Matlab Simulink based simulation for digital-control system of marine three shaft gas turbine
- 格式:pdf
- 大小:308.62 KB
- 文档页数:10
第1卷第3期System Simulation Technology V ol. 1, No.3 中图分类号:TP39 文献标识码:A基于dSPACE/MATLAB/Simulink平台的实时仿真技术研究雷叶红1, 2,张记华2,张春明2(1 华中科技大学,武汉,430074,2 上海精密仪器研究所,上海,200233)摘要:本文以某飞行器侧向通道稳定控制系统为例,基于dSPACE标准组件和MATLAB/Simulink软件环境,建立了控制系统的半实物仿真平台并进行了半实物仿真。
结果表明这种基于dSPACE的仿真系统具有构建便捷、高效和精度高等优点,尤其适用于数字控制系统。
关键词:MATLAB/Simulink;dSPACE;仿真平台;控制系统;半实物仿真A Real-Time System Simulation PlatformBased on dSPACE/MATLAB/SimulinkLEI Yehong1, 2,ZHANG Jihua2,ZHANG Chunming2(1 Huazhong University of Science & Technology, Wuhan, 430074, China,2 Shanghai Institute of Precision Instruments, Shanghai, 200233, China)Abstract: A simulation platform based on dSPACE components and MATLAB/Simulink is established. The platform system is applied in a hardware-in-the-loop simulation of a lateral channel flight control system. The results illustrate that the dSPACE real-time platform is convenient, efficient and accurate, especially suitable for digital control system.Keywords: MATLAB/Simulink;dSPACE;simulation platform;control system;hardware-in-the-loop simulation1 引言随着计算机技术和仿真技术的高速发展,实时仿真逐渐成为各种控制系统设计的重要手段。
电气传动2022年第52卷第1期摘要:数字控制器存在的固有控制时延会影响并网逆变器入网电流的控制性能,为此提出一种控制算法优化方案,旨在降低控制时延带来的不利影响。
首先分析了控制时延以及零阶保持器对比例-积分(propor⁃tional-integral ,PI )控制器参数稳定域及系统阶跃响应的影响,在此基础上提出采用超前环节来补偿控制时延带来的相角滞后,分析不同补偿参数下的性能差异并选定了最优补偿参数,经过超前环节补偿后的PI 控制算法能拓宽PI 参数的稳定域以及提升控制系统动态性能。
最后,利用Matlab/Simulink 仿真平台以及并网逆变器样机验证了所提算法的有效性与实用性。
关键词:并网逆变器;控制时延;比例积分控制;超前补偿;稳定域中图分类号:TM464文献标识码:ADOI :10.19457/j.1001-2095.dqcd21978Optimization Design of Digital Control Algorithm for Grid Connected InverterTAN Lingqi 1,SUN Xiaomin 2,LI Xinwei 1,HUANG Yangjue 1,ZHAO Wei 1(1.Guangdong Key Laboratory of Electric Power Equipment Reliability (Electric Power ResearchInstitute of Guangdong Power Grid Co.,Ltd.),Guangzhou 510080,Guangdong ,China ;2.Guangdong Power Grid Co.,Ltd.,Guangzhou ,Guangdong 510060,China )Abstract:The inherent control delay of the digital controller may affect the control performance of the current of grid-connected inverter.For this reason ,a control algorithm optimization scheme was proposed to reduce the adverse effect of control delay.Firstly ,the influences of control delay and zero-order hold on the parameters stability region of proportional -integral (PI )controller and step response of system were analyzed.On this basis ,a leading link based compensator was proposed to compensate the phase lag caused by control delay ,whilst the performance difference under various compensation parameters was also analyzed.Therefore the optimal compensation parameter was selected and determined.And the PI control algorithm with compensator based on leading link could broaden the stability region of PI parameters and improve the dynamic performance of control system.Finally ,the validity and effectiveness of the proposed algorithm were verified via the Matlab/Simulink simulation platform and a grid-connected inverter prototype.Key words:grid-connected inverter ;control delay ;proportional-integral (PI )controller ;lead compensation ;region of stability基金项目:中国南方电网有限责任公司科技项目(GDKJXM20180311)作者简介:谭令其(1991—),男,硕士,工程师,Email :******************并网逆变器数字化控制算法优化设计谭令其1,孙晓敏2,李歆蔚1,黄杨珏1,赵伟1(1.广东省电力装备可靠性企业重点实验室(广东电网有限责任公司电力科学研究院),广东广州510080;2.广东电网有限责任公司,广东广州510060)并网逆变器是新能源发电系统与交流电网的接口,并网电流控制算法直接关系到并网逆变器的性能。
International Conference on Advances in Mechanical Engineering and Industrial Informatics (AMEII 2015)Design and Implementation of UAV Flight Simulation Based onMatlab/SimulinkZheng Xing1,a, Yang He2,b, Cheng Jian1,c1Wuhan Mechanical Technology College, Wuhan, 430075, China2Hubei University of Education, Wuhan, 430205, Chinaa email:********************,b email:*****************,c email:**************************omKey words: UAV, Simulation Training, Matlab/Simulink, Flight Simulation, Mode SwitchAbstract.This paper elaborates the composition and function of the flight simulation system according to characteristics of UAV flight simulation in simulation training device. Flight control model and navigation model are designed based on the Matlab/Simulink to solve mode switch and other key technical difficulties in software.IntroductionUA V has been one of important weapon equipment in modern wars and has been widely used in civil areas. As the UA V plays a more and more important role, while accelerating R&D and equipping of advanced UA V system, countries worldwide pay more attention to research of training system and methods based on practical requirements in order to enhance UA V application performance. Currently, extensive developments and applications have been conducted for UA V simulation training systems of different types. The first aim is to improve the ability of flight personnel through simulation training. In order to implement real flight control training, a flight simulation environment should be established[1]. When the effect of flight simulation is closer to real UA V flight status, UA V control personnel’s skills will be improved more.Composition of Flight Simulation SystemFlight simulation computer hardware is composed of an IPC which communicates with system equipment via network port or serial port[2].The software platform is based on general-purpose Windows operating system. In order to simulate the real-time control function of a stabilized turntable, Ardence RTX products will be used. This product offers a real-time subsystem on Windows platform to ensure real-time control, tracking and response on Windows platform. Software consists of two parts: flight control model and navigation model.The former performs digital simulation of real devices of aircraft including aerodynamic device, flight-control computer, actuator, vertical gyro, rate gyro and magnetic heading sensor; the latter controls the UA V to fly at the designated flight path.Design and Implementation of Flight SimulationFor flight control model and navigation model, the mathematical simulation method is used to simulate real devices including flight-control computer, navigation computer, aircraft power and aerodynamic systems and actuator.Development tool.Graphical simulation modeling tool and simulation programming language are mainly used for modeling, and it is Matlab/Simulink that represents a combination of them. The modeling and debugging for the whole flight simulation including aircraft model, control law, sensor model and actuator model are implemented by Matlab/Simulink[3]. Aircraft model and sensormodel can be selected from Simulink model library [4]. For the control law module, S function interfaces written in C/C++ language provided by Simulink can be used to implement mixed programming of Simulink and C/C++ language; then the model can be easily modified and debugged by calling S function written in C/C++ language and making good use of Simulink visual modeling capability.Composition and function. The whole simulation model consists of flight control model (which is used to simulate dynamic characteristics of the aircraft) and navigation model. A six-DoF nonlinear model of aircraft is established based on aerodynamic data. The key to sensor model in the flight control model is how to simulate sensor noise accurately. According to physical properties of the sensor, noise signals are superposed at the output end of the sensor to simulate measured signal noise and error. Dead area, saturation and other nonlinear factors often exist in the actuator. So in the model, dead area and saturation parameters are properly set to simulate the actuator.Flight control model. In a real UA V system, the flight control system is an integrated controller responsible for coordinating and managing all subsystems of the UA V , and is also the core of UA V flight management and control. Therefore, the implementation of the flight control module is a basic and key part in UA V flight simulation.Mathematical modeling. To research into UA V flight control, we first have to establish a model for the research object. In modeling, the following assumptions are always made: the Earth is the inertial reference system; the aircraft is a rigid body; the weight is a constant; and acceleration of gravity does not change with flight altitude. By reference to airframe coordinates, six dynamic differential equations are established to describe the movement of aircraft.[5] The said equations are complex in structure, so they are only suitable for numeric calculation. For the convenience of controller design, a small-disturbance linearized method can be used to obtain the small-disturbance linear state equation of UA V at the equilibrium point.[6] Furthermore, the aircraft is symmetrical, so linear results are divided into two groups, which describe longitudinal movement and lateral movement, respectively. Therefore, five control modes are established for flight control model, including elevation holding and control, altitude holding and control, roll angle holding and control, course angle holding and control, lateral deviation control.The longitudinal small-disturbance linear equation of UA V with wind disturbance is: [7] X AX BU Fd =++where, 100001000010T F = ; 000x y zW V W U d q W x α−∆==∆∆∂∂ ; U 0 is airspeed component along the vertical axis;W x , W y and W z are three components for wind speed; X = [ΔV Δα q Δθ]T ; U = δe .The lateral small-disturbance linear equation of UA V with wind disturbance is: X AX BU Fd =++ where, 100001000010T F= ; 00z y x W U W z d p r W z β∆∂∂==∆∆∂∂ ; U 0 is airspeed component along the vertical axis; W x , W y and W z are three components for wind speed; []T X p βψγ= ; []T a r U δδ=.Design of control law. PID controller is used for the module. The system is under error-based negative feedback control. The controller takes the difference between system output feedback quantity and an expected value or a set value as the input quantity, and with an algorithm, obtains a control quantity to make the output quantity change with the input quantity.[8]Take the design of longitudinal pitch channel of aircraft as an example. The pitch angle and pitch rate feedback are used for pitch attitude holding and control of the aircraft. Pitch rate feedback is realized by the angular rate compensator and the pitch angle is measured by the sensor. The throttle opening is temporarily deemed to be constant, and is not taken into account. Then, the pitch channelcontrol model is designed with Simulink tool kit in Matlab.Navigation model. The navigation system is an integral part of the UA V system. It is capable of providing support for tactical operations of the UA V through satellite navigation, AWACS guiding, ground guiding and UA V capability of detecting and tracking targets. It is mainly used to implement real-time location and automatic control of flight path of the UA V.UA V’s navigation function is based on the coordinated turn function.[9]First, the system determines the current course of an aircraft according to voyage points, measures and calculates the lateral deviation distance between aircraft and flight path, track deviation angle and current ground velocity of aircraft in real time, and then solves a lateral driving signal in accordance with the navigation control law, and gives a bank angle to control the aircraft to enter coordinated turn, and when both lateral deviation distance and track deviation angle are zero, the aircraft performs a straight and level flight along the current flight course until it enters the next point.The simulation of navigation control law is based on flight control law simulation. The navigation control law is designed by integrating each separate channel into full dimension simulation and taking cross track distance and yaw angle as input values.Implementation of Simulation Technology DifficultiesThe flight simulation system is very close to a real system, but different from the real system. In simulation training, UA V is required to perform some extreme actions and random switch among modes, and humanity principle shall be followed during the training. This leads to considerable difficulty and many logical problems in programming. The whole module is of purely digital analog, so mode switch in real-time module may involve problems about zero clearing of many integral terms. In case of failure in timely zero clearing, accumulated values will affect the whole flight simulation result, and even cause systematic divergence, so that the control law could not be successfully implemented. Mutual independence of longitudinal channel and lateral channel is used. When receiving a command about changing longitudinal movement, the system only clears integral terms under longitudinal control, and integral terms under lateral control will keep accumulating until a command about changing lateral movement is received. Zero clearing of lateral integral terms is performed in a similar way.Abovementioned processes will both satisfy requirements of practical simulation training and show simulative extreme action simulation, thereby training operator’s emergency response capability.ConclusionThe flight simulation design of the simulation training device is implemented in the abovementioned method. According to the simulation result, control of modes of the aircraft meets specification requirements, the transition process during switch among modes is stable and the flight profile trend coincides. The design model can truly simulate UA V flight control and navigation and implement real-time simulation of pre-flight preparation, launch, cruising, program-control, manual control, mode switch and recovery controlled by the ground console. It has high confidence level and reliability in simulation, strong expandability and wide application. AcknowledgementThis work is supported by the natural science foundation of Hubei Province No.2014CFB569. This work is also supported by the research project of Hubei Province Department of Education Grant No.Q20133008.References[1] Peng Hua, Shen Weiqun, Song Zishan, A Real-time Management System of Flight SimulationBased on VxWorks, Journal of System Simulation, 2003, 15(7): 966-968.[2] Zhang Ning, Chen Ning, Ji Yun, Zhu Jiang, Research on The Integrated Method of FlightSimulation System Based on A Flight Simulator, Flight Dynamics, 2010, 28(3): 39-42.[3] Zhang Lei, Jiang Hongzhou, Qi Panguo, Li Hongren, Flight Simulation Based on Matlab,Computer Simulation, 2006, 23(6): 57-61.[4] Shang Wenxuan, Wang He, Gao Ya, The Avionic System Platform Based on Flight Simulationof Simulink and Its Application, Electronics Optics & Control, 2014, 21(8): 6-9.[5] Zhang Minglian, Flight Control System, National Defense Industry Press, 1993.[6] Xu Hailiang, Li Junyang, Fei Shumin, Design and Implementation of Digital Flight SimulationPlatform, Journal of Southeast University(Natural Science Edition), 2011, 41(1): 113-117. [7] Su Jijie, Zheng Xing, Lin Dongsheng, Yang Yi, Design and Implementation of SimulativeTraining System for UAV, Journal of System Simulation, 2009, 21(5): 1343-1346.[8] Li Chao, Wang Jiangyun, Han Liang, Development of Fixed Wing Aircraft Flight SimulationSystem Based on Matlab, Journal of System Simulation, 2013, 25(8).[9] Gen Tongfen, Huang Daqing, Full Process Simulation of UAV Auto-pilot Flight Based onSimulink, Aeronautical Computing Technique, 2010, 40(5): 112-116.。
一阶倒立摆控制仿真摘要:倒立摆系统是一个典型的快速、多变量、非线性、不稳定系统,研究倒立摆的精确控制对工业复杂对象的控制有着重要的工程应用价值。
本文对仿真的分类、过程、发展、应用及仿真环境等作了简单的介绍,同时也介绍了倒立摆系统的特性、分类、应用、发展等基本情况。
文中采用牛顿-欧拉方法建立一阶倒立摆的数学模型,对精确模型在工作点附件进行线性化和降价处理,利用固高公司的一阶倒立摆参数,计算出传递函数。
在数学模型的基础上进行了PID 控制的理论分析。
利用MATLAB中的Simulink仿真工具对一阶倒立摆的单回路PID控制进行仿真分析,在仿真中整定出合理的PID参数。
仿真证实,单回路PID控制方案能满足对倒立摆摆杆角度的控制要求。
关键词:倒立摆;PID控制;仿真;MATLAB-Simulink---------Simulation of single inverted pendulum Abstract: The inverted pendulum system is characterized as a fast multi-variable nonlinear essentially unsteady system.The research on precise control of the inverted pendulum is of great practical engineering value for control problems of complicated industrial object.In this paper, the classification, process, development, application of simulation and simulation environment are simply introduced. The basic situation include Characteristics, classification application development and so on of the inverted pendulum system is introduced.This text uses the Newton-the Eule method to establishing the mathematical model of single inverted pendulum, carries on the linearization and fall step processing to the precise model nearby the work-point, uses the parameters of googol’s single inverted pendulum, calculate s its transferred functions. And do theoretical analysis of the PID control based on the mathematical model. This text uses the MA TLAB Simulink simulation tools to do simulation analysis of the single inverted pen dulum’s single loop PID control, collated reasonable PID controlled parameters in simulation. Simulation proves that the single loop PID controlled plans can satisfied to the control of the angle of pendulum rod.Keywords:inverted pendulum; PID control; simulation; MATLAB-Simulink目录1 绪论 (1)1.1 仿真技术的简介 (1)1.1.1 仿真概念 (1)1.1.2 仿真分类 (1)1.1.3 仿真过程 (1)1.1.4 系统建模 (2)1.1.5 模型验证 (2)1.2 倒立摆系统介绍 (3)1.2.1 倒立摆的分类 (3)1.2.2 倒立摆的特性 (4)1.2.3 倒立摆的发展 (5)1.2.4 倒立摆的应用 (5)1.3 本论文研究的主要内容 (6)2 一阶倒立摆系统的建模 (7)2.1 一阶倒立摆的物理模型 (7)2.2 一阶倒立摆的数学模型 (7)2.3 一阶倒立摆的实际模型 (11)3 PID控制器简介 (12)3.1 PID控制原理 (12)3.2 PID控制器的参数整定 (13)4 一阶倒立摆PID控制器系统的仿真研究 (16)4.1 MATLAB/SIMULINK仿真环境 (16)4.2 一阶倒立摆的PID控制理论分析 (17)4.3 一阶倒立摆的PID控制仿真分析 (18)5 结论 (23)致谢 (24)参考文献 (25)1 绪论1.1 仿真技术的简介1.1.1仿真概念自动控制系统是由被控对象、测量变送装置、执行器和控制器所组成,当选定测量变送装置和执行器后,对自动控制系统进行设计和分析研究,也就是对被控对象的动态特性进行分析和研究,然后根据被控对象的动态特性进行控制器的设计,以求获得能满足性能指标要求的最优控制系统。
实验室研究与探索296Vol.29No.6第卷第期20106Jun.2010RESEARCHANDEXPLORA TIONINLABORA TORY年月Matlab/SimulinkGUI基于和的运动控制系统虚拟实验平台设计,尚丽淮文军(,215104)苏州市职业大学电子信息工程系江苏苏州:MatlabSimulinkGUI,摘要利用环境中的仿真工具箱和友好的界面设计和实现了运动控制系统课。
程的可视化虚拟实验平台的构建该实验平台包含运动控制系统实验教学中典型的仿真模型和仿真实,,例分析能够实现硬件实验所不能完成的项目帮助学生更直观地理解运动控制系统的组成和工作原,,、。
理增强感性认识培养学生的研究能力综合应用能力和创新能力:M atlab/Simulink;GUI;;关键词仿真工具箱界面运动控制系统虚拟实验平台+:TP273.4:A:1006-7167(2010)06-0066-06中图分类号文献标识码文章编号TheVirtualExperimentPlatformDesignofAuto-controlSystemBasedonM atlab/SimulinkandGUISHANGLi,HUAIWen-jun(DepartmentofElectronicInformationEngineering,SuzhouVocationalUniversity,Suzhou215104,China)Abstract:Utiliz ingSimulinksimulationtoolboxandfriendlyGUIinterf aceinM atlabsoftware,thevisualvirtualexperi-mentplatf ormoftheauto-controlsystemcoursewasdesignedandrealiz ed.Thisexperimentplatformcomprisesoftypicalsimulationmodelsandexampleanalysisi nexperimentalteachingofauto-controlsystem.Itcandosomeexperiments,whichcan’tberealiz edbyphysicaldevices,andhelpstudentstocomprehenddirectlythecomposingandtheoryof auto-controlsystem,enhancestudents’perceptualknowledge,andculturestudents’a bilityofresearch,syntheticallyappli-cationandinnovation.Keywords:M atlab/Simulinksimulationtoolbox;GUIinterf ace;auto-control;virtualexperimentplatform,,从培养的角度来说更重要的要设计或选用这些系统1引言是培养学生综合运用知识来解决工程实际问题的能。
尚 辅 教 学 配 套 课 件下篇第4章框图仿真软件平台Simulink与S-function基础在工程实际中,控制系统的结构往往很复杂,如果不借助专用的系统建模软件,则很难准确地把一个控制系统的复杂模型输入计算机,对其进行进一步的分析与仿真。
1990年,Math Works软件公司为MATLAB提供了新的控制系统模型图输入与仿真工具,并命名为SIMULAB,该工具很快就在控制工程界获得了广泛的认可,使得仿真软件进入了模型化图形组态阶段。
但因其名字与当时比较著名的软件SIMULA类似,所以1992年正式将该软件更名为SIMULINK。
SIMULINK的出现,给控制系统分析与设计带来了福音。
顾名思义,该软件的名称表明了该系统的两个主要功能:Simu(仿真)和Link(连接),即该软件可以利用鼠标在模型窗口上绘制出所需要的控制系统模型,然后利用SIMULINK提供的功能来对系统进行仿真和分析。
第一节SIMULINK简介一、什么是SIMULINK❑SIMULINK是MATLAB软件的扩展,它是实现动态系统建模和仿真的一个软件包,它与MATLAB语言的主要区别在于,其与用户交互接口是基于Windows的模型化图形输入,其结果是使得用户可以把更多的精力投入到系统模型的构建,而非语言的编程上。
❑所谓模型化图形输入是指SIMULINK提供了一些按功能分类的基本的系统模块,用户只需要知道这些模块的输入输出及模块的功能,而不必考察模块内部是如何实现的,通过对这些基本模块的调用,再将它们连接起来就可以构成所需要的系统模型(以.mdl文件进行存取),进而进行仿真与分析。
❑SIMULINK的最新版本是SIMULINK4.0(包含在MATLAB6.0 里),MATLAB5.3里的版本为3.0版,它们的变化不大。
二、SIMULINK的启动1、在MATLAB命令窗口中输入simulink结果是在桌面上出现一个称为Simulink Library Browser的窗口,在这个窗口中列出了按功能分类的各种模块的名称。
电子质量2020年第11期(总第404期)基金项目:河南省高等学校重点科研项目"基于智能融合算法的多机器人追捕协作控制研究及应用"(No.20A470009);2019年洛阳师范学院校级培育基金"基于演算子理论的不确定机械臂非线性系统研究"(N0.190131211004);洛阳师范学院2019年校级高等教育教改项目(No.2019xjgj021)作者简介:刘亚琳(1994-),女,助教,硕士研究生,研究方向为电力系统规划与安全运行,E-mail:*****************;陈菲(1990-),女,助教,硕士研究生,研究方向为需求侧响应、智能用电;张莹文(1989-),女,助教,硕士研究生,研究方向为电力电子与电能变换。
基于MATLAB/Simulink 的同步发电机短路暂态过程仿真分析Simulation Analysis of Short Circuit Transient Process of Synchronous Generator Based onMATLAB /Simulink刘亚琳,陈菲,张莹文(洛阳师范学院物理与电子信息学院,河南洛阳471934)Liu Ya-lin,Chen Fei,Zhang Ying-wen (Luoyang Normal University,College of Physical and Electronic Information,Henan Luoyang 471934)摘要:该文针对同步发电机突然三相短路、两相短路时短路电流、励磁电流、定子直轴、交轴电流的仿真,阐述了不同短路形式下各种电流的变化规律及原因,验证了MATLAB/Simulink 用来分析同步发电机短路暂态过程的有效性。
根据不同短路形式下电流的对比得到了发电机短路时暂态过程最坏的情况。
最后,提出了能够保证同步发电机可靠、稳定运行的措施。
[收稿日期]2007208228 [作者简介]韩皓(19822),男,2004年大学毕业,硕士生,现主要从事自动控制与仿真方面的研究工作。
基于Matlab/Simulink 的伺服系统仿真 韩 皓,申祖武 (武汉理工大学机电学院,湖北武汉430070)[摘要]在Matlab/Simulink 环境下,设计和组合了交流同步伺服电机、dq 坐标系向abc 坐标系转换、三相电源逆变器、位置调节器、速度调节器和电流调节器各模块,并在此基础上构建了交流同步伺服系统的位置、速度和电流3闭环仿真模型。
仿真结果证明了该控制方法的有效性,为交流同步伺服系统的设计提供了理论依据。
[关键词]交流同步伺服电机;模块;仿真;闭环[中图分类号]TP39119[文献标识码]A [文章编号]167321409(2007)042N090203 随着近年来电力电子工业和计算机技术的迅速发展,交流伺服系统正广泛应用于工业生产的各个领域。
为了满足高性能传动的需要,必须对位置进行精确控制。
在设计伺服系统的过程中,使用Matlab/Simulink 可以对设计方案进行验证,大大减少系统的开发周期[1];郝军等在Simulink 环境下对异步电机矢量变频调速系统进行仿真[2],表明Simulink 可作为电机仿真中的一种方便、快捷、有效的工具;刘永飘等在Matlab/Simulink 下设计永磁交流伺服系统的仿真模型并进行了仿真研究[3],验证了该仿真模型的有效性;杨平等在Matlab/Simulink 环境下构建了永磁同步电机控制系统的速度和电流双闭环仿真模型,并进行了仿真研究[4]。
笔者论述了永磁同步电机伺服系统的设计,给出了电流、速度和位置等调节器的设计方法,根据坐标变换公式设计了坐标变换模块,根据脉宽调制(PWM )的原理以及要求设计了逆变器模块,提高了系统的控制性能。
1 交流电机的数学模型三相交流电动机是一个高阶、非线性、强耦合的多变量系统。
Matlab/Simulink-basedsimulationfordigital-controlsystemofmarinethree-shaftgas-turbine
YouhongYua,LingenChena,*,FengruiSuna,ChihWubaFaculty306,NavalUniversityofEngineering,Wuhan430033,PRChina
bDepartmentofMechanicalEngineering,USNavalAcademy,Annapolis,MD21402,USA
Accepted8March2004Availableonline6May2004
AbstractAgas-turbineplantmodelisrequiredinordertodesignanddevelopitscontrolsystem.Inthispaper,asimulationmodelofamarinethree-shaftgas-turbine’sdigital-controlsystemispresented.AccelerationprocessesaresimulatedviaaMatlab/Simulinkprogram.Theeffectsofsomeofthemainvariablesonthesystem’sperformanceareanalyzedandtheoptimumvaluesofparametersobtained.Asimulationexperimentuponarealgas-turbineplantisperformedusingthedigital-controlmodel.Theresultsshowthatthesimulationmodelisreliable.Ó2004ElsevierLtd.Allrightsreserved.
Keywords:Gas-turbine;Digital-control;Simulation;Simulink
1.IntroductionInrecentyears,manyinvestigationshavebeenperformedconcerningtheper-formancesimulationofindustrialgas-turbinesinordertoreducebothcalculationtimesrequiredfordynamicsimulationandcostsofcomputersystems[1–5].Withthedevelopmentofmoderndigital-controltechniques,onecanenhancetheperfor-
*Correspondingauthor.Tel.:+86-27-83615046/86-27-83638709;fax:+86-27-83638709.
E-mailaddresses:lgchenna@public.wh.hb.cn,lingenchen@hotmail.com(L.Chen).
0306-2619/$-seefrontmatterÓ2004ElsevierLtd.Allrightsreserved.doi:10.1016/j.apenergy.2004.03.006
www.elsevier.com/locate/apenergyAppliedEnergy80(2005)1–10APPLIEDENERGYmancesofturbineenginesbyusingoptimalcontrol.Thesimple,hydro-mechanicalcontrolsystemshavebeenreplacedbydigital-controlsystems.Thedesignofacontrolsystemrequiresaccuratemodelsofthe‘‘plant’’tobecontrolled.Inthepast,lumpedmodelswereoftensufficientforthedesignandde-velopmentofcontrolsystems.Withthedevelopmentofmoderncontrolequipment
Nomenclaturegmass-flowratekrationshaft-speednhhigh-pressurespoolrealshaft-speednhchigh-pressurespooltargetshaft-speednhmhigh-pressurespoolsettingshaft-speednhshigh-pressurespoolinitialshaft-speednllow-pressurespoolshaft-speedNepower(kW)
ppressure(MPa)sLaplaceoperatorTtemperature(K);timeconstantWffuel-flowrate
Subscriptsccompressorhhigh-pressureininletllow-pressureminminimumoutoutlettturbine1,2,3,4ordernumber
AbbreviationsCCcombustionchamberHChigh-pressurecompressorHShigh-pressurespoolHThigh-pressureturbineLClow-pressurecompressorLSlow-pressurespoolLTlow-pressureturbineMTmiddle-pressureturbinePIDproportional-integral-derivativecontrollerVvolume
2Y.Yuetal./AppliedEnergy80(2005)1–10anddesignmethods,moreaccurate,fullydynamic,detailedmodelsarerequired.Withthepresentdynamic-modelingtechnology,volume–inertiamethodshavebeendevelopedfortherealisticsimulationsofgas-turbinecomponentsandsystems.Theyaresuitableforuseinadvancedcontrol-systemdevelopment.Matlab/Simulink[6,7]hasbecomethemostwidelyusedsoftwarepackageformodelingandsimulatingdynamicsystems.Thedigital-controlmodeladoptedforthesimulationofamarinethree-shaftgas-turbineisdescribedinthispaper,andsomeexamplesofMatlab/Simulinkformulationsadoptedforimplementingthemodelareprovided.Theeffectsofsomeofthemainvariablesonthesystemsper-formanceareanalyzedandtheoptimumvaluesoftheparametersobtained.Asimulationexperimentofarealgas-turbineplantisperformedbyusingthedigital-controlmodel.Theresultsshowthatthesimulationmodelisreliable.
2.Matlab/SimulinkenvironmentWiththeadvancesofcontroltheoryandcomputertechniques,thecomputer-aidedcontrolsystemdesign(CACSD)hasbeendeveloped.MATLABisoneoftherepresentativesofhigh-performancelanguagefortheCACSD.Simulinkisasoftwarepackageformodeling,simulating,andanalyzingdynamicsystems.Itsupportslinearandnon-linearsystems,modeledincontinuoustime,sampledtime,orahybridofthetwo.Simulationisaninteractiveprocess,soonecanchangeparameters‘‘onthefly’’andimmediatelyseewhathappens.Onehasinstantac-cesstoalloftheanalysistoolsinMATLABÒ,soonecananalyzeandvisualize
theresults.WithSimulink,onecanmovebeyondidealizedlinearmodelstoex-ploremorerealisticnon-linearmodels.Formodeling,Simulinkprovidesagraphicuserinterface(GUI)forbuildingmodelsasblockdiagrams,usingclick-and-dragmouseoperations.
3.ControlsystemmodelingForthecontrolstudies,adetailed,dynamicmodelisdesired.Thecontrolsystemofagas-turbineismadeupofthecontrolobjectandthecontroller.
3.1.Control-objectmoduleThenon-lineargas-turbinemodeladoptedforcalculationswasdevelopedin[4,5,8–12].Theoverallrepresentationofaspecificgas-turbineiscarriedoutbyidentifyingthenecessarymodulesandconnectingthemappropriatelybymeansofthermodynamicandmechanicallinks.Thedynamicbehaviorofeachmoduleisdescribedbymeansofequationsrep-resentingthethermodynamictransformationsandkinematicbalance.Asacontrolobject,Fig.1showsathree-shaftgas-turbinelayoutbyassemblingthemodulesonthecomputerscreenviaMatlab/Simulink[13].Thevolume–inertiamethodofsim-ulationofagas-turbineisappliedinthismodel.