台的射频输出功率在功率控制的每一级电平上是否满足ETSI规定的功率要求。
(2)技术要求●对于GSM900Mz频段每一功率控制电平对应的标称功率和允许的误差如表l(对于class IV移动台)。
●对于DCSl800MHz频段每一功率控制电平对应的标称功率和允许的误差如表2(对于class I 移动台)。
1.4调制频谱和开关频谱(1)定义由于GSM调制信号的突发特性,因此输出射频频谱应考虑由于调制和射频功率电平切换而引起的对相邻信干扰。
在时间上,连续调制频谱和功率切换频谱不是发生的,因而输出射频频谱可分为连续调制频谱和切态频谱来分别地加以规定和测量。
连续调制是测量由GSM调制处理而产生的在其标称载频同频偏处(主要是在相邻频道)的射频功率。
开关频谱即切换瞬态频谱,是测量由于调制突发的上下降沿而产生的在其标称载频的不同频偏处(主要是在相邻频道)的射频功率。
(2)技术要求●对于GSM900MHz频段①调制频谱(MOD pectsrum)测试指标要求:调制频谱的每一条谱线均应在ETSI规定的Time-Plate 的下方(具体的技术要求可参见ETSIll.10中的规定);测试条件:功率电平设置在5(33dB m):测试时,可选择中间信道进行测试。
在衡量调制频谱时,可使用谱线的指标余量(margin)。
指标余量即最接近Time-Plate的一条谱线与Time-Pkate之间的距离。
指标余量越大,则调制频谱越好,即对邻道的干扰越小。
对指标余量可作如下分析:若margin>l0dBm,则调制频谱为优;若0<margin<l0dBm,则调制频谱为较好;若margin=0或谱线高度超出Time-Plate,则调制频谱为不合格。
②开关频谱(switch spectum)测试指标要求:调制频谱的每一条谱线均应在ETSI规定的Time-Plate的下方;测试条件:功率电平设备在5(33dBm);测试时,可选择低、中、高三个信道进行测试如CH1、 CH62、 CHl24)。
对指标余量可作如下分析:若margin>10dBm,则开关频谱为优;若0<margin<l0dBm,则开关频谱为较好;若margin=0或谱线高度超出Time-Plate,则开关频谱指标为不合格。
●对于DCSl800MHz频段①调制频谱(MOD spectrum)功率电平设置为0(30dBm) 。
指标要求同GSM900MHz。
1.5 杂散辐射(1)定义杂散辐射是指用标推测试信号调制时在除载频和由于正常调制和切换瞬态引起的边带以及邻道以外离散频率上的辐射(即远端辐射)。
杂散辐射按其来源的不同可分为传导型和辐射型两种。
传导型杂散辐射是指天线连接器处或进入电源引线(仅指基站)引起的任何杂散辐射;辐射型杂散辐射是指由于机箱(或机柜)以及设备的结构而引起的任何杂散辐射。
这里只介绍Tx发射时传导型杂散的测量。
(2) 技术要求测试条件:分辨带宽RB=l0KHz或分辨带宽RB=3MHz视频带宽VB=l0KHz 视频带宽VB23MHz(频谱仪带宽设置与有用信号和杂散信号的相对位置有关。
)功率电平设置为对应频段的最大功率等级指标要求:①对于在发射状态的移动台,传导型杂散辐射在段频9KHz-1GHz内的杂散辐射功率电平应小于250nw(即-36dBm);在1GHz一1275GHz频段内的传导型杂散辐射功率电平应小于1uw(即号-30dBm)。
②对于空闲状态的移动台来说,9kHz-1GHz频段内的传导型杂散功率电平应小于2nW(-57dBm);1GHz-12.75GHz频段内的传导型杂散功率电平应小于20nW(即-47dBm)。
③对于所有条件下的移动台,在M S接收频段GSM935MHz一960MHz /DCSl805一1880MHz内的杂散功率电平应不超过:-25PW(即-76dBm)对于l类功率等级移动台-45PW(即-84dMm)对于2、3、3、5类功率等级移动台1.6 天线这里介绍一种移动台天线性能的比较测试方法,可称为远场测试(>lOλ)。
其原理是将多种被测移动台天线辐射功率与一个标淮移动台进行比较,来测量不同机型天线的远场辐射性能。
由于这只是一种相对的测量方法,所以不能提供绝对的天线性能参数值。
具体的测试方法见第2 部分。
2 射频(RF)指标测试2.1 测试仪器及设备RF指标测试一般所使用的仪器设备有:系统模拟器SS(或综测仪)、频谱仪FSA、移动台MS、RF信号发生器、陷波器、射频功率衰减器、模拟电池、测试SIM卡及与移动台相匹配的测试电缆等。
2.2测试方法和框图(1)接收灵敏度(Rx sensitivity) 基本RF指标测量如图l所示。
a).将移动台和系统模拟器按图l连接起来;b).按要求在相应的信道上建立一个呼叫;c).设置功率控制电台为最大功率5(33dBm);d).将RF输入电平从-102dBm调节到-ll0 dBm(GSM900MHz),观察残余误比特率(RBER),确定实际接收灵敏度性能;(对于DCSl800MHz,范围为-l08一l00dBm;e).分别在低、中、高多个信道上进行上述测试。
输出功率Po、频率误差Fe、相位误差峰值Pepeak、相位误差有效值PeRMS、调制频谱、开关频谱等指标的测量设备和连接与接收灵敏度的测量基本相同,不再赘述。
(2)杂散辐射杂散辐射测量如图2所示。
a). 将移动台、系统模拟器及频谱仪按图2连接;b). 信道60一65之间的一个频道上建立一个呼叫;c).设置功率控制电平为最大功率等级;d).设置频谱仪的RBW和VBW;e),在l00KHz-1GHz、1-12.75GHz的频率范围内观察杂散辐射指标。
若移动台本身具有手动测试模式命令,则不需要系统模拟器,可直接进入测试模式进行发射,测试杂散辐射。
移动台与频谱仪按图3连接。
2.3 天线远场测试天线远场测试如图4所示。
a).用两个测试天线分别连接综测仪和频谱仪;b).按图4将它们放置在相应的位置,使两个天线保持足够的距离,并保证在整个测试过程中三者之间的相对:位置和方向保持不变;c).在低、中、高三个信道上建立呼叫;d).在频谱仪上读取接收到的辐射功率电平值;e).在不改变位置的情况下,用其它类型的移动台和标准移动台进行测试;f).比较接到的辐射功率,可以确定不同机型天线辐射出去的功率大小和天线辐射效率。
3 射频(RF)指标改进、提高的办法在通信产品的开发工程中,测量是一种基本的、必要的手段,但不是最后的目的。
在开发过程中更重要的是通过对测量得到的数据进行分析、运用理论和经验,找到解决问题和提高技术指标的办法。
下面我们把在GSM手机研究开发中采用的分析方法和经验与同行作一交流。
3.1 如何提高接收机的灵敏度指标若通过测量发现灵敏度不高,则问题主要出现在接收机的高频或中频部分,其次是模拟I/Q解调部分。